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Abstract—Owing to their powerful feature extraction capa-
bilities, deep learning-based methods have achieved significant
progress in hyperspectral remote sensing classification. However,
several issues still exist in these methods, including a lack of hyper-
spectral datasets for specific complicated scenarios and the need
to improve the classification accuracy of land cover with limited
samples. Thus, to highlight and distinguish effective features, we
propose a hyperspectral classification framework based on a joint
channel-space attention mechanism and generative adversarial
network (JAGAN). To relearn feature-based weights, a higher
priority was assigned to important features, which was developed
by integrating a two-joint channel-space attention model to obtain
the most valuable feature via the attention weight map. Addition-
ally, two classifiers were designed in JAGAN: sigmoid was used to
determine whether the input data were real or fake samples pro-
duced by the generator, while Softmax was adopted as a land cover
classifier to yield the prediction type labels of the input samples. To
test the classification performance of the JAGAN model, we used
a self-constructed complex land cover dataset based on GaoFen-5
AHSI images, which consists of mixed landscapes of mining and
agricultural areas from the urban-rural fringe. Compared with
other methods, the proposed model achieved the highest overall
classification accuracy of 86.09%, the highest kappa amount of
79.41%, the highest F1 score of 85.86%, and the highest average
accuracy of 82.30%, indicating the JAGAN can effectively improve
the classification accuracy for limited samples in complex regional
environments using GF-5 AHSI images.

Index Terms—Attention mechanism, generative adversarial
network, Gaofen-5 (GF-5), hyperspectral remote sensing, land
cover classification.

I. INTRODUCTION

LAND cover information is essential for a variety of geospa-
tial applications, such as urban planning, regional admin-

istration, and environmental management [1]. Furthermore, it
serves as the basis for understanding changes on earth’s surface
and related socioecological interactions [2].

More and more people utilize remote sensing images to extract
land cover information [67], [68], among which hyperspectral
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remote sensing images are characterized by “image-spectral
integration” and have been widely used to extract quantitative
information in agriculture, rock and mineral identification, and
environmental science. Subsequently, this method has been
widely used to obtain surface quantitative information [3]–[9].
Particularly, conducting land cover classification in complex
geographical scenarios is advantageous owing to its rich spectral
information [10], [11]. However, in complicated environments
with substantial amounts of data and spatial structures result-
ing from multiple bands, the automatic classification of land
cover using hyperspectral remote sensing images remains a
challenging task owing to the number of details on surface
elements, complex spectral characteristics of surface objects,
high dimensionality of the spectral bands, and limited training
samples [12]–[16].In the early stages of hyperspectral image
classification research, most methods aim to utilize its spec-
tral features during classification [17], including the K-nearest
neighbor (KNN) [18], spectral angle [19], extreme learning
machine [20], and support vector machine (SVM) [21], [22].
However, these methods ignore interpixel spatial information
[23], which limits any improvements to the classification accu-
racy. Spatial features are effective at improving the hyperspec-
tral data representation and classification accuracy [10], [14],
[24]–[28]. Although spatial features achieve optimal results for
improving the classification accuracy, their performance is poor
under conditions with limited samples. From another perspec-
tive, the dataset quality also affects the classification accuracy.
Some studies have established large-scale remote sensing image
datasets, which contribute to promoting the development of
classification research [29]–[31]. As deep learning technology
and computing power continue to advance, deep learning-based
methods have been used in hyperspectral image classification
owing to their strong deep-level feature extraction capability
[9], [32]–[38]. These methods include deep convolutional neural
networks (CNNs), autoencoders (AEs), deep belief networks
(DBNs), and generative adversarial networks (GANs) [32]; [36],
[39]–[41]. CNN-based methods are most widely used in the
remote sensing community and can improve accuracy. Previous
studies have reduced the run time in these algorithms [42]. How-
ever, CNNs exhibit poor performance with insufficient training
samples. AEs have been used in hyperspectral image classifi-
cation owing to their unsupervised feature learning capabilities
[43]–[49]. Overall, AEs deliver limited effects for improving
the accuracy of hyperspectral image classification because they
yield a compressed feature representation of high-dimensional
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hyperspectral image data, especially with limited samples.
DBNs have also been successfully applied to hyperspectral
image classification [45], [50], [51]. However, under complex
surface conditions, the DBN-based model requires a higher
computational load for enhanced classification performance
owing to miscellaneous surface objects, broken image patches,
and varying spatial and geometric characteristics of surface
objects. In this case, reverse propagation may induce gradient
disappearance.

Deep models usually have overfitting problems in hyperspec-
tral image classification owing to limited training samples [49],
[52]–[55]. Therefore, developing effective deep model training
strategies to limit overfitting is essential. GANs represent one
of the available strategies for limiting overfitting [56]. During
hyperspectral image classification, the discriminator training
process can proceed in an effective manner to prevent immedi-
ate overfitting with insufficient training samples. Additionally,
samples generated by GAN can be used as virtual samples. He
et al. [57] proposed an early semisupervised learning method
for hyperspectral and GAN, which enables the full use of lim-
ited labeled classification based on a three-dimensional (3-D)
bilateral filter samples and sufficient unlabeled samples. Zhu et
al. [58] used generated fake samples based on GAN to serve as
training samples for hyperspectral image classification, which
significantly improved the classification performance and allevi-
ated the overfitting phenomenon during training. Zhan et al. [59]
proposed a semisupervised framework for hyperspectral images
based on 1D-GAN with limited labeled samples. Wang et al.
[60] proposed a Caps-Triple GAN framework for hyperspectral
image classification of 1D-CNN. The spatial features can be
learned by the generator, thus, further improving the classifica-
tion performance. Feng et al. [61] proposed a new multiclass
spatial-spectral GAN, which serves as a solution to the lack
of discriminative information in the generated samples and
the inability to consider both spatial and spectral information.
Feng et al. [62] proposed a collaborative learning and atten-
tion mechanism GAN, which yields a distribution of generated
samples in the spectral and spatial dimensions similar to that of
authentic hyperspectral images, thereby eliminating errors and
confusing information. Wang et al. [54] proposed a dual-channel
fusion capsule GAN for hyperspectral image classification by
integrating the capsule network with GAN to eliminate the
mode collapse and gradient disappearance problem inherent in
the traditional GAN. Wang [69] developed GAN-based HSI
classification methods, in which a regularization method of
adaptive DropBlock to alleviate the mode collapse issue and
a single classifier designed for the discriminator to deal with
an imbalanced training data problem. To solve the problem
of selecting a fixed number of bands and an adaptive number
of bands for HSI classification, respectively, Feng et al. [70]
proposed a method of reinforcement learning for semisupervised
band selection.

Although the aforementioned GAN-based methods have
yielded significant progress in hyperspectral classification, some
issues still require solutions. First, potential gradient disap-
pearance results in slow or even failed network convergence;

the more completely the discriminator is trained, the more severe
the disappearance of the generator gradient. The second problem
is pattern crash, where samples generated by GAN feature a sin-
gle data model that tends to have excessive data of a certain type
and minimal data of other types. Third, we must further address
overfitting problems caused by a limited training set size with
high-dimensional features and the efficiency of spectral–spatial
exploitation [49], [53]–[55].

