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Abstract—In recent times, multisource remote sensing technol-
ogy [e.g., hyperspectral image (HSI) and light detection and ranging
(LiDAR) data] has been widely used in urban land-use recognition
owing to its high classification effectiveness compared to using
only single-source data. In this study, a multiview hierarchical
network (MVHN) technique is developed for HSI and LiDAR data
classification, which conducts the following execution procedures.
First, based on the a preset band step length, the original HSI
is sampled and divided into multiple groups with exactly the
same number of bands to obtain spectral features. Then, principal
components analysis is performed on the raw HSI to extract the
first principal components (PCs) that meet the size of the LIDAR
image. The Gabor filters are applied to the PCs and LiDAR to
capture spatial details (i.e., textural features) of scenes. Specifically,
a stacking mechanism is employed to generate fusion features
once the above features are available. Next, a three-dimensional
ResNet-like deep CNN is designed to extract the spectral-spatial
information of the fusion feature. Finally, majority-voting is intro-
duced into the classification results of the network trained using
each fusion feature to achieve high-confidence final results. Exper-
iments on three well-known HSI and LiDAR datasets (i.e., Houston,
MUUFL, and Trento datasets) demonstrate the effectiveness of the
proposed MVHN method compared to state-of-the-art comparable
classification methods.

Index Terms—Classification, Gabor feature, hyperspectral
image (HSI), light detection and ranging (LiDAR), multisource
remote sensing, residual network.
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I. INTRODUCTION

RBAN land classification is an exciting topic in the remote
U sensing community. Accurate land classification not only
improves the quality of urban land surveying and mapping but
also helps managers to plan optimal urban layouts. With the rapid
development of satellite sensor technology, multisource remote
sensing data, like hyperspectral image (HSI) and light detection
and ranging (LiDAR) images, are widely used in many practical
applications. HSI is acquired by an imaging spectrometer, which
provides a large amount of narrow-band spectral information
from the visible spectrum to the infrared spectrum for each pixel
to generate a complete and continuous spectrum curve [1], thus
improving its discriminant ability of ground coverings compared
with the RGB images. Thanks to the distinguishing advantages
of HSI, several researchers have focused on various meaningful
research directions in the field of hyperspectral image process-
ing, such as classification [2]-[7], anomaly detection [8]-[12],
and segmentation [13]-[16]. In fact, HSI aims to use the sensor
to receive electromagnetic waves reflected from the ground to
characterize the properties of the ground material. In contrast,
LiDAR uses pulsed lasers to focus on the distance information
of ground targets. Similarly, a large amount of relevant research
work on the semantic segmentation, classification, and detection
of LiDAR data can be found in previous studies [17]-[29]. The
digital surface model (DSM) that is the image version obtained
by preprossing of the LiDAR point cloud data, and as one
of the LiDAR data has been successfully applied to complex
scenes to obtain the elevation information of objects as it is
not restricted by external conditions (e.g., weather and light).
In particular, high-precision ground space information can still
be obtained even under severe environmental conditions [30],
[31]. Therefore, combining the respective advantages of HSI
and LiDAR is a very suitable approach for fine classification of
urban land.

In order to create complementary features between HSI and
LiDAR data, researchers have devised many meaningful inte-
gration strategies such as feature-level and decision-level fusion.
Feature-level fusion (such as feature stacking) is a commonly
used fusion method, which aims to fuse the features of HSI
and LiDAR images at the image feature level. In this work, a
feature stacking-based feature-level fusion method is adopted
to obtain the primary spectral-spatial advantage at the feature
level. Even so, the following two aspects must be addressed: 1)
The deep spatial-spectral information of HSI and LiDAR data
cannot be captured intuitively [32]; 2) simply feature-stacking
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inevitably results in information redundancy, which triggers the
Hughes phenomenon, especially when the number of training
samples is very limited [33]. Therefore, dimensionality reduc-
tion is unavoidable for a feature-level fusion method based on
stacking. Principal component analysis (PCA) is a commonly
used method of dimensionality reduction. PCA reduces the data
dimensionality by extracting the principal components (PCs)
of HSI [34], [35]. Furthermore, the kernel PCA (KPCA) [36]
was applied to reduce the dimensionality of HSI and EP
features. Compared with the traditional PCA algorithm, KPCA
can effectively extract nonlinear PCs of HSI based on ker-
nel tricks in high-dimension space. However, most dimension
reduction methods suffer from the problem of information loss.
Thus, choosing the best dimension to effectively replace the
original data is still a challenge. Decision-level fusion is also
a frequently used fusion method for HSI classification. The
difference between the feature-level fusion method and the
decision-level fusion method is that the former is often used
before the classification task, while the latter is performed after
the classification task. As an example of decision-level fusion,
soft and hard voting [37] were used to fuse various classification
results so as to obtain a more reliable final result. Zhang et al. [38]
used various classifiers [i.e., K-nearest neighbor (KNN) [39],
support vector machines (SVM) [40]-[42], and random forest
(RF) [43]] to obtain their own individual classification results,
followed by a combination strategy of majority- and weighting
voting being performed on the classification results to achieve
the final result. In addition, other decision fusion methods have
been proposed to solve the imbalance between HSI features and
LiDAR features [44], [45].

With the continuous development of the deep learning in the
processing domain of remote sensing data, the classification
accuracy of ground coverings including urban and agricultural
land is being gradually improved [46], [47]. Xu et al. [48]
proposed a two-branch CNN model (TBCNN), in which one
branch was used to extract the spectral features of HSI and
another branch was introduced into LiDAR data to obtain its
spatial features. At the end of operations, a fully connected
layer was employed to achieve the classification result after
concatenating the features from both sources. A coupled CNN
(CPCNN) model was proposed [49] based on the improvement
of the TBCNN model. Specifically, by sharing the weights of the
last two convolution layers, the model can not only reduce the
training parameters of the network but also guide the two CNNs
to learn from each other. In [50], a hierarchical random walk
layer was designed under the CNN framework to effectively
fuse HSI and LiDAR features, which significantly improved
the classification accuracy of HSI and LiDAR data. Zhang
et al. [51] proposed a multiscale patch-to-patch CNN model
(PToP-CNN) to obtain the deep fusion features of HSI and
LiDAR data. More recently, many three-dimensional (3-D) CNN
models have been developed to fully extract the spatial-spectral
features of HSI [52]-[54]. For instance, Swalpa et al. [55] pro-
posed a hybrid spectral CNN (HybridSN) model by integrating
two-dimensional (2-D) CNN and 3-D CNN into one operation
line. The advantage of HybridSN is that the 3-D CNN can be
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used to extract the spatial-spectral features and the adoption
of 2-D CNN can directly reduce the number of parameters.
However, shallow CNN often cannot fully extract the features of
HSI and LiDAR data, while deeper CNN are prone to network
degeneration. In addition, CNN usually does not have the abil-
ity to accurately describe objects having changeable features.
When the direction of the test object changes frequently, the
classification accuracy will become unsatisfactory.

