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Nationwide Radar-Based Precipitation
Nowcasting—A Localization Filtering Approach

and its Application for Germany
Ricardo Reinoso-Rondinel , Martin Rempel, Markus Schultze, and Silke Trömel

Abstract—One approach to improve advection methods is the
short-term ensemble prediction system (STEPS). STEPS decom-
poses precipitation fields into different spatial scales and filters
those having a short lifetime. The latter is achieved by using an
auto-regressive (AR) model that considers a sequence of observa-
tions. However, such a model tends to smooth nowcasting fields
especially in small but convective precipitation areas and at longer
lead-times. With focus on the deterministic configuration of STEPS,
i.e., the spectral prognosis model (SPROG), this article 1) extends
the STEPS approach by estimating spatially localized parameters
of the AR process, 2) conducts a sensitivity analysis of the SPROG
model to the order of the AR process, the spatial decomposition
levels, and post-processing, and 3) analyzes the forecast skill of
the extended STEPS. For such purpose, the performance of the
localized AR model was demonstrated and evaluated at several
precipitation thresholds and window sizes using a varied set of
precipitation events collected by the radar network of the German
Weather Service. The statistical results exhibited an improved
performance of the localized AR model over SPROG when both are
evaluated at precipitation thresholds and window sizes larger than
0.1 mm h−1 and 1 km, respectively, and for lead-times up to 2 h. The
analysis suggested a first-order AR process, six cascade levels, and
a mean adjustment post-processing procedure. Our results show
a key role of the localization aspect when generating nationwide
forecasts in scenarios that include large precipitation areas which
are non-uniformly distributed having isolated convective features.

Index Terms—Precipitation modeling, prediction, quantitative
precipitation nowcasting, weather radar.

I. INTRODUCTION

PROLONGED heavy precipitation induced by low pressure
systems or short intense rainfall due to deep convection

Manuscript received June 30, 2021; revised October 9, 2021, December 2,
2021, and January 13, 2022; accepted January 13, 2022. Date of publication
January 21, 2022; date of current version February 16, 2022. This work was
supported in part by the Deutsche Forschungsgemeinschaft (German Research
Foundation) through the Near-Realtime Quantitative Precipitation and Predic-
tion (RealPEP-QPN) Project and in part by the Deutscher Wetterdienst (German
Meteorological Service) through the Seamless INtegrated FOrecastINg sYstem
(SINFONY) Project. (Corresponding author: Ricardo Reinoso-Rondinel.)

Ricardo Reinoso-Rondinel is with the Institute for Geosciences,
Department of Meteorology, University of Bonn, 53113 Bonn, Germany
(e-mail: ricardoreinoso@uni-bonn.de).

Martin Rempel and Markus Schultze are with the Deutscher Wet-
terdienst, 63067 Offenbach, Germany (e-mail: martin.rempel@dwd.de;
markus.schultze@dwd.de).

Silke Trömel is with the Institute for Geosciences, Department of Meteorol-
ogy, University of Bonn, 53113 Bonn, Germany, and also with the Laboratory
for Clouds and Precipitation Exploration, Geoverbund ABC/J, 53113 Bonn,
Germany (e-mail: silke.troemel@uni-bonn.de).

Digital Object Identifier 10.1109/JSTARS.2022.3144342

are typical severe weather phenomena in Europe [1]. They
represent one of the main triggers for water-related hazards such
as flash floods or debris flows [2]. For example, a two-week
period in May–June 2016 with widespread airmass convection
in Central Europe led to an economic loss of EUR 2.6 billion
in Germany alone [3]. These examples of precipitation illustrate
the variability over a wide range of temporal and spatial scales,
making it challenging to forecast precipitation accurately [4].