The attention mechanism has been widely used to obtain
significant features during hyperspectral image classification
[13], [26]–[28]. Zhu et al. [27] proposed an end-to-end residual
spectral–spatial attention network to improve classification ac-
curacy. Zhang et al. [28] added a spatial attention mechanism
to optimize the classification of hyperspectral images using a
spectral partitioning residual network. However, the majority of
hyperspectral classification models based on GAN use a single
attention mechanism, such that the extraction of key features
and reduction of disturbance from neighboring surface objects
remains difficult, particularly in complicated surface environ-
ments.

To effectively obtain more beneficial spatial and spectral
features from hyperspectral images, we propose a framework
based on the GAN and channel-space joint attention mechanism
(JAGAN). Gaofen-5 (GF-5) (advanced hyperspectral imager,
AHSI) data were used for land cover classification of mixed
landscapes along the urban–rural fringe and surface mining
areas in this article. The main contributions of this article are
as follows.

1) To improve the land cover classification accuracy using
hyperspectral images with limited samples, this article
proposes the JAGAN framework. Compared with com-
mon CNN networks, the GAN-based JAGAN can make
full use of limited training samples, while a channel-space
joint attention module was added to the framework to
relearn low and high-level feature-based weights, assign
higher priority to important features, highlight and dis-
tinguish effective features, and weaken information not
conducive to classification.

2) In the channel and spatial attention modules, the results of
the maximum and average pooling were integrated, which
not only remains the most significant part of the features,
but also retains the overall expression effect among the
features. Compared with the simple attention method, this
method can extract more discriminative channel space
features to obtain better classification results.

3) A GF-5 AHSI semantic segmentation dataset for a mixe-d
landscape from the urban–rural fringe and mining areas
was constructed (Download:1). The dataset contains 120
bands and includes six land cover types: surface-mined
land, construction land, bare land, road, cropland, and
water. This dataset supplements currently available hy-
perspectral remote sensing datasets.

1https://drive.google.com/drive/folders/1-43T06aWQVj9eEwKB_
edlWYPuWhgAv_L

https://drive.google.com/drive/folders/1-43T06aWQVj9eEwKB_edlWYPuWhgAv_L
https://drive.google.com/drive/folders/1-43T06aWQVj9eEwKB_edlWYPuWhgAv_L
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Fig. 1. GF-5 Advanced HyperSpectral Imager’s true color image of the study area. RGB = band 59, 38, and 20.

TABLE I
MAIN CHARACTERISTICS OF THE ADVANCED HYPERSPECTRAL IMAGER

SENSOR ON BOARD GF-5

II. METHODS

A. GF-5 AHSI Dataset Construction

1) GF-5 Data Description and Preprocessing: The GF-5
satellite was launched from China on May 9, 2018, equipped
with a visible short-wave infrared (SWIR) (AHSI) (see Table I).
Its spectral range extends from 400 to 2500 nm, in which the
visible near-infrared (VNIR) and SWIR are 5 and 10 nm, respec-
tively. The swath width was 60 km, and the spatial resolution
was 30 m [63]. Since correction for atmospheric and topographic
effects is an important processing step to improve data quality,
the GF-5 AHSI was radiometrically calibrated and orthorectified
using ENVI 5.5 software (The Environment for Visualizing
Images, ENVI), where orthorectification correction was using
digital elevation model of the ASTER GDEM Version 2 (v2),
with 30-m postings and 1×1 degree tiles.

The GF-5 AHSI had a total of 330 bands. To remove redundant
information, principal component analysis (PCA) [64] was used
to reduce data dimensionality in this article. As the variance and
cumulative contribution rate of the first 10 components of the
PCA reached 0.9999, the first 20 components of the PCA were
selected for subsequent analysis to use the spectral information
in this article completely.

2) GF-5 AHSI Dataset Construction: The study area, located
in Jiangxia District, Wuhan City, Hubei Province, China, covers
an area of 109.4 km2. As it is a mixed landscape with mining
and agriculture areas, the types of surface objects are complex.
Particularly, Wulongquan mining areas are characterized by
several types of open-pit mining land, including stopes, dumps,
solid waste, and mine transfer sites, which feature significant 3-D
topographic characteristics, interclass similarity, and intraclass
heterogeneity. The study area possesses 218 × 561 pixels from
GF-5 images. Fig. 1 shows a true-color image of the study area.

Employing ArcGIS 10.4 software, manual labeling methods
were used to train and test sample points (see Fig. 2) containing
real labels. Based on the features of the surface objects and
the interpretability of the spatial resolution of GF-5, land cover
was divided into six types in this article: surface-mined land,
construction land, forest land, road, crop land, and water. Table II
lists detailed information on this classification scheme. The GF-
5 dataset was divided into two components: the first was an
image containing the original image data, while the second was
the land cover type labels with heights and widths identical to
the image. Each label value represented the type of image pixel
at its corresponding location.

The production process was as follows. First, the “tif” file
from GF-5 was read through Python’s GDAL library to obtain
the geographic coordinates of the upper left corner of the image;
the relative coordinate of each pixel was then obtained based on
the geographic coordinate and pixel size. Thus, the final matrix
file of 218×561×20 was generated by writing the pixel value in
the relative position of each pixel. Furthermore, we exported the
category and geographic coordinate information of the generated
sample points to a “txt” file via ArcGIS 10.4. The “txt” file was
read through the Python script to obtain the relative coordinates
of the sample points according to the geographic coordinate
and pixel size. Finally, the relative coordinate location of each
sample point was written as a value representing the category
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Fig. 2. Spatial distribution of the training and test samples proposed in this study.

TABLE II
LAND COVER CLASSIFICATION SCHEME FOR THE GF-5 DATASET USED

IN THIS ARTICLE

TABLE III
FURTHER DETAILED DESCRIPTIONS OF EACH SAMPLE POINT

of the sample point. Among them, 1 to 6 were designated for
surface-mined areas, roads, water, crop land, forest land, and
construction land, respectively, and other unmarked pixel tags
were labeled as 0, ultimately generating the matrix file of land

cover type labels. Table III lists the sample point numbers for
each type.

B. JAGAN Framework Construction

The adopted loss function and framework of JAGAN are based
on the Auxiliary Classifier GANs(ACGAN)[71], compared with
original GAN, which only judges whether the input sample
is true or false. The discriminator D generates the probability
distribution P(S|X) = D(X) from real training data and fake data
supplied by generator G(X). The purpose of the D network is to
maximize the log-likelihood of the right source

LD = E [logP (S = real|Xreal)]

+ E [logP (S = fake|Xfake)] . (1)

The generator G is trained to minimize the following likeli-
hood:

LG = E [logP (S = fake|Xfake)] (2)

ACGAN’s network design, unlike classic GAN, can be used
for multiclass image classification. The input of discriminator D
is the real training data with corresponding class labels c and the
fake data generated by G. The discriminator D output branch is
used to distinguish real and fake data, but it also produces the
classification label distribution. The loss function of ACGAN
consists of two parts: the log-likelihood of the right source of
input data Ls and the log-likelihood of the right class labels Lc

Ls = E [logP (S = real|Xreal)]

+ E[logP (S = fake|Xfake)] (3)

Lc = E [logP (C = c|Xreal)]

+ E [logP (C = c|Xfake)] . (4)

So D is optimized to maximize the Ls + Lc, while G is
optimized to maximize Lc – Ls.