In this study, a multiview hierarchical network (MVHN)
technique is developed for HSI and LiDAR data classification.
MVHN involves the following execution procedures: First, the
raw HSI is divided into various groups with exactly the same
number of bands based on preset band step length to obtain the
spectral features. Next, PCA is performed on the raw HSI to
extract the first PCs that meet the size of the LiDAR image.
The Gabor filters are applied to the PCs and LiDAR to capture
spatial details (i.e., textural features) of the scene. Specifically, a
stacking mechanism is employed to generate the fusion feature
once the aforementioned features are available. Next, a 3-D
ResNet-like deep CNN is designed to extract spatial-spectral
information of the fusion feature. Finally, majority voting is
introduced into the classification results of the network trained
using each fusion feature to achieve high-confidence final re-
sults. The main contributions of our work can be summarized as
follows.

1) A multiview strategy based on preset band step length is
firstintroduced into HST and LiDAR data classification. Its
advantage lies in completely avoiding the loss of HSI in-
formation, while achieving dimensionality reduction, and
maintains the physical meaning of the spectral features.
Specifically, the information complementation of multi-
view strategy has been comprehensively utilized using a
simple and effective majority-voting mechanism.

2) Gabor filters driven by HSI and LiDAR data are employed
to extract Gabor features improving the CNN model. It is
found that Gabor texture features can enhance the adapt-
ability of the CNN model to changes of sample direction.

3) The 3-D ResNet-like deep CNN is designed by embedding
residual units in a 3-D CNN. The 3-D residual network
can capture spatial-spectral joint features having more
semantic information compared with traditional 3-D CNN
networks composed of shallow layers.

The rest of this article is organized as follows. Section II
describes the proposed MVHN method. Section III presents
an experimental analysis of the MVHN, including the setup
and comparison with various state-of-the-art methods on the
Houston, MUUFL, and Trento datasets. Finally, Section IV
concludes this article.

II. DESCRIPTION OF THE PROPOSED APPROACH

In this section, we introduce the overall architecture of the pro-
posed MVHN method, including the framework of the proposed
method, multiview voting strategy, Gabor features extraction,
and 3-D residual network for classification, which is described
in detail as follows.
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in the left subframework refers to the data concatenation operation.

A. Framework of Proposed Method

As shown in Fig. 1, the specific framework of the proposed
method is mainly composed of three parts. At the beginning,
the original HSIs are partitioned-off multiple groups of local
HSI with the same number of bands at intervals. Then, the
PCA algorithm is applied to the original HSI to extract its first
PCs. The Gabor filters are applied separately to the first PCs
and LiDAR data to determine the Gabor features. Next, the
multiview features of HSI are fused with the Gabor features as
well as the LIDAR data in a stacked manner and are fed to the 3-D
residual network to extract the corresponding spectral—spatial
feature. Each feature in the various groups is classified by the
full connection layer. Finally, to obtain a robust classification
result, probability-based majority voting is applied to the clas-
sification results obtained from all group features. Specifically,
we count the average probability of each prediction class for
each test sample and take the label corresponding to the highest
probability value as the final prediction result.

B. Multiview Voting Strategy

Owing to the tremendous amount of spectral information in
the hyperspectral image, the data storage space requirements are
large, and the network training time is increases considerably if
all the HSI data are sent to the CNN together. Furthermore, the in-
formation between adjacent frequency bands is highly correlated
and has a high information repetition rate, and, thus, there is seri-
ous redundancy between the data. For example, consider an HSI
X = {Xy, Xo, ..., Xy Y€ RVHXW_ N is the number of bands. H
and W stand for the height and width of the image, respectively.
When X; is used as the comparison object, there is a higher
difference in spectral information between X; and Xp. The
difference between X; and X5 is extremely small, and there is
duplication of information. Therefore, dimensionality reduction
tools such as PCA and linear discriminant analysis have emerged

G(1) G(2) G(n)

HSI

(a)

ST G(1) G(2) G(n)

(b)

Fig. 2.  Outline of two grouping strategies for HSI. (a) GHSICB. (b) GHSIIB.

in the field of hyperspectral data processing and are favored
by scholars [56]. However, these dimensionality reduction tools
generally suffer from information loss. To address this problem,
as shown in Fig. 2, two dimensionality reduction schemes are
designed in this work: 1) The HSI is divided into several groups
in continuous bands (GHSICB); and 2) the HSI at equal intervals
into multiple groups of local hyperspectral data (GHSIIB).

As show in Fig. 2(a), for GHSICB method, assume that the
HSI X is divided into several groups {Gi, Go,..., G,} in
continuous bands. Here, each group shares the same number
of bands. Then, each group can be expressed as follows:

G1= {Xl,Xg,...,Xm}

Go= {X(m+1)7 X(171+2)a cee 7X2m} )

Gr= {X(Nomt1)s X(N-mt2), - XN}
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where n represents the number of groups, while m represents
the number of bands in a group and also stands for the last band
of the first group being in the band position of HSI. As one of
the bands of HSI, although there is a certain correlation among
the bands in different groups, the correlation between the bands
within a group is stronger. Specifically, the GHSICB method
makes the data within each group more relevant and reduces the
correlation between the groups. Therefore, the amount of infor-
mation contained in different groups is quite different, which
has different degrees of impact on the classification results. It is
worth noting that as some groups have less spectral information
in the bands, the classification accuracies of these groups are
significantly lower than that of other groups, thus inhibiting the
performance of voting decision fusion.

As show in Fig. 2(b), the GHSIIB method aims at solving
the high result difference of each group caused by the GHSICB
method. Like the GHSICB, each group after grouping contains
the same number of bands. Specifically, supposing the number of
HSIbands are N and the grouping band interval is n, which is the
same as the number of groups, then each group of partial images
has N/nbands. Owing to the interval sampling, the bands in each
group are as follows:

Gl = {X17 X—n+17 s aXN—n+1}
Gy = {X2, X2, -, XN nt2}
) 2

Gn - {Xn; XZna e 7XN}

where X;, i is denoted the spectral position of the original HSI
and G, j represents the group label. In the GHSIIB grouping
method, each group of local HSI not only eliminates data redun-
dancy but also decreases correlation between the bands within
each group. Specifically, the classification results coming from
various groups will be output with small gaps, which prevents
low classification accuracy in some groups. Finally, decision
fusion is adopted to obtain the final result with strong robustness.
Through the experimental comparison presented in Section III,
it is found that the result of soft voting is better than that of hard
voting. Therefore, soft voting is used in this study to obtain the
final classification result.

Given a pixel x(; ;) = {X%i,j)’ X(2i7j), " X{;j) Je RVxIx1
where (i, j) represents the pixel position at which the sample
point is located in the image, K represents the number of groups,
and N is the number of HSI bands, which is sent to the network
first to get the output of the network and then transform it into
a normalized probability output through the softmax layer. The
expression is as follows:

p(; ;) = softmax[Net(x[; ;,)I(p(; ;) € R1*9) 3)

where Net(-) represents the CNN network, X?l ) isthex (; jyinn

th group, and C refers to the number of class corresponding to the
sample point. p?i’j) is the possibility output corresponding to C'
class of the x (; ;)in n th group. After obtaining all the possibility
output of K groups {p(li’j), p%mw s pfij) }, the average value
over each class is calculated. Then, the index corresponding to
the value with the largest probability average can be determined
as the final classification result of this pixel. The calculation
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process is as follows:

K
n; P(ij)

Tk @

Y(i,j) = argmax

where y(; ; is the final prediction label of the pixel, which has
strong robustness, because it is the result of the decision fusion.