An important tool to forecast such phenomena is an
observation-based precipitation nowcasting technique. The
World Meteorological Organization (WMO) [5] defines this
technique as a detailed description of the current state of the
atmosphere in combination with forecasts based on extrap-
olation 6 h ahead. Despite the immense progress made in
improving the quality of forecasts made by numerical weather
prediction (NWP) over the last decades [6], forecast errors of
the above described small-scale phenomena are quite high com-
pared to extrapolation-based nowcasting methods [7]. This may
be caused by inaccurate initial and outdated boundary conditions
or effects that are not well captured by numerical models in
particular with respect to parameterized processes (e.g., cloud
microphysics; [8]). Consequently, observation-based precipita-
tion nowcasting techniques typically outperform the NWP up to
lead-times of the order of 4–6 h (e.g., [9]), especially when con-
sidering the low update frequency compared to extrapolation-
based nowcasting. Deterministic radar-based precipitation now-
casting techniques are well-established and one essential tool for
short-term prediction of precipitation. Precipitation nowcasts,
for instance [10], are conducted by extrapolating the most recent
observed precipitation field along the motion field estimated
from optical-flow methods (e.g., [10]–[12]) up to a lead-time of
approximately 3 h. One benefit of using radar-based precipita-
tion nowcasts is the direct applicability as high-quality input for
hydrological models [13] at least for short lead-times. The aim of
such flood forecasting and derived warning services is to provide
timely and accurate warnings in order that adequate response
can be taken to mitigate the impact of flooding [13]. Therefore,
the meteorological and hydrological communities require input
from accurate short-term prediction of precipitation for appli-
cations on rainfall-runoff simulation [14]–[18]. One common
feature of traditional precipitation nowcasting is the forecast
in accordance to the concept of Lagrangian Persistence [10].
This approach describes a pure advective forecast that does not
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take into account the growth and decay of precipitation. During
the last two decades, a variety of ideas have been developed to
overcome this limitation. Germann and Zawadzki [10] proposed
the incorporation of a source/sink term to consider growth
and decay of precipitation during the forecast based on the
determined upstream intensity change of the precipitation field.
The authors emphasize that the forecast is improved, if a spatial
and temporal persistence of intensity changes is prevalent. This
persistence mainly occurs in situations with synoptic scale pre-
cipitation. Atencia et al. [19] statistically analyze the forecast
errors of the McGill Algorithm for Precipitation Nowcasting
based on Lagrangian Extrapolation (MAPLE; [10]) in relation to
the time of day. These effects of the diurnal cycle of precipitation
were used for an adaptive correction of the nowcasts, which
significantly reduced the forecast error.

In recent years, multidata approaches making use of machine
learning techniques came up in the field of precipitation now-
casting. The systematic growth and decay of precipitation by
orographic forcing in the Alpine region has been studied by [20]
using a 10-year archive of radar data. In combination with time
of day and airmass information from NWP, these data were used
to train an artificial neural network (ANN). Hamann et al. [21]
have utilized multisensor data (radar, lightning, satellite, NWP)
to train a XGBoost model (gradient boosted trees) eventually
containing several hundred of input parameters to forecast the
evolution of cell severity. Probabilistic precipitation nowcasts
are carried out for the continental United States using radar data
and satellite data of GOES-16 by [22] applying deep neural
networks. This approach is able to outperform traditional pre-
cipitation nowcasting and NWP up to 8 h lead time. Schaumann
et al. [23] proposed an ANN that is able to produce consis-
tent and calibrated probabilistic forecasts for multiple thresh-
olds of rain rates by combining NWP data with precipitation
nowcasts.

One typical drawback of statistical methods such as machine
learning systems is the necessity of sufficient and homogeneous
datasets for training purposes being delicate in case of radar data,
for instance (e.g., [24], [25]). Another limitation of such systems
is that accurate predictions are not expected if similar conditions
were not given during the training process. Accordingly, the
trained algorithms frequently tend toward the statistical mean
value, also in case of rare events (i.e., high intensities) [26].
Thus, the added value compared to traditional methods com-
monly vanishes for higher thresholds [27]. Due to its “black
box” character, the results of machine learning algorithms may
be difficult to understand for a developer, but even more for
end users (e.g., operational forecasters). In addition, generating
realistic patterns in precipitation remains a major challenge, but
the demand for using the data as input for hydrological models
continues.

Another well-established precipitation nowcasting approach
is the Short-Term Ensemble Prediction System (STEPS; [28]). It
comprises the scale dependency of the predictability of precipi-
tation, which has been shown in numerous studies [29]–[32].
STEPS is a stochastic extension of the nowcasting method
Spectral Prognosis referred to as SPROG [30]. The latter aims
to filter an observed precipitation field on small spatial scales,

expecting that precipitation on these scales has a short life
time and thus a shorter predictability compared to larger spatial
scales. The spatial decomposition of the precipitation field into
a number of cascade levels is done through a filtering decom-
position process, whereas the spatial filtering, at each cascade
level, is performed during extrapolation using a scale-dependent
autoregressive (AR) model. The parameters for this AR model
are obtained from the latest radar observations.