Fig. 3 shows the specific framework based on JAGAN. In
JAGAN, generator G receives 100-D noise vectors and real
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Fig. 3. JAGAN network architecture proposed in this study.

Fig. 4. Generator network structure developed in this article.

category labels, sampling them via deconvolution to generate
fake samples, G(z), with shapes and sizes identical to those of
the real data. The false sample dimension was the same as that in
the real data after PCA dimensionality reduction, which was 20
bands. Discriminator D receives real and fake samples as inputs
and uses a step-size convolution to perform down-sampling
for feature extraction. Two classifiers were designed. First, the
sigmoid classifier was used to determine whether the input data
were from real or fake samples produced by the generator.
Second, Softmax was adopted as a surface object classifier to
output the prediction category labels of the input samples. Before
the real and fake samples were input in front of the discriminator,
as well as the SoftMax and sigmoid classifiers, the channel-space
joint attention module was added to obtain the most valuable
information via the attention weight map to improve the classifi-
cation accuracy. The input of both generator G and discriminator
D increased the sample label information; the parameters were
optimized according to multiclassification loss in the network
training. Therefore, compared with the traditional GAN, the
proposed JAGAN was capable of optimizing the loss function
more reasonably while simultaneously effectively utilizing the
spectral and spatial features of the GF-5 AHSI images.

1) Generator Network Structure Construction: To improve
the quality of the self-generated samples, the generator produced
fake samples with sizes identical to those of the real samples for
adversarial training with the discriminator. This article adopted

TABLE IV
GENERATOR NETWORK PARAMETERS

a 16 × 16 neighborhood size as the input. Therefore, to gen-
erate fake samples with identical sizes to the real samples, the
generator network had a total of four layers, as shown in Fig. 4.
Table IV lists the generator network parameters.

The generator first received 100-D noise vectors, which were
a randomly generated set of sample values conforming to the
standard normal distribution. The noise vector was first reshaped
into a 3-D tensor with a size of 2 × 2 × 128 via the first
deconvolution network, which featured a convolution and step
size of 4× 4× 128 and 2, respectively. The noise vector was then
reshaped into a 3-D tensor with a size of 4×4×64 via the second
deconvolution network, which featured a convolution and step
size of 4 × 4 × 64 and 2, respectively, while using neuronal
inactivation to prevent overfitting. Finally, a 3-D tensor with a
size of 8 × 8 × 32 was produced via the third deconvolution
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Fig. 5. Channel attention module proposed in this article.

Fig. 6. Space attention module developed in this article.

Fig. 7 Discriminator network structure developed in this article.

network, which featured a convolution and step size of 4 × 4
× 32, and 2, respectively, and a 3-D tensor with a size of 16 ×
16 × 20 via the fourth deconvolution network, which featured
a convolution and step size of 4 × 4 × 20, and 2, respectively.
As the original GF-5 image was reduced to 20 bands through
PCA and a 16 × 16 spatial neighborhood was simultaneously
selected, the 100-D noise vector was mapped to a tensor of 16
× 16 × 20 with the same size as the real sample through a
four-layer deconvolution network, i.e., false samples.

2) Joint Attention Module Construction: In this article, the
channel-space joint attention module was utilized before dis-
criminator input and output into the sigmoid classifier, as well
as the SoftMax classifier. The feature diagram was run through
two modules. First, a feature graph featuring high H, wide W, and
dimension C was obtained as the input feature F, i.e., C×H×W.
The feature graph was then passed through the channel attention
module to obtain a channel attention diagram M_c. By mul-
tiplying the corresponding elements with the original feature,
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a feature diagram was obtained, as follows:

F ′ = Mc(F )⊗ F (5)

where ⊗ represents the multiplication operation of the corre-
sponding elements.

The resulting feature diagram F ′ was then input into the
spatial attention module and a spatial attention diagram Ms

by multiplying Ms and the corresponding elements of F ′. The
feature diagram F ′′ was obtained as follows:

F ′′ = Ms(F ′)⊗ F ′. (6)

In the channel and spatial attention modules, the results of the
maximum and average pooling were integrated. Maximum pool-
ing preserves the most prominent part of the feature and ignores
the overall expression effect of the feature. Average pooling
considers the overall expression effect of features and weakens
the differences between features. Therefore, the characteristics
of the two pooling methods were comprehensively considered
in the joint attention module; their results were fused to achieve
optimal feature expression. The following are the realization
processes for the attention modules in the channel and spatial
domains.

2) a) Channel Attention Module: Fig. 5 shows the chan-
nel attention module used in this article. First, we input a C-
dimensional feature graph with average and maximum pooling
to aggregate spatial information, followed by obtaining two
C-dimensional pooling feature diagrams, F_avg and F_max.
Subsequently, the two pooled feature graphs were input into
the multilayer perception with a hidden layer to obtain two 1
× 1 × C channel attention graphs. To reduce the parameters,
the number of hidden layer neurons was C/r, where r is the
compression ratio. Finally, we added the corresponding elements
of the two-channel attention graphs obtained through multilayer
perception. By activating the feature graph upon the addition of
the sigmoid activation function, the final channel attention graph
Mc was obtained. Equation (3) shows the entire process

Mc (F )

= σ (MLP (AvgPool (F )) +MLP (MaxPool (F )))

= σ
(
W1

(
W0

(
F c
avg

))
+W1 (W0 (F

c
max))

)
. (7)

Using the interchannel relation of features, we can obtain a
1×1×C channel attention graph. The weight of each dimension
on the abovementioned map represents the importance and rele-
vance of the key information in the feature layer corresponding
to that dimension.

2) b) Space Attention Module: After the channel attention
map and original feature map of the input channel attention
module were multiplied by the corresponding elements, they
were input into the subsequent spatial attention module, as
shown in Fig. 6. First, the refined feature diagram of the chan-
nel attention was input into the spatial attention module. We
performed maximum and average pooling along the channel
direction to obtain 2-D feature diagrams, F_avg and F_max,
respectively, both of which had a size of 1 × H × W. We then
dimensionally concatenated the two obtained feature diagrams

TABLE V
DISCRIMINATOR NETWORK PARAMETERS USED IN THIS ARTICLE

TABLE VI
NUMBER OF TRAINING AND TESTING SAMPLES USED IN THIS ARTICLE

to obtain a spliced feature diagram with a size of 2 × H × W.
Finally, the splicing feature diagram was passed through the
convolutional layer with a convolution kernel size of 7 × 7, as
well as the sigmoid activation function to generate the spatial
attention diagram, Ms. Equation (4) shows this process

Ms (F ) = σ
(
f7×7 ([AvgPool (F ) ;MaxPool (F )])

)

= σ(f7×7
([
F s
avg;F

s
max

])
. (8)

The resulting spatial attention diagram Ms and feature dia-
gram Mc refined by the channel attention were multiplied by the
corresponding elements to obtain the final output.

3) Discriminator Network Structure Construction: The
JAGAN model extracted the spatial and spectral features of
the GF-5 image through discriminator D. Simultaneously, the
discriminator and generator conducted adversarial training to
determine whether the generated samples were fake. Fig. 7
illustrates the discriminator network structure. Table V lists the
discriminator network parameters.