C. Gabor Features Extraction

As the CNN is very sensitive to the change of object position
and geometry, the classification effect of CNN will be unsat-
isfactory when the direction of the object changes frequently.
Furthermore, given that a single LIDAR-based DSM data that
is the image version by preprocessing to the LiDAR point cloud
data has only one band, simply using this data to fuse with HSI
data has no obvious impact on the final result. Therefore, Gabor
filters are used to extract the multidirectional features of the
LiDAR data and the first PCs of HSI, which not only improves
the adaptability of CNN to the rotation and deformation of
features but also further expands the diversity of LiDAR data
so that the LiDAR data can be used more fully. The essence of
the Gabor transform is a short-time Fourier transform and its
window function is a Gaussian kernel function, so the Gabor
filter can extract features in various directions in the frequency
domain. The definition of a 2-D Gabor function is as follows:

$/2 +72y’2 '
80n.0,1,0,7) (T, y) =exp T o2 exp (l (27T)L ‘H/J))
1 1
o= (p- cos O+ yfi sin 0
2 2
1 1
y = (m - m;—) sin 0 +(y - n—2i-> cos 6

)

where m and n are the size of the Gabor filter, A and 0,
respectively, represent the wavelength of the sine function and
the direction of the Gabor kernel function. ) denotes the phase
shift, while v and o are spatial aspect ratio and the standard
deviation of the Gaussian function, respectively.

Regarding the specific feature extraction process, first, PCA
is used to reduce the dimensionality of the original HSI data
to obtain its PCs. Subsequently, in order to enable the CNN
to have rotation invariance without adding too much redundant
information, Gabor filters in 4 directions (i.e., 0, 45, 90, and
135 degrees) are designed in our approach. By applying the
aforementioned Gabor filters to the PCs of HSI and LiDAR data,
respectively, Gabor features in various directions are formed.
Finally, concatenating the Gabor features of each direction,
Gabor-HSI features and Gabor-LiDAR features are obtained. By
using the Gabor filter, the classification accuracy of the network
is significantly improved. The specific experimental results will
be shown in Section III.
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D. 3-D Residual Network for Classification

In order to make full use of the spectral-spatial information
of data, i.e., HSI and LiDAR, each pixel is expanded into a
3-D neighboring cube so as to take into account the spatial
spectrum information of the feature. On the network side, a 3-D
ResNet-like deep CNN is used to extract the spectral-spatial
features of the input data. At the beginning of the network,
we use a 7x7x7 convolutional layer to initially capture the
spectral—spatial features of the input data and a batch normal-
ization (BN) layer to accelerate the convergence of the network.
Then, three residual units are introduced in sequence to extract
features with more semantic information, and its structure is
shown as Fig. 3. Specifically, each of them contains two 3 x3x3
convolutional layers for three residual units. For the first residual
unit, the stride of the two convolutional layers are both 1, and
at the same time, the number of channels of the feature map
is not changed. For the last two residual units, the stride of the
first convolutional layer will be set to 2, which has the effect of
downsampling, and the stride of the second convolutional layer
is still 1. It is worth noting that when the size of the feature map
is reduced by the downsampling size, the number of channels
will be correspondingly expanded to twice the original size.
After extracting the spectral-spatial features, a global average
pooling layer is applied to transform the feature map into a
block of 1x1x1, and then the block is flattened and sent to
the fully connected layer (FC) (that includes the softmax layer)
to complete the task of classification. Note that we inserted
the dropout layer after the FC layer to prevent the overfitting
phenomenon caused by less training data, and the parameter of
dropout is set to 0.4 in this work.

III. EXPERIMENTAL AND ANALYSIS

In this section, three well-known hyperspectral and LiDAR
datasets (i.e., Houston, MUUFL, and Trento datasets) are used
to verify the effectiveness of the proposed MVHN method in
terms of classification. Three commonly used evaluation met-
rics, i.e., average accuracy (AA), overall accuracy (OA), and
kappa coefficient (Kappa), are applied to evaluate the perfor-
mance between competitive methods and the proposed MVHN
method objectively. All programming in the proposed MVHN
method is completed on the Python 3.7 platform. The network
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TABLE I
NUMBER OF TRAINING, VALIDATION, AND TESTING SAMPLES
FOR THE HOUSTON DATASET

Class Number of Samples

No Name Training  Validation  Testing
1 Health grass 198 158 895
2 Stressed grass 190 160 904
3 Synthetic grass 192 75 430
4 Trees 188 158 898
5 Soil 186 158 898
6 Water 182 21 122
7 Residential 196 160 912
8 Commercial 191 158 895
9 Road 193 159 900
10 Highway 191 155 881
11 Railway 181 158 896
12 Parking lot 1 192 156 885
13 Parking lot 2 184 43 242
14 Tennis Court 181 27 220
15  Running Track 187 28 445

Total 2832 1774 10423

in this work is built based on the PyTorch framework. PyTorch is
an open-source machine learning framework that can not only
achieve powerful GPU acceleration but also support dynamic
neural networks. All our experiments are performed on a per-
sonal computer having a Windows 10 operation system, Intel
Core i7-7800X CPU, 32-GB RAM, and a NVIDIA GeForce
RTX 1080 Ti GPU.

A. Datasets

1) Houston Dataset: The Houston dataset was created at
the University of Houston campus and the neighboring urban
area by the National Natural Science Foundation (NSF)-funded
Center for Airborne Laser Mapping. This dataset is composed
of hyperspectral data and LIDAR DSM data that are the result of
preprocessing of LiDAR data, and the spatial resolutions of both
these data sources are 2.5 m each. The hyperspectral data has
349x% 1905 pixels, including 144 bands from 380 to 1050 nm,
and same with the hyperspectral data, LIDAR DSM data also has
3491905 pixels. There are 15 classes included in the Houston
dataset, and Table I lists the number of samples in the training
set, validation set, and testing set applied in the experiment. It is
worth noting that all the sets are randomly selected. Fig. 4 shows
the hyperspectral pseudocolor image of the Houston dataset, the
LiDAR DSM image, and the ground truth map of training and
testing samples.

2) MUUFL Dataset: The MUUFL dataset was collected in
November 2010 at the campus of the University of Southern
Mississippi Gulfport by Optech, International. With the simul-
taneous use of Gemini LiDAR and CASI-1500 while flying in
a single plane, the hyperspectral image data and LiDAR data
were obtained together, both the HSI data and LiDAR-based
DSM data have 325x220 pixels. The HSI has 64 bands and a
spatial resolution of 1 m. There are 11 classes in the MUUFL
dataset. Table II presents the number of samples for each class
in the training set, validation set, and testing set used in our
experiments. Fig. 5 presents the hyperspectral pseudocolor im-
age and LiDAR-based DSM image of the MUUFL dataset,
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Fig. 4. Houston dataset. (a) Pseudocolor image for HSI. (b) LiDAR image.

(c) Training set in ground truth. (d) Testing set in ground truth. (e) Color coding
for each class.