In STEPS, the basis of the stochastic part is a Fourier-filtered
white noise field that reproduces the spatial properties of the
latest observation and represents the forecast uncertainty. Next,
STEPS generates an ensemble nowcast, where each realiza-
tion provides a realistic precipitation pattern. Common post-
processing tools, such as ensemble calibration or derivation
of exceedance probabilities, can be applied to the ensemble.
One reason why the supposedly outdated STEPS idea prevails
against more advanced precipitation nowcasting schemes is the
easy comprehensibility from a meteorologist’s point of view.
Over the years, the STEPS approach has been adapted for
several regions with individual configurations and extensions
(e.g., [33]–[35]), showing potential and suitability for opera-
tional applications. Recently, the pySTEPS1 [36] initiative was
established to develop and maintain an open-source python
framework for short-term deterministic and probabilistic precip-
itation nowcasting techniques. For example, a recent work [37]
developed a deterministic precipitation nowcasting model with
focus on convective rainfall making use of volumetric radar
observations and an autoregressive integrated (ARI) process
to mitigate smoothing effects in the nowcasting caused by
the abovementioned filtering of small spatial scales. Inspired
by previous studies, the German Weather Service (Deutscher
Wetterdienst; DWD) intends to apply the STEPS approach as
a basis to seamlessly combine short-range NWP forecasts with
radar-based extrapolation nowcasts in an operational environ-
ment; the Seamless Integrated Forecasting System.

Several preassumptions are needed to run the pySTEPS sys-
tem. Assumptions that can be difficult to meet and model in
complex space-time structures, for example, a homogeneity of
the rain field. Additionally, the default model parameters (such
as the number of decomposition levels and the order of the
AR model) and postprocessing methods such as probability
matching given by pySTEPS need to be investigated for its
specific application. This work aims to 1) study the sensitivity of
the STEPS approach in its deterministic configuration, i.e., the
SPROG model, to the order of the AR process and the number of
decomposition levels, 2) adapt the estimation of the AR parame-
ters by considering a localization method to control the temporal
evolution of precipitation while addressing the inherent homo-
geneity assumption, and 3) evaluate the precipitation nowcasting
fields at various intensity and spatial precipitation thresholds as
well as to show the dependency of the nowcasting models to
the motion field vectors and postprocessing. For that, a set of
configurations are tested and the results are analyzed using 10
events collected by the DWD radar network in order to suggest
a suitable configuration for the generation of deterministic and

1[Online]. Available: https://pysteps.github.io/
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ensemble precipitation nowcasting in Germany under real-time
operation constraints.

The rest of this article is organized as follows. Section II gives
a background on advection-based precipitation nowcasting and
describes the components of the SPROG nowcasting model [30].
Additionally, it presents our methodology to extend SPROG by
means of a localization approach of the AR parameters, consid-
ering the spatial variability of observed precipitation. Section III
introduces the dataset, configuration settings, and the evaluation
metrics. Section IV performs a sensitivity analysis of SPROG
to initiation parameters and postprocessing methods. Section V
quantifies the performance and conducts a statistical evaluation
of the extended SPROG-localized approach. Finally, Section VI
concludes this article.

II. METHODOLOGY

A. Advection Nowcasting

We follow the advection approach given by [10], which ex-
trapolates the last observed precipitation field R (mm h−1) via
estimated advection vectors, providing a sequence of nowcasting
fields. The extrapolation is conducted in a semi-Lagrangian
backward scheme. This scheme implies that for each grid box
within the extrapolated nowcasting field the value of the ori-
gin grid box in the latest observation is advected along the
trajectories of the vector field. The latter, however, remains
stationary during the lead time. One approach for the estimation
of advection vectors is given by the dynamic and adaptive radar
tracking of storms DARTS introduced by [38]. DARTS is an
area-wide approach in which the optical-flow equations are for-
mulated and solved in the spectral domain, using the 3-D discrete
Fourier transformation (3D-DFT). Three user-defined numbers,
Nx, Ny , and Nt, are needed to truncate the number of DFT
coefficients of the consecutiveRfields in the horizontal, vertical,
and temporal sequence axes, respectively. Two more parameters
Mx and My determine the truncation of the DFT coefficients,
which are estimated from the linear least square method, to solve
the optical-flow equations and obtain the advection vector fields.
Thus, the spatial detail of the horizontal and vertical components
of the 2-D advection fields is controlled by Mx and My .