The discriminator simultaneously received both real and fake
samples generated by a generator with an identical size of 16 ×
16 × 20. The spatial features were extracted through 16 × 16
spatial neighborhoods, while the spectral features were extracted
in the 20-D spectral domain. Among them, 16 × 16 represents
the spatial neighborhood of the pixel, while the 20th dimension
is the band of the PCA after dimensional reduction.

True and fake sample data first passed through the joint
attention module, whose output size was identical to that of the
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TABLE VII
RESULTS OF THE CLASSIFICATION ACCURACY FOR THE METHODS USED IN THIS ARTICLE. HERE, 1 TO 6 REPRESENT SURFACE-MINED AREAS,

ROADS, WATER, CROP LAND, FOREST LAND, AND CONSTRUCTION LAND

TABLE VIII
RUNNING TIME OF DIFFERENT CLASSIFICATION METHODS

input module. The feature diagram of 16 × 16 × 20 output by
the attention module was converted into a feature diagram with a
size of 8 × 8 × 32 via the first-layer convolutional network with
a convolution and step size of 4 × 4 × 32, and 2, respectively. A
feature diagram of 4× 4× 64 was output via the second layer of
the convolutional network with a convolution and step size of 4
× 4 × 64, and 2, respectively. A feature diagram of 2 × 2 × 128
was output via the third layer of the convolutional network with
a convolution and step size of 4 × 4 × 128, and 2, respectively.
A feature diagram of 1 × 1 × 64 was output via the fourth layer
of the convolutional network with a convolution and step size of
4 × 4 × 64, and 2, respectively.

The output feature diagram extracted the important features
through another joint attention module, and the output remained
a feature diagram of 1 × 1 × 64. The feature map was converted
into a 1-D vector and then input into a fully connected layer with
the Sigmoid activation function, which outputs the probability
of whether the sample was real. The feature diagram of 1 × 1
× 64 was input into a fully connected layer with Softmax as the
activation function to determine the type of input sample and
output the corresponding label.

The discriminator network enabled classification while con-
ducting adversarial training with the generator using the Sigmoid
and SoftMax activation functions. Using a channel-space joint
attention module can simultaneously achieve better classifica-
tion effects in terms of complicated series and interconnecting

surface object types covering construction land for urban and
rural residencies, as well as mining areas.

C. Precision Evaluation Methods

JAGAN and other popular deep learning models were eval-
uated using the overall accuracy (OA), recall (class accuracy),
F1-Score,Kappa , and average accuracy (AA, the average recall
of all classes). The evaluation metrics are defined as follows:

Overall Accuracy =

∑
a Paa∑
a ta

(9)

Recall =
Paa

ta
(10)

Precision =
Pbb

tb
(11)

F1 − Score = 2 ∗ precision ∗ recall
precision + recall

(12)

Kappa =
Po − Pc

1 − Pc
(13)

Po =

∑
a Paa∑
a ta

(14)

Pc =

∑
k (

∑
b Pkb ∗

∑
a Pab)

(
∑

a ta)
2 k ∈ [1,K] (15)

where Pab denotes the number of samples of class a predicted
to belong to class b, ta =

∑

b

Pab , which is the total number of

samples belonging to class a, tb =
∑

a
Pab , which is the total

number of samples belonging to class b, and K is the number
of classes.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Comparison of Selected Methods

To verify the superiority of JAGAN in this article, comparative
experiments were conducted between JAGAN and five other
methods, namely KNN, SVM, 2D-CNN [65], 3D-CNN [66], and
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Fig. 8. Classification results for each method in the study area.

3D-GAN [58]. Among them, KNN and SVM are classic machine
learning classifiers that serve as contrast benchmarks for other
classifiers based on deep learning. As popular hyperspectral
classifiers based on deep learning, 2D- and 3D-CNN enable
the comprehensive exploitation of spatial and spectral features.
3D-GAN serves as a benchmark for comparisons with adversar-
ial generation networks. Meanwhile, comparative experiments
on various networks were conducted using limited samples to
verify that JAGAN has superior capabilities with respect to
insufficient labeled sample data via the generator.

B. Experimental Environment and Parameter Setting

The environment and framework used were Python v3.6
and Pytorch 1.1.0. The hardware configuration was 64 GB of
memory, the CPU was an Intel (R) Xeon (R) Silver 4210, and
the GPU was RTX2080ti GPU with 11 GB of memory. A total of
200 labeled sample points for each class were randomly selected,
and all the remaining points were used for testing. Table VI lists
detailed information on the experiments.

C. Experimental Results

Table VII lists the results of the experiments. The KNN
and SVM algorithms performed the worst, but the methods
based on deep learning had significantly better performance.
Methods based on GAN performed better than those based on

CNNs. Compared with 3D-GAN, the classification accuracy of
JAGAN was better, especially for small targets, such as roads and
water. This indicates that using the channel-space joint attention
module can easily obtain useful features relevant to the current
output, as well as more recognizable feature representations of
different land cover categories, thus improving the classification
accuracy. Based on the GF-5 datasets used in this article, as
the proportion of the mining area in the entire test set was
excessively large, it had a specific impact on the OA model.
Therefore, we could not evaluate the quality of the model with
only the OA; we must also compare the average performance
effect on each class and the classification accuracy of each
class in combination with the AA index. Although JAGAN
was superior to the 3D-CNN and other methods in terms of
the OA, its accuracy in some categories was slightly lower
than that of 3D-CNN. A partial improvement occurred in terms
of the AA index. As we focused more on the classification
effect of mining areas, JAGAN still had certain advantages.
In addition, Table VIII compares the running time of different
classification methods. Due to the deep network architecture,
deep learning-based methods cost more training time than SVM
and KNN. Among deep learning-based methods. The GAN
consumes longer time than 2DCNN, 3DCNN in terms of a
single training epoch and test time. However, the number of
training epochs is larger for 2dcnn and 3dcnn to achieve optimal
accuracy, so overall training time is longer than GAN. Among
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GAN-based methods, the addition of the attention mechanism
makes JAGAN slightly longer than 3DGAN in terms of training
and testing time. In summary, the time spent by JAGAN is not
much higher than other deep learning-based methods, but most
accuracy metrics are over other methods.

Using the abovementioned well-trained models, a classifica-
tion map was created for the entire study area, whose results are
shown in Fig. 8. Fig. 8 shows that the KNN and SVM methods
had poor results; there was even the phenomenon of salt and
pepper in the KNN results. Among the deep learning-based
methods, the 2D-CNN yielded predictions that were more biased
toward forest, while 3D-GAN yielded predictions biased toward
misjudgments in forest and mining areas. We can conclude that
JAGAN and 3D-CNN were superior for entire region predic-
tions, 3D-CNN for road predictions, and JAGAN for mining area
predictions. More detailed features were extracted from small
target objects via 3D-CNN, while the generator in JAGAN was
more often generated in mining areas, thus achieving a better
classification effect.

IV. DISCUSSION

A. Performance of JAGAN With Limited Samples

To explore whether JAGAN can improve the classification
accuracy with limited samples via data expansion by generating
fake samples using generators, 20, 30, and 50 sample points for
each category were selected for training; the remaining labeled
samples were used for tests and methods for small sample tests.