TABLE I
NUMBER OF TRAINING, VALIDATION, AND TESTING SAMPLES FOR THE
MUUFL DATASET
Class Number of Samples

No Name Training  Validation  Testing
1 Trees 100 3472 19674
2 Mostly Grass 100 625 3545
3 Mixed Ground 100 1017 5765
4 Dirt and Sand 100 259 1467
5 Roads 100 988 5599
6 Water 100 55 311

7 Building Shadows 100 320 1813
8 Buildings 100 921 5219
9 Sidewalks 100 193 1092
10 Yellow Curbs 100 12 71
11 Cloth Panels 100 25 144

Total 1100 7887 44700

combined with the ground truth map of training samples and
testing samples.

3) Trento Dataset: The Trento dataset was constructed in a
rural area south of Trento, Italy. The HSI and LiDAR-based
DSM data contained in the dataset consist of 166x600 pixels,
in which HSI data contains 63 bands and LiDAR DSM data
contains only one band. The Trento dataset has six object classes.
Table III lists the number of samples in each class of the dataset,
as well as the number of training set, validation set, and test set
samples used in the experimental comparison in part D. Fig. 6
shows the hyperspectral pseudocolor map of the Trento dataset,

© (@
I Trees I Mostly Grass [ Mixed Ground | [ ] Dirt and Sand
[ Roads [ water [ Building Shadows | [ Buildings
[_Isidewalks [ |Yellow Curbs [ Cloth Panels

(e)

Fig. 5. MUUFL dataset. (a) Pseudocolor image for HSI. (b) LiDAR image.
(c) Testing set in ground truth. (d) Training set in ground truth. (e) Color coding
for each class.

TABLE III
NUMBER OF TRAINING, VALIDATION, AND TESTING SAMPLES
FOR THE TRENTO DATASET

Class Number of Samples

No Name Training ~ Validation — Testing
1 Apple Trees 72 594 3368
2 Buildings 69 425 2409
3 Ground 58 63 358
4 Wood 86 1355 7682
5 Vineyard 102 1560 8839
6 Roads 68 466 2640
Total 455 4463 25296

the LiDAR data map, and the ground truth map of the training
sample and the testing sample.

B. Analysis of Component on the Proposed Method

1) Analysis of Multiview Voting Strategy: With the application
of multiview voting strategy, the robustness of final classification
results has been considerably enhanced, especially in the case of
small training samples. Table IV presents the classification ac-
curacies of the proposed MVHN method using various grouping
strategies (i.e., GHSICB and GHSIIB) on the Houston, MUUFL,
and Trento datasets. It can be observed that the GHSIIB strategy



1460

(b)

(d

[ Apple Trees ([ |Buildings
I:|Wood -Vineyard
(e)

I Ground
I Roads

Fig. 6. Trento dataset. (a) Pseudocolor image for HSI. (b) LiDAR image. (c)
Training set in ground truth. (d) Testing set in ground truth. (e) Color coding for
each class.

TABLE IV
CLASSIFICATION PERFORMANCE OF THE PROPOSED MVHN METHOD USING
DIFFERENT GROUPING STRATEGIES ON THE VARIOUS DATASETS

Houston MUUFL Trento
GHSICB GHSIIB | GHSICB GHSIIB| GHSICB GHSIIB
OA (%) 97.17 97.79 94.07 94.63 98.61 98.63
AA (%) 97.47 98.08 82.02 83.25 97.82 97.35
Kappa 96.94 97.62 92.12 92.87 98.15 98.18

on the proposed MVHN method achieves higher classification
performance than the GHSICB strategy on three datasets. This
means that there is a high degree of correlation between adjacent
bands of hyperspectral data. We also analyzed the classification
accuracy of each group of the proposed MVHN method using
various grouping strategies on the above datasets. Experimental
reports are summarized in Table V. It can be seen that the clas-
sification results of each group based on the GHSICB strategy
have obvious fluctuations, and it can even be observed that the
classification accuracy of some groups is much lower than that
of other groups. In comparison, the GHSIIB strategy can better
overcome this phenomenon. Therefore, the GHSIIB strategy
is selected as the default component of the proposed MVHN
method in this work.

2) Analysis of Multiview Versus PCA: In order to verify the
effectiveness of the grouping method proposed in this article,
a comparative experiment of multiview and PCA methods is

TABLE V

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

OA (%) oF EACH GROUP OF THE PROPOSED MVHN METHOD USING
DIFFERENT GROUPING STRATEGIES ON THE VARIOUS DATASETS

Group Houston MUUFL Trento
GHSICB GHSIIB | GHSICB GHSIIB | GHSICB GHSIIB
1 94.66 97.93 92.60 94.33 97.39 98.29
2 94.63 97.13 93.51 94.58 97.86 98.38
3 95.52 97.25 91.78 94.32 97.95 97.32
4 93.03 97.21 93.46 94.34 97.73 98.61
5 94.83 97.28 93.11 94.37 98.67 98.36
6 91.13 97.00 87.73 94.52 95.77 98.32
7 93.32 97.22 88.17 94.52 95.01 98.56
8 90.44 97.24 88.53 94.57 95.04 97.27
9 95.26 97.91
TABLE VI

CLASSIFICATION PERFORMANCE OF THE PROPOSED MULTIVIEW
(MV) AND PCA IN VARIOUS DATASETS

Houston MUUFL Trento
MV PCA MV PCA MV PCA
OA (%) 99.74 99.81 90.15 88.55 99.48 99.47
AA (%) 99.78 99.85 89.78 89.17 99.24 99.22
Kappa 99.72 99.79 87.06 85.07 99.31 99.30

designed. Specifically, except for the method of extracting spec-
tral features, the other processes and network framework remain
unchanged. In addition, in order to ensure the fairness of the
comparison experiment, the number of bands in each group
are the same after the spectral feature extraction is performed
through the multiview or PCA methods. The experiment was
tested on three multisource remote sensing datasets, and the
results are shown in Table VI. From the experimental results,
it can be seen that for the Houston dataset and Trento dataset,
the two methods are almost the same, but for the MUUFL
dataset, the multiview method improves OA by 1.5% compared
to the PCA method. This shows that the multiview grouping
method proposed in this article can achieve better classification
performance than the PCA method on the specific dataset, which
proves the effectiveness of the method.

3) Analysis of Voting Methods: Two kinds of voting methods,
i.e., soft voting and hard voting are compared in this section.
The classification performance of soft and hard voting on three
multiple-source datasets is summarized in Table VII. It can be
seen that although the results of two voting methods are almost
the same, in general, soft voting is better than hard voting. This
is because hard voting is determined by the number of labels
in the classification result, whereas soft voting is determined by
the probability of the classification result, and, thus, avoids the
situation where the original lower probability label is used as
the final classification label. Therefore, the soft voting method
is selected as a default setting on the proposed MVHN method
based on its better classification accuracies.