A second and distinct approach is the duality-based total
variation L1-norm (Dual TV-L1) optical flow algorithm [39],
[40], which is used for operational purposes at DWD (e.g., a
deterministic radar extrapolation nowcasting). The algorithm
solves the optical flow equations in spatial space by minimiza-
tion of an energy functional containing a regularization and a L1

attachment term. The regularization term describes herein the
sum of the total variation of an initial displacement vector field.
Due to a pyramidal scheme, the minimization takes place on
different spatial scales so that the initial vector field is updated
from coarse to fine scales. The smoothness of the results as
well as the link between both terms can be controlled by an
attachment and tightness parameter, respectively. The pyramidal
scheme can be configured by a down-sampling factor and the
number of scales. The basic idea of the Dual TV-L1 algorithm
is closely linked to the variational echo tracking method applied
in MAPLE [10].

Although only one optical-flow technique will be sufficient to
perform the analysis of distinct nowcasting methodologies, we
will use the DARTS and Dual TV-L1 techniques, mainly because
the latter has been used operationally at DWD for nowcasting
purposes but without a formal documentation of its performance,
while the performance of the former one had been presented
in related pySTEPS articles (e.g., [36]), allowing its use for
reference purposes in this study.

B. Spatial-Decomposition Nowcasting Models

For the SPROG nowcasting, first, a sequence of observed
precipitation fields are brought to Lagrangian-coordinates us-
ing, for instance, either of the advection schemes described in
Section II-A. Further, these precipitation fields are decomposed
in a number of cascade levels (K > 1). For the spatial decompo-
sition and to handle nonprecipitation areas, Seed [30] suggested
to express R in logarithm scale RT (dB) such that

RT =

{
10 log10 R for R > Rth

Rmin otherwise
(1)

where Rth and Rmin, such that Rmin < Rth, are user-defined
parameters.

The decomposition of a square-shaped RT field is done
by multiplying its Fourier spectrum by K Gaussian-shaped
band-pass filters each centered in the frequency interval
[L−1qk−2, L−1qk]Δx−1, where L (grid boxes) is the side length
of RT, Δx (km) is the resolution of RT , q is the ratio of scales
between decomposition levels (q > 1; e.g., 1.62 for K = 12),
and k = 1, 2, . . .K [28], [32]. In this way, RT is expressed as

RT =
K∑

k=1

μk + σkRT,k (2)

where RT,k represents the kth level normalized by the mean
μk and standard deviation σk. Both scaling parameters remain
constant during extrapolation. An AR model of order p ≥ 1,
referred to as AR(p), is used to model the evolution of the
decomposed precipitation field at each cascade levelRT,k during
extrapolation as

RT,k(t+ tl) =

p∑
n=1

φk,n(t)RT,k(t+ tl − nΔt)

+ φk,0(t)εc,k(t+ tl). (3)

In this equation, t indicates the time of the last observed rain-
fall field, tl represents the lead time, andΔt the time between two
consecutive observations of rainfall fields such that tl = mΔt
and m ≥ 1 is an integer number. The AR parameter φk,n(t)
controls the rate of evolution of each cascade level and it is
constant during extrapolation. Each AR parameter is obtained
from the time lagged autocorrelation coefficients ρk,n resulting
from the last p+ 1 advected frames of RT,k to time t by solving
the Yule–Walker equations [28]. The term εc,k(t+ tl) represents
the stochastic noise term of the AR process and is neglected in the
SPROG model. However, in the STEPS model [41], εc,k(t+ tl)
is included to simulate the uncertainties related to the growth and
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decay process of precipitation at time t+ tl. It can be generated
by multiplying the spectrum of the rainfall field and a white noise
field, then transforming the product back to the spatial domain,
and decomposing it into K levels. Afterward, the decomposed
noise term is scaled at each level k by the parameter φk,0,
also known as the innovation variance. The latter describes the
uncertainty not accounted for the serial correlation [42] and it is
given by

φk,0 =

√
1−

∑p

n=1
ρk,nφk,n. (4)

Last, the nowcasting field R(t+ tl) is obtained by applying
the following operations to RT,k,e(t+ tl): recomposition of
the K cascade levels through μk and σk, postprocessing of
the integrated field as indicated in Section II-D, advection
of the postprocessed field to time tl, and unit transformation
to mm h−1. In the STEPS model, the generation of the noise
term and the described operations are iterated multiple times to
generate multiple members resulting in an ensemble nowcast.

A recent approach [37] aims to improve the SPROG model
in convective precipitation using, besides gridded rainfall field
inputs, vertically integrated liquid estimated from volumetric
radar observations and an ARI process. The ARI model allows
to simulate the growth and decay process using the differenced
time series of rainfall fields representing a source/sink term as
explained in [10]. Afterward, the AR equation [cf. (3)] is utilized
but for the differenced time series. The resulting extrapolated
tendencies are added to the original field. Similar to SPROG,
the parameters of the ARI model are estimated at each spatial
scale. The estimation of these parameters are done also localized
at the grid point level.