Table IX lists the results.
The CNN-based method had a relatively large demand for

training data. For limited samples (taking 50 sample points for
training as an example), the OA of 2D-CNN was 64.30% and
Kappa was 52.42%, while 3D-CNN had an OA of 68.01% and
Kappa of 55.96%. However, for a similar case, GAN-based
methods yielded better classification results, where GAN had
an OA of 75.23% and Kappa of 62.87%, while JAGAN had an
OA of 76.69% and Kappa of 63.66%. The experimental results
demonstrated that the generator in GAN can serve as a data
augmentation strategy to supplement the data volume during
training, thus improving the classification accuracy. Compared
with 3D-GAN, JAGAN yielded improvements in several accu-
racy evaluation indicators. Taking 50 samples as an example,
the OA, AA, F1-score, and Kappa increased by 1.4, 2.3, 0.8,
and 0.8%, respectively. The adopted joint attention module
was effective for key feature extraction under limited samples
and classification accuracy improvement. However, the exper-
imental results showed that CNN-based methods are superior
to GAN-based methods for the AA. At the same time, CNN-
based methods were more balanced between classes, whereas
GAN-based methods were more inclined to produce distinctions
between certain categories.

B. Ablation Study on Attention Mechanisms

In order to further investigate the role of the joint channel-
space attention mechanism for limited label samples, the results

TABLE IX
CLASSIFICATION RESULTS FOR DIFFERENT METHODS WITH LIMITED SAMPLES

of the ablation study on attention mechanism with 200 labeled
samples for training are presented in Table X.

In comparison with JAGAN (No.6), on the one hand, JA-
GAN without attention mechanism of average pooling oper-
ation (No.8) decreases in accuracy by 0.3%, 1.45%, 8.37%,
and 1.05% for OA, AA, F1-score, and kappa, respectively. On
the other hand, the accuracy drops by OA 0.09%, AA 2.77%,
F1-score 8.32%, and Kappa 0.93% for JAGAN without attention
mechanism of max-pooling operation (No.7). These indicate
that both operations are used to learn not only important feature
information, but also to retain helpful background information.

The following discussion explores the effect of different at-
tention modules and module positions on classification accuracy
when both the maximum pooling and average pooling operations
(No.1–6) are used in the attention module. The JAGAN without
the attention mechanism (NO.1) was not the best performer
in OA. However, it was the worst performer in the rest of
the metrics, indicating that the attention mechanism is vital
for land cover classification in GF-5 AHSI dataset. In terms
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TABLE X
CLASSIFICATION RESULTS FOR ABLATION EXPERIMENTS OF ATTENTION MECHANISMS

× represents the module is not used, � represents the module is used.

of attention mechanism placement analysis, JAGAN (NO.6)
maximum improves OA, AA, F1-score, and kappa by 0.51%,
0.83%, 0.98%, and 0.9%, respectively, when compared to the
placement before (NO.2) or after (NO.3) the discriminator alone,
indicating that the extraction of important channel and spatial
information from both low- and high- level semantic features
is superior to only from low- or high- level semantic features.
Compared with the use of only one attention mechanism (NO.4,
5), JAGAN (NO.6) resulted in a maximum decrease of 0.48%
in OA, but maximum increases of 1.76%, 6.77%, and 1.17% in
AA, F1 scores, and kappa, respectively, revealing that utilizing
joint attention mechanism was more favorable for the limited
imbalanced dataset. Meanwhile, the variances of the JAGAN
(NO.6) in each of these cases were 0.62%, 0.55%, 0.29%, and
0.23%, respectively, which were the lowest among all compared
networks. These suggest that the JAGAN is more stable in terms
of classification.

V. CONCLUSION

To effectively obtain more beneficial spatial and spectral
features from hyperspectral images, JAGAN model based on
the channel-spatial joint attention mechanism and GAN is pro-
posed. Tests of the JAGAN model were carried out on mixed
landscapes in GF-5 AHSI data. The results indicated that the
proposed JAGAN model can first focus on the key features
and then provide higher weights to key features via the joint
attention module, thereby increasing the classification accuracy.
Second, the network focused more on obtaining useful features
associated with the current output and yielding more recog-
nizable feature representations for different categories, thereby
improving the classification accuracy of small targets. Finally,
the generator produced fake samples similar to real samples
to attain a data expansion effect and improve the classification
accuracy for small samples.

Future studies will focus on automatically determine appro-
priate initialization parameters according to the characteristics
of the GF-5 data to optimize the classification model further.
In addition, to validate the performance of the JAGAN frame-
work further, more experiments can be conducted on publicly
available state-of-the-art hyperspectral remote sensing image

classification datasets, and we are also going to try to apply
the JAGAN framework on semisupervised multispectral classi-
fication.

REFERENCES

[1] X. Liu et al., “Classifying urban land use by integrating remote sensing
and social media data,” Int. J. Geographical Inf. Sci., vol. 31, no. 8,
pp. 1675–1696, 2017, doi: 10.1080/13658816.2017.1324976.

[2] L. Cassidy et al., “Social and ecological factors and land-use land-cover
diversity in two provinces in Southeast Asia,” J. Land Use Sci., vol. 5,
no. 4, pp. 277–306, 2010, doi: 10.1080/1747423X.2010.500688.

[3] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 12, pp. 2325–2329, 2000,
doi: 10.1126/science.290.5500.2323.

[4] M. Govender, K. Chetty, and H. Bulcock, “A review of hyper-
spectral remote sensing and its application in vegetation and wa-
ter resource studies,” Water SA, vol. 33, no. 2, pp. 145–151, 2007,
doi: 10.4314/wsa.v33i2.49049.

[5] H. Grahn and P. Geladi, “Techniques and Applications of Hyperspectral
Image Analysis. Hoboken, NJ, USA: Wiley, 2007.

[6] F. D. Van der Meer et al., “Multi-and hyperspectral geologic remote
sensing: A review,” Int. J. Appl. Earth Observ. Geoinformat., vol. 14, no. 1,
pp. 112–128, 2012, doi: 10.1016/j.jag.2011.08.002.

[7] T. Adão et al., “Hyperspectral imaging: A review on UAV-based sensors,
data processing and applications for agriculture and forestry,” Remote
Sens., vol. 9, no. 11, 2017, Art. no. 1110, doi: 10.3390/rs9111110.

[8] P. Ghamisi et al., “Advances in hyperspectral image and signal pro-
cessing: A comprehensive overview of the state of the art,” IEEE
Geosci. Remote Sens. Mag., vol. 5, no. 4, pp. 37–78, Dec. 2017,
doi: 10.1109/MGRS.2017.2762087.

[9] M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas., “Modern
trends in hyperspectral image analysis: A review,” IEEE Access, vol. 6,
pp. 14118–14129, 2018, doi: 10.1109/ACCESS.2018.2812999.

[10] Z. Zheng, Y. Zhong, A. Ma, and L. P. Zhang, “FPGA: Fast patch-free global
learning framework for fully end-to-end hyperspectral image classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 8, pp. 5612–5626,
Aug. 2020, doi: 10.1109/TGRS.2020.2967821.

[11] Z. Zheng, A. Ma, L. Zhang, and Y. Zhong, “Deep multisensor learning for
missing-modality all-weather mapping,” ISPRS J. Photogramm. Remote
Sens., vol. 174, pp. 254–264, 2021, doi: 10.1016/j.isprsjprs.2020.12.009.

[12] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N.
Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data analysis
and future challenges,” IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2,
pp. 6–36, Jun. 2013, doi: 10.1109/MGRS.2013.2244672.