4) Analysis of the Neural Network: The problem of the
network degradation of the CNN model can be overcome by
introducing a self-connected residual structure of the 3-D resid-
ual network (3-D ResNet). This means that the CNN model
can build deeper hidden layers. Compared with the 3-D CNN,
deeper semantic information can be obtained by a 3-D ResNet.
In addition, the structure of a 3-D CNN can extract more detailed
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TABLE VII
CLASSIFICATION PERFORMANCE OF THE PROPOSED METHOD USING DIFFERENT VOTING METHODS ON THREE MULTISOURCE REMOTE SENSING DATASETS

Method Metrics Houston MUUFL Trento
1% 5% 10% 15% 20% 1% 5% 10% 15% 20% 10 20 30 40 50
OA(%) 88.17 97.79 98.23 99.60 99.69| 88.91 94.60 96.19 97.16 97.67| 98.67 99.28 99.37 99.41 99.39
Soft Voting AA(%) 87.87 98.08 98.14 99.53 99.60| 71.41 83.74 87.25 88.92 90.84| 97.34 98.71 98.78 99.09 99.15
Kappa 87.20 97.62 98.09 99.56 99.67| 85.35 92.84 9496 96.24 96.92| 98.23 99.03 99.16 99.21 99.19
OA(%) 84.72 96.73 98.37 99.36 99.53| 88.85 94.58 96.11 97.13 97.70| 97.74 99.13 99.41 99.36 99.46
Hard Voting AA(%) 83.68 97.01 98.34 99.31 99.45| 7091 82.75 86.32 88.80 90.71| 96.49 97.86 98.79 98.59 99.25
Kappa 83.46 96.46 98.23 99.31 99.49| 85.14 92.81 94.83 96.20 96.96| 96.99 98.84 99.22 99.14 99.28

The number of training samples are selected per class from 1% to 20% of the total samples for Houston and MUUFL datasets and per class From 10 to 50 for Trento dataset.

TABLE VIII
OVERALL ACCURACY (%) OF PROPOSED METHOD USING DIFFERENT
STRUCTURE OF CNN

3D CNN 2D ResNet | 3D ResNet
Houston 95.97 97.61 97.79
MUUFL 94.58 94.47 94.66
Trento 96.94 97.62 98.67

spatial-spectral features than the 2-D CNN. Table VIII presents
the comparison report of the experimental result of various
network structures. Note that the 3-D ResNet and the 2-D ResNet
each use three residual units as mentioned in this article. It is
difficult to design a 3-D CNN with that number of convolutional
layers without the identity connection, and, thus, it contains
three convolutional layers instead of the residual units of residual
structure in this experiment. As summarized in Table VIII, the
3-D ResNet has achieved the best classification results on the
three multisource remote-sensing datasets. This directly proves
that the 3-D ResNet being selected as a component of the
proposed MVHN method is credible in terms of classification.

C. Experimental Setup

In this work, in addition to the parameters that have a deter-
ministic effect on the performance of proposed MVHN method,
we have set the default settings for some parameters based on
experience, as follows: 1) The direction parameter of the Gabor
filter on the proposed method is set to {0, 45, 90, 135} by
default; 2) the network training epoch is 150 and the network
training and testing batch sizes are 100 and 600, respectively; 3)
the gradient optimization algorithm uses the stochastic gradient
descent algorithm, where the momentum is 0.9 and the weight
decay is le-4; 4) the learning rate decay decays to 0.1 times
the initial value after 75 epochs, and again 0.1 times after 125
epochs; and 5) other parameters, including the number of PCs
used for the Gabor filter, the number of groups, and the spatial
size of the input 3-D block, are further determined by means of
experimentation.

The number of PCs after the application of PCA and the
groups of local HSI determine the number of bands for CNN
input data. Excessively dense and large amounts of bands can
easily cause information redundancy, increasing the occurrence
of Hughes phenomenon. Conversely, alow number of bands will
lead to insufficient feature extraction and inhibit classification
performance. In our experiment, we used the first four PCs
to analyze the classification effects of the proposed MVHN

method under various grouping situations on the three datasets.
Regarding the settings of the common parameters, the size of
the input 3-D block size is set to 11x 11 and the initial learning
rate is set to 0.1. Next, 5% of the labeled data in the Houston and
MUUPFL datasets are randomly selected as the training samples
to train the CNN, while the rest are used for validating and
testing. For the Trento dataset, the training set selected has 10
samples per class.

Fig. 7(a) shows the classification performance of the proposed
MVHN method using various numbers of both groups and PCs.
It can be observed that the combination of four groups and two
PCs can maximize the performance of the proposed MVHN
method on the Houston dataset. As shown in Fig. 7(b), the
classification performance of the proposed MVHN method in
the grouping manner of {2, 4, 8, 16} groups is analyzed on
the MUUFL dataset. It can be seen that the MVHN method
can achieve the best classification accuracy when the number of
groups is 8 and the first PCs are selected for filtering. Similarly,
on the Trento dataset, we tested the performance of the MVHN
method when the grouping situation has {3, 7,9, 21} groups. As
the result shows in Fig. 7(c), the best classification performance
is obtained when the first PCs are used and 21 groups are
grouped. Generally, when the number of PCs is selected as
one and two, better classification results can be obtained by
the MVHN. This shows that a small number of PCs is more
conducive to reducing the redundancy of hyperspectral data.
In addition, we emphasize that an appropriate increase in the
number of groups can improve the performance expression of
multiview decision fusion and effectively enhance the robustness
of the MVHN method.

The input block size of the network also plays a decisive
role on the classification effect of the proposed MVHN method.
Specifically, a relatively large size of input data can obtain more
Gabor spatial texture featurs and improve the expressive ability
of features. However, a size that is too large will face interference
from other samples, resulting in a decrease in classification
accuracy. Therefore, this work tests the effect of the proposed
method with the input size (from 3x3 to 17x17) on the above
datasets, and the results are shown in Fig. 8. On the MUFFL
dataset with relatively complex spatial distribution and relatively
concentrated sample points, the proposed method using 11x11
input size can achieve the best classification performance (OA
= 94.6%). For the Houston dataset, most of the testing sample
points of different classes are scattered, making the sample
less susceptible to interference from others compared with
the MUUFL dataset. Therefore, the optimal input size of the
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proposed method is relatively larger, i.e., 15x15. The Trento
dataset has the same test results as the other two datasets. Ac-
cording to experimental analysis, the optimal input size of Trento
dataset is 11x11. Based on the above experimental results, the
classification accuracies of the MVHN tend to improve when the
input size increases and the accuracies will conversely decrease
if the size is large enough.

The initial learning rate controls the convergence speed and
simultaneously determines the convergence position of the net-
work. A small learning rate will cause the network to converge
too slowly, which is not conducive to jumping out of the local
extreme point, making the network unable to converge to the
global optimal solution. Furthermore, a large learning rate is
similarly detrimental to the convergence of the network, even
leading to divergence. The classification results of the proposed
method are tested when the initial learning rate is set to {0.5,
0.1, 0.05, 0.01, 0.005, 0.001} on the Houston, MUUFL, and
Trento datasets. For other parameter settings, the input size is
11x11, the number of PCs is 1, and the number of groups is
8. As presented in Table IX, on the Houston dataset, better
classification accuracy of the MVHN is achieved when the
learning rate is set between 0.05 and 0.1, and the OA reached
more than 98%. Besides, similar results can be obtained on the
MUUFL dataset and Trento dataset.

(b) ©

Influence of spatial neighborhood block size which as input of CNN. (a) Houston dataset. (b) MUUFL dataset. (c) Trento dataset.