C. SPROG(STEPS)-Localized Nowcasting

The proposed nowcasting model, hereafter SPROG-LOC,
considers the spatio-temporal heterogeneity of precipitation sys-
tems that is expected in nationwide radar composites of observed
precipitation. Therefore, this model is expected to improve the
representation of higher rain rates throughout the extrapolation
forecast while preserving long-living precipitation structures
such as mesoscale convective systems. Thus, the essence of
SPROG-LOC is a 2-D localization filtering process that is
applied during the estimation of the autocorrelation coefficients
and, consequently, 2-D AR parameters Φk,n and Φk,0 are ob-
tained as well as the scaling parametersμk andσk. Subsequently,
only the estimation of the correlation coefficients is described
as the scaling parameters are obtained in a similar manner.

The basis for the localization approach is a scale-dependent
convolution square kernel Q. For each spatial scale, the length
extent lk of the square kernel is defined as

lk = max(lmin,kminq
K−kh). (5)

Here, lmin and h are user-defined values representing a min-
imum kernel length and a multiplicative factor, respectively.
These values ensure on one hand that at least one half of an oscil-
lation at the respective scale is covered by the kernel and, on the
other hand, that still a sufficient large surrounding around each

point is used to reduce noise in the resulting fields of correlation
coefficients. kminq

K−k corresponds to the central wavelength
of the respective cascade level, whereas herein the user-defined
kmin depicts the scale of the second cascade levels and controls
the multiplier between the cascade levels. In the case of a low
number of spatial scales,kmin maintains a reasonable symmetric
aspect of theK band-pass filters and separation between the first
two Gaussian filters. Further details on kmin are given in [33].
If the h-fold of the respective central wavelength exceeds the
side length of the domain, correlation coefficients are obtained
globally as in SPROG using the entire field.

In a further step, the square kernel determined in this manner is
normalized such that the sum of its elements equals 1 and is used
to estimate the spatially and localized time-lagged correlation
coefficients. For a cascade level k, a 2-D field of localized
mean values of an arbitrary decomposed precipitation field RT

is obtained by applying a convolution with the square kernel Qk

so that

〈RT,k〉loc = RT,k ∗Qk. (6)

For a time-efficient computation, the convolution takes place
in Fourier space. Next, standard deviations and covariances
are computed for each cascade level of the last p+ 1 frames
beginning at the time of the latest observation t by (see e.g., [43],
[44])

σloc(RT,k(t)) =
√
〈RT,k(t)2〉loc − 〈RT,k(t)〉2loc (7)

and

σloc(RT,k(t), RT,k(t− nΔt)) = 〈RT,k(t)RT,k(t− nΔt)〉
− 〈RT,k(t)〉〈RT,k(t− nΔt)〉,with n = 1, 2, . . . p. (8)

Finally, the 2-D correlation coefficients are obtained by

Pk,n =
σloc(RT,k(t), RT,k(t− nΔt)

σloc(RT,k(t))σloc(RT,k(t− nΔt))
, (9)

with n = 1, 2, . . . p and k = 1, 2, . . . K. The estimation of cor-
relation coefficients may be affected in several ways by the
motion vector field that is used. First, when using an optical-
flow technique like the Dual TV-L1 algorithm, the temporal
evolution of precipitation in a sequence of observations is equal
to an intensity change leading to a violation of the optical
flow constraint. Second, a smoothing of the resulting motion
vector field to obtain an advection velocity also in areas without
precipitation leads to an overall reduction in amplitude. Both
aspects result in a lower advection velocity. A spatial shift of
oscillations in the spatial scales of the decomposed precipita-
tion field caused by the reduction in advection velocity may
lead to lower correlation coefficients, especially when they are
estimated by (9). To diminish this effect, a scale-dependent
logarithmically increasing optimization factor fk is introduced
such that P̃k,n,x,y = fkPk,n,x,y. The factor is given by

fk = (1 + I)
k−1
K−1 . (10)

Here, I is the desired maximum fractional increment given
by a user.
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Afterward, the 2-D parameter fields Φk,n and Φk,0 are esti-
mated from the optimized correlation coefficients in the same
way as indicated in Section II-B. Although STEPS uses the
standard FFT for the estimation of the spatial correlated noise
field, we will use the short-space fourier transform (SSFT) on
the latest observation as described in [34] for the generation of
the stochastic term in both STEPS and STEPS-LOC.