[13] X. Tong et al., “Land-cover classification with high-resolution remote
sensing images using transferable deep models,” Remote Sens. Environ.,
vol. 237, 2020, Art. no. 111322, doi: 10.1016/j.rse.2019.111322.

[14] A. Vail, S. Comai, and M. Matteucci, “Deep learning for land use and land
cover classification based on hyperspectral and multispectral earth obser-
vation data: A review,” Remote Sens., vol. 12, no. 15, 2020, Art. no. 2495,
doi: 10.3390/rs12152495.

https://dx.doi.org/10.1080/13658816.2017.1324976
https://dx.doi.org/10.1080/1747423X.2010.500688
https://dx.doi.org/10.1126/science.290.5500.2323
https://dx.doi.org/10.4314/wsa.v33i2.49049
https://dx.doi.org/10.1016/j.jag.2011.08.002
https://dx.doi.org/10.3390/rs9111110
https://dx.doi.org/10.1109/MGRS.2017.2762087
https://dx.doi.org/10.1109/ACCESS.2018.2812999
https://dx.doi.org/10.1109/TGRS.2020.2967821
https://dx.doi.org/10.1016/j.isprsjprs.2020.12.009
https://dx.doi.org/10.1109/MGRS.2013.2244672
https://dx.doi.org/10.1016/j.rse.2019.111322
https://dx.doi.org/10.3390/rs12152495


1602 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

[15] H. Sun, X. Zheng, and X. Lu, “A supervised segmentation network for
hyperspectral image classification,” IEEE Trans. Image Process., vol. 30,
pp. 2810–2825, Feb. 2021, doi: 10.1109/TIP.2021.3055613.

[16] C. Cruz-Ramos, B. P. Garcia-Salgado, R. Reyes-Reyes, V. Pono-
maryov, and S. Sadovnychiy, “Gabor features extraction and land-
cover classification of urban hyperspectral images for remote sens-
ing applications,” Remote Sens., vol. 13, no. 15, 2021, Art. no. 2914,
doi: 10.3390/rs13152914.

[17] P. Ghamisi et al., “Advanced spectral classifiers for hyperspectral im-
ages: A review,” Geosci. Remote Sens., vol. 5, no. 1, pp. 8–32, 2017,
doi: 10.1109/MGRS.2016.2616418.

[18] H. Huang and X. L. Zheng, “Hyperspectral image classification with
combination of weighted spatial-spectral and KNN,” Opt. Precis. Eng.,
vol. 24, no. 4, pp. 873–881, 2016, doi: 10.3788/OPE.20162404.0873.

[19] Y. Sohn and N. S. Rebello, “Supervised and unsupervised spectral an-
gle classifiers,” Photogrammetric Eng. Remote Sens., vol. 68, no. 12,
pp. 1271–1282, 2002.

[20] J. Echanobe, I. del Campo, K. Basterretxea, and V. Martínez, “Ge-
netic algorithm-based optimization of ELM for on-line hyperspectral
image classification,” in Proc. IEEE Int. Joint Conf. Neural Netw., 2017,
pp. 4202–4207.

[21] D. K. Jain et al., “An approach for hyperspectral image classification by
optimizing SVM using self organizing map,” J. Comput. Sci., vol. 25, no. 1,
pp. 252–259, 2017, doi: 10.1016/j.jocs.2017.07.016.

[22] Y. N. Chen et al., “Feature line embedding based on support vector
machine for hyperspectral image classification,” Remote Sens., vol. 13,
no. 1, Jan. 2021, Art. no. 130, doi: 10.3390/rs13010130.

[23] N. Audebert, B. L. Saux, and S. Lefèvre, “Deep learning for
classification of hyperspectral data: A comparative review,” IEEE
Geosci. Remote Sens. Mag., vol. 7, no. 2, pp. 159–173, Jun. 2019,
doi: 10.1109/MGRS.2019.2912563.

[24] X. Kang, X. Xiang, S. Li, and J. Atli Benediktsson, “PCA-Based
edge-preserving features for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 12, pp. 7140–7151, Dec. 2017,
doi: 10.1109/TGRS.2017.2743102.

[25] H. C. Li et al., “Gabor feature-based composite Kernel method for hyper-
spectral image classification,” Electron. Lett., vol. 54, no. 10, pp. 628–630,
2018, doi: 10.1049/el.2018.0272.

[26] H. Sun, X. Zheng, X. Lu, and S. Wu, “Spectral–spatial atten-
tion network for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 5, pp. 3232–3245, May 2020,
doi: 10.1109/TGRS.2019.2951160.

[27] M. Zhu, L. Jiao, F. Liu, S. Yang, and J. Wang, “Residual spectral–
spatial attention network for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 1, pp. 449–462, Jan. 2021,
doi: 10.1109/TGRS.2020.2994057.

[28] X. Zhang, S. Shang, X. Tang, J. Feng, and L. Jiao, “Spectral partitioning
residual network with spatial attention mechanism for hyperspectral image
classification,” IEEE Trans. Geosci. Remote Sens., vol. 60, Jun. 2021,
Art. no. 5507714, doi: 10.1109/TGRS.2021.3074196.

[29] G. S. Xia et al., “AID: A benchmark data set for performance evaluation
of aerial scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 7, pp. 3965–3981, Jul. 2017, doi: 10.1109/tgrs.2017.2685945.

[30] G. S. Xia et al., “DOTA: A large-scale dataset for object detection in
aerial images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 3974–3983.

[31] Y. Long et al., “On creating benchmark dataset for aerial image inter-
pretation: Reviews, guidances, and Million-AID,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 14, pp. 4205–4230, Apr. 2021,
doi: 10.1109/JSTARS.2021.3070368.

[32] L. P. Zhang et al., “Deep learning for remote sensing data: A technical
tutorial on the state of the art,” Geosci. Remote Sens., vol. 4, no. 2,
pp. 22–40, 2016, doi: 10.1109/MGRS.2016.2540798.

[33] W. Li, G. Wu, F. hang, and Q. Du, “Hyperspectral image classification
using deep pixel-pair features,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 2, pp. 844–853, Feb. 2017, doi: 10.1109/TGRS.2016.2616355.

[34] J. Yang, Y. Q. Zhao, and C. W. Chan, “Learning and transferring
deep joint spectral-spatial features for hyperspectral classification,” IEEE
Trans. Geosci. Remote Sens., vol. 67, no. 99, pp. 1–14, Aug. 2017,
doi: 10.1109/TGRS.2017.2698503.

[35] G. Cheng, Z. Li, J. Han, X. Yao, and L. Guo, “Exploring hierarchi-
cal convolutional features for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 11, pp. 6712–6722, Nov. 2018,
doi: 10.1109/TGRS.2018.2841823.

[36] L. Ma et al., “Deep learning in remote sensing applications: A meta-
analysis and review,” ISPRS J. Photogramm. Remote Sens., vol. 152,
pp. 166–177, 2019, doi: 10.1016/j.isprsjprs.2019.04.015.

[37] S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, “HybridSN:
Exploring 3-d-2-d CNN feature hierarchy for hyperspectral image classi-
fication,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 2, pp. 271–281,
Feb. 2020, doi: 10.1109/LGRS.2019.2918719.