TABLE IX
CLASSIFICATION PERFORMANCE OF DIFFERENT INITIAL NETWORK LEARNING
RATE FOR THE PROPOSED METHOD ON THREE MULTISOURCE REMOTE

SENSING DATASETS
. Initial learning rate for training
Dataset | Metrics 0001 0005 00T 005 01 03
OA(%) 9526 9732 9735 9803 98.18 97.61
Houston | AA(%) 9440 97.48 9758 9820 98.40 97.86
Kappa 9487 97.10 97.14 97.87 98.03 97.42
OA(%) 9332 93.80 9410 9447 94.66 9450
MUUFL|  AA(%) 79.02 80.84 81.66 828 83.15 83.07
Kappa 9113 9177 92.17 92.66 9292 92.70
OA(%) 97.12 9751 97.83 9856 98.67 96.71
Trento AA(%) 93.51 9502 9583 97.17 9734 93.79
Kappa 96.16 96.67 97.11 9808 9523 97.17

D. Experimental Comparison With Competitive Methods

In order to verify the superiority of the proposed method
compared to competitive classification methods of multisource
remote-sensing data, experimental comparisons against a variety
of methods on the Houston, MUUFL, and Trento datasets were
carried out, including traditional methods such as SVM [57],
extended multiattribute profiles (EMAP) [58], superpixel-wise
PCA approach (SuperPCA) [59], deep encoder-decoder net-
work (EndNet) [60] based on multilayer perceptron (MLP),
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TABLE X
CLASSIFICATION PERFORMANCE OF THE SVM, SUPERPCA, EMAP, ENDNET, CPCNN, TBCNN, MVHN-A, AND MVHN-B CLASSIFICATION
METHOD ON THE HOUSTON DATASET IN TERMS OF OA, AA, AND KAPPA

Class Classification performance of various methods
SVM SuperPCA EMAP [ EndNet CPCNN TBCNN [ MVHN-A MVHN-B

Healthy grass 98.02 95.53 99.62 98.58 90.69 99.62 98.39 98.67
Stressed grass 98.24 86.18 99.06 99.15 99.72 88.06 100.0 100.0
Synthetic grass 99.80 100.0 100.0 99.60 99.80 100.0 100.0 100.0
Trees 98.19 90.63 99.71 97.54 99.91 99.15 100.0 100.0
Soil 98.24 99.33 99.90 99.43 99.91 99.62 100.0 100.0
Water 99.79 84.52 100.0 98.60 100.0 100.0 100.0 100.0
Residential 95.01 96.66 99.34 93.10 98.13 99.16 100.0 100.0
Commercial 97.42 94.06 99.62 98.77 97.34 95.35 99.53 99.62
Roads 86.33 94.45 95.47 93.30 89.90 98.96 98.68 98.87
Highway 90.94 95.77 98.46 98.65 91.99 91.02 100.0 100.0
Railway 90.13 95.07 99.04 96.39 89.37 87.95 100.0 100.0
Parking Lot 1 93.66 98.93 97.74 94.72 93.85 88.28 99.71 99.90
Parking Lot 2 88.85 86.27 98.93 77.54 96.84 100.0 100.0 99.65
Tennis Court 97.22 100.0 97.62 99.60 99.19 99.60 100.0 100.0
Running Track 98.72 100.0 100.0 99.79 100.0 100.0 100.0 100.0
OA (%) 94.94 94.68 98.88 96.79 95.63 95.44 99.68 99.74
AA (%) 95.38 94.30 98.97 96.32 96.39 96.45 99.75 99.78
Kappa 94.50 94.22 98.79 96.52 95.26 95.05 99.65 99.72

and recently emerging methods based on convolutional neural
networks, such as TBCNN [48], and CPCNN [49].

1) The SVM method directly classifies the concatenated data
of HSI and LiDAR by applying the SVM classifier. The
code of SVM is implemented using the LIBSVM toolbox
of MATLAB, and fivefold cross-validation is used to train
the model with the Gaussian RBF kernel function.
EMAP is a method based on morphology algorithm to
obtain EMAPs, in order to make full use of the spatial
information of fused remote-sensing data. In the exper-
iment, the number of bands with HSI are reduced to 3
under the method of PCA, and then the PCs are extended
to 60-band profiles with the use of EMAPs. Similarly, the
LiDAR data are extended to 15-band profiles.

SuperPCA is a PCA dimensionality-reduction method
based on super pixel blocks, which aims to fully consider
the spatial information of HSI in the process of dimen-
sionality reduction. Regarding the design of experimental
parameters, the number of PCs after PCA dimensionality
reduction is 30. We set the number of super pixel blocks to
500 on the Houston dataset, 100 on the MUUFL dataset,
and 100 on the Trento dataset.

EndNet is a deep learning network based on MLP. Its
objectiveis to avoid the occurrence of information loss like
CNN. The application of the encoder—decoder structure
can more compactly integrate HSI and LiDAR data. In
the experimental design, owing to the lack of invariant
attribute profile codes used in the original article, the
number of bands was not expanded for LiDAR data, but
even so, it still achieved superior classification results.
TBCNN is a two-branch structure of CNN. One branch is
used to extract the spatial spectrum features of HSI, while
the other is used to obtain the elevation information of
LiDAR data. In the experimental design, in order to reduce
the cost of computation, the PCA was used to reduce the
number of original HSI bands to 30. In addition, the input
data sizes of HSI and LiDAR are both set to 11x11.

2)

3)

4)

)

6) CPCNN is an optimization model based on a two-branch
network. The model realizes the mutual learning of HSI
and LiDAR features by sharing the convolution weights of
the latter two layers, while reducing training parameters
and speeding up training time. The input data size of HSI
and LiDAR are both set to 11x 11 in the experiment.

In order to analyze whether the PCA method should be
used before grouping or after grouping, this article tests
the two cases of MVHN-B and MVHN-A. MVHN-B is
the application of PCA to the original HSI data before
grouping. In MVHN-A, PCA is applied to each local HSI
after grouping. Both of them are adopted with the same
hyperparameters in experiment. Specifically, the number
of groups is 8, the initial learning rate is 0.1, and the first
PCs are used as input for Gabor feature extraction.

Note that all the traditional methods are implemented on
MATLAB, and all the methods based on deep learning are coded
using Python 3.7.

Tables X—XII summarize the classification accuracies (i.e.,
OA (%), AA (%), and Kappa) for each classification method
on three well-known multisource remote-sensing datasets. In
order to ensure the fairness of the experiment, each method uses
the same number of training samples for training on the same
device. After each experimental method is repeatedly tested
10 times, the average value of each test result is taken as the
final classification result. As the results presented in the tables
indicate, the performances of the proposed methods (including
MVHN-A and MVHN-B) are significantly better than other
competitive methods on the three datasets.