Finally, the modified AR(p) process is applied to the nor-
malized RT,k fields. Due to this localization approach, the 2-D
coefficients of the AR(p) process is expected to overcome the
spatial uniform filtering rate within each extrapolated cascade
level. This has the advantage that different synoptic situations of
the same spatial scale within the observed domain (e.g., isolated
as well as embedded convection) are considered more precisely
in terms of their individual decorrelation behavior. Moreover,
the localized AR(p) process leads straightforward to a localized
2-D parameter field given by (4) that scales in STEPS-LOC the
stochastic term and thereby the noise field.

D. Postprocessing Nowcasting Fields

A postprocessing step is often used at each time step to ensure
that the predicted field RT (t+ tl), after recomposition of the K
levels, maintains statistics similar to those from RT (t) such as
the wet-area ratio and intensity distribution. The motivation here
is to reduce systematic errors associated with unit transforma-
tion, spatial decomposition, and the AR modeling that could
propagate through the nowcasting fields. Seed [30] suggested
a mean-based adjustment to RT (t+ tl) in areas conditioned to
keep the estimated wet-area ratio, hereafter μ-adjustment. This
adjustment is done as RT (t+ tl)− μ(t+ tl) + μ(t), where
μ(t+ tl) and μ(t) represent the mean of the predicted and the
observed field, respectively. A further postprocessing method is
to match the cumulative distribution function of RT (t+ tl) to
that of RT (t), hereafter CDF-matching, proposed by [45].

III. DATA DESCRIPTION AND MODEL CONFIGURATION

A. Data Events

We utilize data from the DWD C-band radar network that
currently consists of 17 dual-polarimetric radars that collect data,
in azimuth and elevation, every 5 min with a range resolution
of 250 m. The maximum range of each radar is 150 km for
the terrain-following precipitation scan and 180 km for the
volume scan mode. The obtained data provide the basis for
the operational system for quantitative precipitation estimation
(QPE) at DWD, called RADOLAN [46]. This system provides
a set of several rain gauge-adjusted and real time products.

For this study, we use the RADOLAN real time product
RY [47]. The product covers a gridded area of 900× 900 km with
a horizontal resolution of Δx = 1 km and a temporal resolution
of 5 min. For the RY product, reflectivity values Z from each
radar site are corrected for clutter contamination, path attenu-
ation, and beam blockage [48]. Then, these corrected Z values
are transformed into rain rates using a refined Z–R-relation [46].
The parameters of this relation are different for three reflectivity
categories (low, medium, and high) and additionally, depend on
a reflectivity structure metric. Afterward, the obtained rain rates

are mapped from the original polar grid onto the abovementioned
1 km polar stereo-graphic grid. A more detailed description of
the composite steps and the performance of the RY product is
given by [49]. As the focus of this study is on the sensitivity of
individual SPROG components with regard to the heterogeneity
of precipitation pattern sizes, we have chosen 10 precipitation
events for the years 2012–2017 as described in Table I. For the
sensitivity analysis, we compute within a uniform time period of
06:00–20:30 UTC half-hourly forecasts with a lead time range
of 3 h for each configuration of SPROG.

To outline the development of precipitation within the con-
sidered domain and time period, Fig. 1 illustrates the diurnal
cycle of normalized precipitation coverage. The latter represents
the precipitation coverage normalized by its daily maximum.
The resulting curves are additionally smoothed by a Gaussian
filter to reduce short-term peaks and to emphasize the shape
of the diurnal cycle. The investigated events were grouped by
the time at which the diurnal cycle reached its maximum peak:
1) events E1-E4 and E9 show a peak in the evening around
19:00 UTC, 2) E5–E8 peak in the afternoon around 15:00 UTC,
and 3) E10, which is a stratiform event, does not display a
distinct peak. Four events are illustrated in Fig. 2. A prolonged
linearly organized convective system that crossed Germany from
southwest to northeast, E1 on June 21, 2012, is depicted in
Fig. 2(a). Fig. 2(b) shows event E4 on May 29, 2016 by a
large-scale convective-enhanced precipitation induced by a lee
cyclone, i.e., orographic related, over South Germany with a
further developing thunderstorm line eastward. Additionally, a
few single convective cells are situated over the northern part of
Germany. The event E7 on June 18, 2016 in Fig. 2(c) exhibits
typical postfrontal scattered showers. The event E10 on 25 July
2017 is shown in Fig. 2(d) and it reveals a large-scale stratiform
precipitation over Germany induced by a cold air pool. The
interpretation of the advection vectors, also shown in Fig. 2,
can be found at.2

B. Configuration Parameters

A summary of the main configuration parameters needed to
execute SPROG(STEPS), SPROG(STEPS)-LOC, and advec-
tion+ARI are shown in Table II.