[38] Q. Lv, W. Feng, Y. Quan, G. Dauphin, L. Gao, and M. Xing, “Enhanced-
random-feature-subspace-based ensemble CNN for the imbalanced hy-
perspectral image classification,” IEEE J. Sel. Topics Appl. Earth Ob-
serv. Remote Sens., vol. 14, pp. 3988–3999, Mar. 2021, doi: 10.1109/JS-
TARS.2021.3069013.

[39] F. Wang et al., “Residual attention network for image classification,” Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 3156–3164.

[40] X. X. Zhu et al., “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE Geosci. Remote Sens. Mag., vol. 5,
no. 4, pp. 8–36, Dec. 2017, doi: 10.1109/MGRS.2017.2762307.

[41] Q. Yuan et al., “Deep learning in environmental remote sensing:
Achievements and challenges,” Remote Sens. Environ., vol. 241, 2020,
Art. no. 111716, doi: 10.1016/j.rse.2020.111716.

[42] S. Mei, X. Chen, Y. Zhang, J. Li, and A. Plaza, “Accelerating convolutional
neural network-based hyperspectral image classification by step activation
quantization,” IEEE Trans. Geosci. Remote Sens., vol. 60, Feb. 2021,
Art. no. 5502012, doi: 10.1109/TGRS.2021.3058321.

[43] X. Ma, H. Wang, and J. Geng, “Spectral–spatial classification of hyper-
spectral image based on deep auto-encoder,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 9, no. 9, pp. 4073–4085, Sep. 2016,
doi: 10.1109/JSTARS.2016.2517204.

[44] Y. Pu et al., “Variational autoencoder for deep learning of images, labels
and captions,” Adv. Neural Inf. Process. Syst., vol. 29, pp. 2353–2360,
2016.

[45] P. Zhong, Z. Gong, S. Li, and C.-B. Schönlieb, “Learning to diver-
sify deep belief networks for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 6, pp. 3516–3530, Jun. 2017,
doi: 10.1109/TGRS.2017.2675902.

[46] S. Paul and D. N. Kumar, “Spectral-spatial classification of hyperspec-
tral data with mutual information based segmented stacked autoencoder
approach,” ISPRS J. Photogramm. Remote Sens., vol. 138, pp. 265–280,
2018, doi: 10.1016/j.isprsjprs.2018.02.001.

[47] R. Lan, Z. Li, Z. Liu, T. Gu, and X. Luo, “Hyperspectral image clas-
sification using k-sparse denoising autoencoder and spectral–restricted
spatial characteristics,” Appl. Soft Comput., vol. 74, pp. 693–708, 2019,
doi: 10.1016/j.asoc.2018.08.049.

[48] Y. Cai, Z. Zhang, Z. Cai, X. Liu, and X. Jiang, “Hypergraph-structured
autoencoder for unsupervised and semisupervised classification of hy-
perspectral image,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5,
Feb. 2021, doi: 10.1109/LGRS.2021.3054868.

[49] Z. Chen et al., “Self-Attention-Based conditional variational auto-encoder
generative adversarial networks for hyperspectral classification,” Remote
Sens., vol. 13, no. 16, 2021b, Art. no. 3316, doi: 10.3390/rs13163316.

[50] K. Tan, F. Wu, Q. Du, P. Du, and Y. Chen, “A parallel gaussian–
bernoulli restricted boltzmann machine for mining area classification
with hyperspectral imagery,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 12, no. 2, pp. 627–636, Feb. 2019, doi: 10.1109/JS-
TARS.2019.2892975.

[51] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson,
“Deep learning for hyperspectral image classification: An overview,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 6690–6709, Sep. 2019,
doi: 10.1109/TGRS.2019.2907932.

[52] H. Li, J. Li, X. Guan, B. Liang, Y. Lai, and X. Luo, “Research on overfitting
of deep learning,” in Proc. IEEE 15th Int. Conf. Comput. Intell. Secur.,
2019, pp. 78–81.

[53] W. Yu, M. Zhang, Z. He, and Y. Shen, “Convolutional two-stream
generative adversarial network-based hyperspectral feature extraction,”
IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–10, May 2021,
doi: 10.1109/TGRS.2021.3073924.

[54] J. Wang, S. Guo, R. Huang, L. Li, X. Zhang, and L. Jiao, “Dual-channel
capsule generation adversarial network for hyperspectral image classifi-
cation,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–16, Jan. 2021,
doi: 10.1109/TGRS.2020.3044312.

[55] H. Liang, W. Bao, and X. Shen, “Adaptive weighting feature fusion
approach based on generative adversarial network for hyperspectral image
classification,” Remote Sens., vol. 13, no. 2, Jan. 2021, Art. no. 198,
doi: 10.3390/rs13020198.

https://dx.doi.org/10.1109/TIP.2021.3055613
https://dx.doi.org/10.3390/rs13152914
https://dx.doi.org/10.1109/MGRS.2016.2616418
https://dx.doi.org/10.3788/OPE.20162404.0873
https://dx.doi.org/10.1016/j.jocs.2017.07.016
https://dx.doi.org/10.3390/rs13010130
https://dx.doi.org/10.1109/MGRS.2019.2912563
https://dx.doi.org/10.1109/TGRS.2017.2743102
https://dx.doi.org/10.1049/el.2018.0272
https://dx.doi.org/10.1109/TGRS.2019.2951160
https://dx.doi.org/10.1109/TGRS.2020.2994057
https://dx.doi.org/10.1109/TGRS.2021.3074196
https://dx.doi.org/10.1109/tgrs.2017.2685945
https://dx.doi.org/10.1109/JSTARS.2021.3070368
https://dx.doi.org/10.1109/MGRS.2016.2540798
https://dx.doi.org/10.1109/TGRS.2016.2616355
https://dx.doi.org/10.1109/TGRS.2017.2698503
https://dx.doi.org/10.1109/TGRS.2018.2841823
https://dx.doi.org/10.1016/j.isprsjprs.2019.04.015
https://dx.doi.org/10.1109/LGRS.2019.2918719
https://dx.doi.org/10.1109/JSTARS.2021.3069013
https://dx.doi.org/10.1109/JSTARS.2021.3069013
https://dx.doi.org/10.1109/MGRS.2017.2762307
https://dx.doi.org/10.1016/j.rse.2020.111716
https://dx.doi.org/10.1109/TGRS.2021.3058321
https://dx.doi.org/10.1109/JSTARS.2016.2517204
https://dx.doi.org/10.1109/TGRS.2017.2675902
https://dx.doi.org/10.1016/j.isprsjprs.2018.02.001
https://dx.doi.org/10.1016/j.asoc.2018.08.049
https://dx.doi.org/10.1109/LGRS.2021.3054868
https://dx.doi.org/10.3390/rs13163316
https://dx.doi.org/10.1109/JSTARS.2019.2892975
https://dx.doi.org/10.1109/JSTARS.2019.2892975
https://dx.doi.org/10.1109/TGRS.2019.2907932
https://dx.doi.org/10.1109/TGRS.2021.3073924
https://dx.doi.org/10.1109/TGRS.2020.3044312
https://dx.doi.org/10.3390/rs13020198


CHEN et al.: JAGAN: A FRAMEWORK FOR COMPLEX LAND COVER CLASSIFICATION USING GAOFEN-5 AHSI IMAGES 1603

[56] I. Goodfellow et al., “Generative adversarial networks,” Commun. ACM,
vol. 63, no. 11, pp. 139–144, 2020, doi: 10.1145/3422622.