1) Houston Dataset: Table X presents the classification per-
formance of each method on the Houston dataset. The
traditional SVM method, which does not use the spa-
tial information of HSI and LiDAR data, only obtained
94.94% of OA. For the SuperPCA method, the PCA
dimensionality reduction is conducted on each superpixel
block to enhance the consistency of classes and expand
the differences between classes. However, owing to the

7)
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TABLE XI

CLASSIFICATION PERFORMANCE OF THE SVM, SUPERPCA, EMAP, ENDNET, CPCNN, TBCNN, MVHN-A, AND MVHN-B
CLASSIFICATION METHOD ON THE MUUFL DATASET IN TERMS OF OA, AA, AND KAPPA

No Class Classification performance of various methods
B SVM SuperPCA EMAP [ EndNet CPCNN TBCNN | MVHN-A MVHN-B
Trees 97.93 72.22 98.34 82.81 92.84 83.44 93.70 93.85
Mostly Grass 53.02 81.63 79.71 81.34 43.02 85.64 77.53 79.66
Mixed Ground 79.84 71.70 87.83 72.07 82.03 71.35 79.83 79.78
4 Dirt and Sand 78.10 83.49 88.90 88.18 98.73 88.24 94.79 94.61
e Roads 86.78 85.12 88.24 89.51 77.24 91.74 89.04 87.92
6 Water 60.89 90.71 72.31 100.0 100.0 100.0 100.0 100.0
7 Building Shadows 50.83 83.26 57.21 91.00 88.84 90.76 96.72 95.78
8 Buildings 94.82 84.04 97.93 94.38 98.32 90.68 96.21 96.74
9 Sidewalks 50.44 70.12 59.98 75.49 37.35 74.16 76.81 76.89
10 Yellow Curbs 35.26 78.31 21.17 96.39 43.37 78.31 78.31 86.75
[ 0| Cloth Panels 72.80 98.22 82.26 96.45 98.22 96.45 99.41 99.41
OA (%) 82.25 76.00 88.91 84.02 84.85 84.32 90.12 90.24
AA (%) 69.19 82.55 75.81 87.97 78.18 86.43 89.30 90.13
Kappa 77.16 70.99 85.57 79.50 80.04 79.90 87.03 87.19
TABLE XII

CLASSIFICATION PERFORMANCE OF THE SVM, SUPERPCA, EMAP, ENDNET, CPCNN, TBCNN, MVHN-A, AND MVHN-B CLASSIFICATION
METHOD ON THE TRENTO DATASET IN TERMS OF OA, AA, AND KAPPA

No Class Classification performance of various methods
SVM SuperPCA EMAP [ EndNet CPCNN TBCNN [ MVHN-A MVHN-B

[ Apple Trees 70.12 99.39 96.27 89.40 99.20 99.72 98.49 98.72
2 Buildings 96.40 84.91 96.73 97.18 97.60 91.67 99.42 99.63
e Ground 76.40 45.49 99.04 95.49 99.33 91.92 100.0 100.0
4 Wood 99.76 99.32 99.81 99.25 99.99 95.32 100.0 100.0
Vineyard 94.19 99.65 99.57 88.52 99.89 97.07 99.99 99.98
Roads 94.24 89.47 97.31 90.86 97.04 98.55 97.42 97.08
OA (%) 91.71 95.46 98.68 93.06 99.30 96.46 99.47 99.48
AA (%) 88.52 86.37 98.12 93.45 98.84 95.71 99.22 99.24
Kappa 89.02 93.95 98.24 90.79 99.07 95.28 99.29 99.31

complexity of the Houston dataset landscape, the single-
scale superpixel segmentation method finds it difficult
to ensure that the superpixel blocks are all consistent
classes, so its accuracy is lower than the SVM method.
The EMAP method based on the morphological algo-
rithm fully extracts the morphological texture features
of HSI and LiDAR data and its OA is increased by
3.94% compared with the SVM method. However, for the
above multisource remote sensing fusion methods based
on traditional algorithms, there is no feature extraction
on the spectral dimension information of the fusion data,
which means that the information of multisource data is
not fully utilized, and the performance of the classifier is
suppressed. The MVHN method based on 3-D ResNet-
like deep CNN can extract the spatial features and fully
consider the feature extraction of the spectral dimension of
the fusion data. Therefore, the OA indicator of the MVHN
method increases by 0.86% compared with the EMAP
method. EndNet based on the encoder—decoder structure
realizes the information fusion of HSI and LiDAR data in
the spectral dimension but fails to use the multisource data
spatial structure information and ignores the influence of
the correlation between the query pixels and its spatial
domain pixel due to its fully connected layer network
structure. Although the CPCNN and TBCNN methods
realize the spatial-spectral feature extraction of HSI and
LiDAR data, they have not yet overcome the shortcoming

that CNN is sensitive to shape changes in objects. In
contrast, the proposed MVHN method in this article uses
Gabor filters to extract multidirectional Gabor features
for HSI and LiDAR data, thus providing rotation invari-
ance for the CNN. Furthermore, the proposed MVHN
method not only uses feature-level fusion, it also utilizes
multiview-based decision fusion to achieve the robust
classification results of multisource data. Fig. 9 shows
the full-pixel classification results of each experimental
method on the Houston dataset, and also shows an enlarged
view of some scenes in the classification map. It can be
seen from the figure that the CNN method based on a block
as the input obtains a smoother classification result map
than the traditional methods. Thus, the proposed MVHN
method is superior in HSI and LiDAR data classification
compared with competitive methods.

2) MUUFL Dataset: As Table XI presents, the proposed

MVHN-A method obtains an OA of 90.12%, and the pro-
posed MVHN-B method achieves an OA of 90.24%. By
contrast, the OAs of the competitive methods are all less
than 90%, establishing the effectiveness of the proposed
methods (including MVHN-A and MVHN-B) for HSI and
LiDAR data classification compared to the traditional and
advanced classification methods. Fig. 10 shows the full-
pixel classification maps of all classification methods on
the MUUFL dataset. It can be observed that the proposed
MVHN method obtains a clearer boundary and achieves
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Fig. 9.

Classification result maps for different comparison methods on the Houston dataset. (a) SVM (OA = 94.94%). (b) SuperPCA (OA = 95.01%). (c) EMAP
(OA = 94.68%). (d) EndNet (OA = 98.88%). (¢) CPCNN (OA = 96.79%). (f) TBCNN (OA = 95.63%). (g) MVHN-A (OA = 99.68%). (h) MVHN-B (OA =
99.74%).

Fig. 10.

Classification result maps for different comparison methods on the MUUFL dataset. (a) SVM (OA = 82.25%). (b) SuperPCA (OA = 76.00%).

(c) EMAP (OA = 88.91%). (d) EndNet (OA = 84.02%). (¢) CPCNN (OA = 84.85%). (f) TBCNN (OA = 84.32%). (g) MVHN-A (OA = 90.12%).
(h) MVHN-B (OA = 90.24%).

3)

fewer misclassifications. The classification effectiveness
of the proposed MVHN method on the MUUFL dataset
can also be further verified.

Trento Dataset: The Trento test image is a relatively regu-
lar and single remote-sensing scene of pixel distribution.
Specifically, the pixels in the image are mostly distributed
in blocks. Therefore, from Table XII, the classification
accuracies of the spatial classification methods i.e., Super-
PCA and EMAP, are significantly better than the pixelwise
SVM classifier owing to the spatial information of pixels
being taken into consideration. The CNN-based TBCNN
and CPCNN are also significantly better than the EndNet
method that does not consider the spatial information.
However, the MVHN method combines Gabor filter and
3-D ResNet-like deep CNN to effectively account for the
spatial-spectral features of HSI and LiDAR data, thus

achieving better classification accuracy. As the classifi-
cation results in Table XII indicate, the MVHN-B method
obtained the highest classification result with an OA of
99.48%, which proves that this method still has obvious
advantages over other methods on the Trento dataset. The
same conclusion can also be drawn from the classification
map in Fig. 11, where the MVHN method obtains a more
accurate classification result map. Furthermore, based on
the results presented in Tables X—XII, the classification
performance of MVHN-B is slightly better than that of
MVHN-A. This is because applying PCA to the original
HSI before the multiview strategy allows the Gabor filter
to capture more abundant spatial spectrum information.