The optical-flow DARTS approach was applied to nine con-
secutive frames, Ns = 9, of precipitation fields RT using the
following parameters that truncate the Fourier coefficients:
Nx = 50, Ny = 50, Nt = 4, and those related to the spatial
detailMx = 2 andMy = 2. We tested a combination of different
settings, for instance, Mx and My equal to eight while varying
Nx and Ny within 10 and 100 and Nt within two and eight,
however without a significant trend on the evaluation skills of
predicted fields. The setting indicated above is equal to the
default configuration given by the open-source pySTEPS motion
module.

Motion vectors estimated by the Dual TV-L1 technique
are obtained in a time period of 30 min between all avail-
able consecutive frames of precipitation fields RT . The at-
tachment parameter λ determining the smoothness of the

2[Online]. Available: https://weather.gov/hfo/windbarbinfo

[Online]. ignorespaces Available: ignorespaces https://weather.gov/hfo/windbarbinfo
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TABLE I
LIST OF 10 PRECIPITATION EVENTS IN GERMANY OBSERVED BY THE DWD RADAR NETWORK DURING 2012–2017

Each event consists of observations between 06:00 and 24:00 UTC.

Fig. 1. Normalized diurnal cycle of the 10 events listed in Table I. (a) The maximum diurnal cycles are seen in the evening hours while in (b) they are seen during
the afternoon hours. (c) A distinctive maximum is not observed. The dashed grey line shows the average of the diurnal cycle among the events if there are more
than one.

output is set for our purposes to 0.02. The other param-
eters controlling this technique are set to values suggested
by [40].

The advection method is configured to generate nowcasting
fields with a temporal resolution of Δt = 5 min for a lead-time
period tl up to 3 h while maintaining the spatial gridΔx to 1 km.
To represent a given precipitation field R in logarithmic scale
RT, Rth in (1) is set to 0.1 mm h−1. To reduce the computational
time of the Fourier transformations, the resulting RT field is
extended to the next power of 2, i.e., L = 1024 grid boxes,
and it is filled by values of Rmin = −15 dB, equivalent to
0.03 mm h−1. The resulting difference, less than 0.1 mm h−1,
between the set values for Rth and Rmin seems reasonable
to avoid an unnecessary increase of power at high spatial
frequencies, which can impact the AR process [34]. For the

next steps related to the AR process and extrapolation, however,
RT will be processed at its original size. To study the sensitivity
to model parameters of SPROG, the AR(p) order will be set
by AR(1) and AR(2) while the number of scale levels K are
set at 3, 6, and 12. Such configurations to execute SPROG
will be indicated as SPROG(p,K) in Sections IV and V. The
additional parameters related to SPROG-LOC, considering our
spatial domain size and grid resolution, are given by kmin = 2,
h = 3, and lmin = 100 km for the determination of the kernel
size while for the adjustment of the AR parameters, two values
of I are tested: I = 10% and 20%. For implementation pur-
poses of the spatial decomposition, the normalized coefficients
of the kth filter, centered at the corresponding Fourier wave-
number |kw(k)| = |kw(2)|qk−2; k ≥ 2, were obtained from the
pySTEPS decomposition module by giving |kw(2)|, i.e., the
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Fig. 2. Four events showing the rainfall rate RY product given by the DWD’s operational radar network. (a)–(c) Displays three convective events E1, E4, and
E7 at 20:00, 19:00, and 14:00 UTC while (d) shows the stratiform event E10 at 14:00 UTC. In addition, the motion vectors obtained by the Dual TV-L1 technique
are indicated by the conventional wind speed and direction symbol. The blue area represents the network coverage.
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TABLE II
DESCRIPTION OF PRECIPITATION NOWCASTING MODELS AND THEIR PARAMETER SETUP FOR THE DWD SPATIAL

DOMAIN OF 900 BY 900 Km AT 1 Km RESOLUTION

central frequency of the second filter. In our setup q is given as

q =

(
L

2|kw(2)|
) 1

K−2

(11)

so that if K is equal to 3, 6, and 12 while |kw(2)| equals 64,
8, and 4, then q is equal to 8.0, 2.83, and 1.62, respectively.
Additionally, a user can also adjust the peak of the filter centered
at |kw(2)| by setting a scaling parameter β ∈ [0, 1] to maintain
a uniform peak of the K Gaussian-shaped filters. The values of
β are set at 0.5, 0.25, and 0.6 for values of K equal to 3, 6, and
12, respectively. The same values for |kw(2)|, q, and β are also
used in SPROG.