[57] Z. He et al., “Generative adversarial networks-based semi-supervised
learning for hyperspectral image classification,” Remote Sens., vol. 9,
no. 10, 2017, Art. no. 1042, doi: 10.3390/rs9101042.

[58] L. Zhu, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Generative ad-
versarial networks for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 56, no. 9, pp. 5046–5063, Sep. 2018,
doi: 10.1109/TGRS.2018.2805286.

[59] Y. Zhan et al., “Semi-supervised classification of hyperspectral data based
on generative adversarial networks and neighborhood majority voting,”
in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2018, pp. 5756–5759,
doi: 10.1109/IGARSS.2018.8518846.

[60] X. Wang, K. Tan, Q. Du, Y. Chen, and P. Du, “Caps-TripleGAN:
GAN-assisted capsnet for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 7232–7245, Sep. 2019,
doi: 10.1109/TGRS.2019.2912468.

[61] J. Feng, H. Yu, L. Wang, X. Cao, X. Zhang, and L. Jiao, “Classification
of hyperspectral images based on multiclass spatial–spectral generative
adversarial networks,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 8,
pp. 5329–5343, Aug. 2019, doi: 10.1109/TGRS.2019.2899057.

[62] J. Feng et al., “Generative adversarial networks based on collaborative
learning and attention mechanism for hyperspectral image classification,”
Remote Sens., vol. 12, no. 7, 2020, Art. no. 1149, doi: 10.3390/rs12071149.

[63] Y. Liu et al., “The advanced hyperspectral imager: Aboard China’s gaoFen-
5 satellite,” IEEE Geosci. Remote Sens. Mag., vol. 7, no. 4, pp. 23–32,
Dec. 2019, doi: 10.1109/MGRS.2019.2927687.

[64] S. Wold, K. Esbensen, and P. Geladi, “Principal component analy-
sis,” Chemometrics Intell. Lab. Syst., vol. 2, no. 1–3, pp. 37–52, 1987,
doi: 10.1007/1-84628-124-5_3.

[65] V. Sharma et al., “Hyperspectral CNN for image classification &
band selection, with application to face recognition,” Technical Report
KUL/ESAT/PSI/1604, ESAT, Leuven, Belgium, 2016.

[66] Y. Li, H. Zhang, and Q. Shen, “Spectral–spatial classification of hyper-
spectral imagery with 3D convolutional neural network,” Remote Sens.,
vol. 9, no. 1, Jan. 2017, Art. no. 67, doi: 10.3390/rs9010067.

[67] Y. Chen, L. Tang, Z. Kan, M. Bilal, and Q. Li, “A novel water
body extraction neural network (WBE-NN) for optical high-resolution
multispectral imagery,” J. Hydrol., vol. 588, 2020, Art. no. 125092,
doi: 10.1016/j.jhydrol.2020.125092.

[68] Y. Chen, Q. Weng, L. Tang, Q. Liu, X. Zhang, and M. Bi-
lal, “Automatic mapping of urban green spaces using a geospatial
neural network,” GIScience Remote Sens., vol. 58, pp. 1–19, 2021,
doi: 10.1080/15481603.2021.1933367.

[69] J. Wang, F. Gao, J. Dong, and Q. Du, “Adaptive dropblock-enhanced gen-
erative adversarial networks for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 6, pp. 5040–5053, Jun. 2021,
doi: 10.1109/TGRS.2020.3015843.

[70] J. Feng et al., “Deep reinforcement learning for semisupervised hyperspec-
tral band selection,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–19,
Feb. 2022, doi: 10.1109/TGRS.2021.3049372.

[71] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with
auxiliary classifier GANS,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 2642–2651.

Weitao Chen (Member, IEEE) was born in Wugang,
China. He received the B.E. degree in land resource
management from Jiaozuo Institute of Technology,
Jiaozuo, China, in 2003, and the M.E degree in quater-
nary geology and the doctor’s degree in environmen-
tal science and engineering from China University
of Geosciences (CUG), Wuhan, China, in 2012 and
2006, respectively.

He is a Professor with the School of Computer
Science, CUG. He has authored and coauthored more
than 30 papers. His main research interests include

machine learning and remote sensing of environment.
Prof. Chen is a Member of IEEE.

Shubing Ouyang was born in Fuzhou City, China,
in 1990. She received the B.S. degree in geology
from the Wuhan University of Engineering Science,
Wuhan, China, in 2012 and the M.S. degree in mineral
resource prospecting and exploration in 2015 from
the China University of Geosciences, Wuhan, China,
where she is currently working toward the Ph.D.
degree in geoscience information engineering with
the School of Computer Science.

Her research interests include geoscience informa-
tion processing, remote sensing image processing,

and deep learning.

Jiawei Yang received the B.S. and M.S degrees from
the China University of Geoscience, Wuhan, China,
in 2018 and 2021, respectively.

His research interests include remote sensing im-
age processing, computer vision, and deep learning.

Gaodian Zhou received the B.Eng. and M.E. de-
grees in resource exploration engineering, in 2014
and 2017, respectively, from the China University of
Geosciences, Wuhan, China, where he is currently
working toward the Ph.D. degree in geoscience in-
formation engineering with the School of Computer
Science.

His research interests include semantic segmenta-
tion, remote sensing image process, and big data.

Xianju Li received the B.S. degree in geomatics
engineering, the M.S. degree in geodesy and sur-
vey engineering, and the Ph.D. degree in surveying
and mapping from China University of Geoscience,
Wuhan, China, in 2009, 2012, and 2016, respectively.

Since 2016, he has been an Associate Professor
with the School of Computer Science, China Univer-
sity of Geosciences. He has authored and coauthored
more than ten papers. His main research interests in-
clude remote sensing image processing and analysis,
computer vision, and machine learning.

Lizhe Wang (Fellow, IEEE) received the B.E. and
M.E. degrees in electrical engineering from Tsinghua
University, Beijing, China, in 1998 and 2001, respec-
tively, and the Doctor of Engineering degree from
the University Karlsruhe (Magna Cum Laude), Karl-
sruhe, Germany, in 2008.

He is a ChuTian Chair Professor with the School of
Computer Science, China University of Geosciences,
Wuhan, China. His research interests include HPC,
e-Science, and remote sensing image processing.

Prof. Wang is a Fellow of IET and SPIE.

https://dx.doi.org/10.1145/3422622
https://dx.doi.org/10.3390/rs9101042
https://dx.doi.org/10.1109/TGRS.2018.2805286
https://dx.doi.org/10.1109/IGARSS.2018.8518846
https://dx.doi.org/10.1109/TGRS.2019.2912468
https://dx.doi.org/10.1109/TGRS.2019.2899057
https://dx.doi.org/10.3390/rs12071149
https://dx.doi.org/10.1109/MGRS.2019.2927687
https://dx.doi.org/10.1007/1-84628-124-5_3
https://dx.doi.org/10.3390/rs9010067
https://dx.doi.org/10.1016/j.jhydrol.2020.125092
https://dx.doi.org/10.1080/15481603.2021.1933367
https://dx.doi.org/10.1109/TGRS.2020.3015843
https://dx.doi.org/10.1109/TGRS.2021.3049372


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