To test the classification performance of each method, we
conduct another experiment on the Houston, MUUFL, and
Trento datasets. Fig. 12 presents the classification performance
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Classification result maps for different comparison methods on the Trento dataset. (a) SVM (OA = 91.71%). (b) SuperPCA (OA = 95.46%). (c) EMAP

(OA = 98.68%). (d) EndNet (OA = 93.06%). (¢) CPCNN (OA = 99.30%). (f) TBCNN (OA = 96.46%). (£) MVHN-A (OA = 99.47%). (h) MVHN-B (OA =

99.48%).
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Fig. 12.
(b) MUUFL dataset. (c) Trento dataset.

of each method under various numbers of training samples. The
experiment is used to evaluate the sensitivity of each classifica-
tion method to different numbers of training samples. For the
Houston and the MUUFL datasets, the proportion of each class
of training sample to the labeled sample changed from 1% to
20%. For the Trento dataset, the number of training samples
are selected from 10 to 50 per class. In Fig. 12, the methods
that take the neural network as the main body are marked by
a solid line and the methods take traditional algorithms are
marked by a dashed line. It can be seen that the proposed MVHN
method is better than other classification methods for almost any
number of training samples. Especially for a smaller number
of samples, the use of multiple view strategies significantly
improves the accuracy of the classification results and enhances
the robustness of the classification process. In addition, as the
number of samples increases, the proposed MVHN method also
demonstrates advantages in the classification task.

10% (5369)
Number of Training Samples

15% (8053)  20% (10737) 60 120 180 240 300
Number of Training Samples

(b) (©

Classification performance of the proposed MVHN method with different number of training samples on the various datasets. (a) Houston dataset.

E. Ablation Experiments for the Proposed Method

The components to be ablated include HSI, LiDAR, Gabor
filter, and multiview. The training samples account for 5% of
labeled data of the Houston as well as MUUFL datasets. For the
Trento dataset, ten labeled data per class are selected to construct
the training set used by the proposed MVHN method for train-
ing. Table XIII summarizes the classification accuracies of the
proposed MVHN method under ablation conditions on the three
datasets. The results in Table XIII indicate that the introduction
of LiDAR data enhances the classification performance of the
MVHN and, consequently, the effectiveness of the fusion data
of HSI and LiDAR for the MVHN in the classification task. In
Table XIII, when the Gabor filter is ablated from the MVHN
method, the classification accuracy of the MVHN method is
degraded by about 1-2% on the Houston and Trento datasets.
This is because, for these two datasets, in which for a certain
category of samples, the spatial distribution of the sample blocks
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TABLE XIII
CLASSIFICATION ACCURACY OF THE PROPOSED MVHN METHOD USING DIFFERENT ABLATION STRATEGIES ON THE THREE MULTISOURCE DATASETS

. . R Houston MUUFL Trento
HSI | LiDAR | Gabor Filter | Multi-View OA (%) | AA (%) | Kappa | OA (%) | AA (%) | Kappa | OA (%) | AA (%) | Kappa
N X VA VA 96.83 97.10 96.58 94.49 83.07 92.70 96.26 93.67 95.01
X Vv v VA 63.27 61.41 60.27 77.56 52.02 69.88 75.99 77.54 69.35
Vv V4 X v 97.47 97.58 97.27 94.84 84.02 93.16 96.68 95.23 95.58
VA v Va X 98.23 98.45 98.08 93.08 80.65 90.82 97.54 95.51 96.71
4 Vv v VA 98.28 98.49 98.15 94.64 84.10 92.89 98.67 97.34 98.23
TABLE X1V
COMPARISON OF RUNNING TIME OF EACH METHOD ON DIFFERENT DATASETS
Running time of various methods
SVM SuperPCA EMAP EndNet CPCNN  TBCNN MVHN-A MVHN-B

Houston Train(s) 69.04 36.21 52.81 9.42 60.67 15.74 61.82 63.07

Test(s) 1.82 1.05 0.74 0.17 0.28 1.81 4.15 4.37

MUUFL Train(s) 8.85 7.50 11.83 5.45 31.57 13.52 42.32 41.73

Test(s) 1.99 2.23 2.15 0.19 0.99 4.51 10.30 10.01

Trento Train(s) 1.85 3.96 2.23 342 14.03 11.55 39.21 36.52

Test(s) 0.39 0.47 0.40 0.03 0.54 3.05 6.83 6.90

mostly has different directions, and Gabor filter can enhance
the adaptability of features to direction changes during network
training. Therefore, introducing the Gabor filter into these two
datasets can effectively improve the generalization ability and
classification performance of the network. In addition, as in-
dicated in Table XIII, the multiview strategy has a significant
promotional effect on the performance of the MVHN method.
Thus, the use of the multiview method helps the MVHN to
overcome the information loss in the process of dimensionality
reduction, preserving the integrity of the data, and improves
the robustness of the network. For instance, the classification
accuracies of the multiview method increased by approximately
2-3% (in terms of OA, AA, and Kappa indicators) upon ap-
plication of the multiview strategy on the Trento dataset with
a very limited number of training samples. This also shows
that in the classification task for a small number of training
samples, the multiview method can significantly improve the
classification accuracy. Thus, the experimental results indicate
that the integration of HSI, LiDAR, Gabor filter, and multiview
has a polar contribution to the classification performance of
the MVHN method. It also proves that the MVHN method is
extremely practical in HST and LiDAR data classification tasks.

F. Comparison of Running Time

The calculation time experiment calculated the running time
of the proposed method MVHN and other comparison methods,
including training time and test time. During this experiment,
all time calculation experiments are run on the same computer.
In addition, the SVM, SpuerPCA, and EMAP codes run on the
MATLAB 2018a platform, while the rest of the codes run on
Python 3.7. The dataset and the corresponding training and
test samples are given in Section III-A. During the training
process, the training process of all data sets is 20 epochs. The
experimental results are shown in Table XIV.

It can be seen from the results in the Table that the MVHN
method proposed in this article is not superior in terms of
computational efficiency. The main reason is that the feature

extraction process of the 3-D residual structure and the classifi-
cation process of the fully connected layer are expensive in time.
It is worth noting that the training time for MVHN is for one
group. If the number of groups increases, the calculation time
will increase to varying degrees.

IV. CONCLUSION

A multiview hierarchical network is proposed for HSI and Li-
DAR data classification. Experiments on the Houston, MUUFL,
and Trento real datasets compared several well-known tradi-
tional classification methods and state-of-the-art deep learning
networks, proving that the proposed MVHN method can obtain
the best classification accuracy on the aforementioned datasets
compared to other state-of-the-art classification methods. We
emphasize that the proposed multiview strategy based on a preset
band step length is indeed effective for HSI and LiDAR data
classification, and the 3-D residual network designed in this
work can capture the spectral-spatial semantic features of HSI
as well as LiDAR data effectually. In the future, research on the
collaborative paradigm of deep learning and active learning for
HSI and LiDAR data classification tasks will be our focus. While
the performance of the deep network has a strong dependence
on training samples, active learning compensates for this defect
of the deep network. Therefore, the design of a collaborative
model of deep learning and active learning will be of immense
importance.
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