We have realized that the μ-adjustment applied to RT(t+ tl)
becomes necessary when the decomposition step includes areas
with no precipitation, i.e., the areas filled by Rmin. Without
this adjustment, the SPROG method will lead to nowcasting
skills lower than those of the advection model since SPROG
typically underestimates precipitation intensity as it is biased
towards Rmin. This effect is more noticeable at a low wet-area
ratio. Therefore, to run SPROG one could either use a mask that
excludes these areas and avoid the μ-adjustment or keep these
areas and use the μ-adjustment. This is because a mask will ex-
clude these areas during the estimation of the scaling parameters
and the autocorrelation coefficients. However, for SPROG-LOC,
these areas will not be excluded since the estimation of the
standard deviation as given by (7) and the μ-adjustment will be

applied. Last, the CDF-matching will be tested in both SPROG
and SPROG-LOC.

For experiments with the ARI model, we use a second-order
AR and a first-order differentiation at each of the six spatial
scales. Since the evolution of intensity changes is directly mod-
eled by the ARI(p, d) process, we go without a postprocessing
step.

For the generation of the stochastic term needed to conduct
STEPS and STEPS-LOC nowcasting, which will be discussed
in Section V, we set the SSFT method to nine subdomains with
an edge length of 1

2L and an overlap between each subdomain
of 50 %. Finally, we set the number of ensemble members to 20,
while the postprocessing is set by the CDF-matching for both
STEPS and STEPS-LOC.

C. Nowcasting Skill Scores

In this study, we use a set of neighborhood verification metrics
to evaluate the extrapolation forecasts. Neighborhood metrics
are chosen for three reasons. First, to mitigate the double penalty
problem occurring when high-resolution data are compared with
traditional scores. Second, to evaluate at which spatial scales
and up to which lead-time the forecasts provide skill and third,
to consider the spatial variability of precipitation among the
selected spatial scales. The fraction of grid boxes exceeding
a given threshold within a surrounding size of a pixel can be
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expressed as a probability [50], [51]. It is defined as

Pm(i, j) =
1

m2

m∑
u,v=1

B

(
i+ u− 1− m− s

2
,

j + v − 1− m− s

2

)
, (12)

where B describes the binary field resulting from exceeding a
predefined precipitation thresholdPth, whereasm represents the
side extent in km, hereafter the window size, of the considered
squared neighborhood while i and j indicate the location of a
pixel since the horizontal resolution isΔx = 1 km. In addition, if
m is even then s equals 0, otherwise s equals 1. Based on these
neighborhood probabilities, we construct classical categorical
metrics, namely, the probability of detection (POD), the false
alarm ratio and the critical success index (CSI). An overview
of these metrics can be found in [52] or [42]. The required
contingency table is constructed using the weakest constraint,
i.e., if Pm is larger than zero, then it is counted as an occurred
event. The table contains the following parameters: hits (H),
false alarms (FA), misses (MI), and correct negatives (CN ).
The POD is given by H(H +MI)−1 and quantifies the rate of
observed events that were successfully predicted while the FAR,
equal to FA(H + FA)−1, indicates the fraction of incorrect
prediction. The CSI is estimated as H(H + FA+MI)−1 and
represents the detection skill of the prediction model. When
increasing the window size, the values of H will increase corre-
spondingly while those ofMI andFAwill decrease. In addition
to these categorical metrics, the well-known root mean squared
error (RMSE) can also be used when evaluating nowcasting skill.

When using the values of Pm itself, the fractions skill score
(FSS; [53]) can be constructed. The FSS evaluates the frequency
that the predictions are similar to the observations at a given
precipitation threshold and window size. This is done by com-
paring the fraction of predicted pixels exceeding Pth with that
from observations within a neighborhood as

MSEm =
1

LxLy

Lx∑
i=1

Ly∑
j=1

[
PO

m(i, j)−PF
m(i, j)

]2

FSSm = 1− MSEm

MSEref,m
. (13)

Lx and Ly describe the domain dimensions in x- and y-
direction, respectively, whereas PO

m and PF
m represent the fields

of observed and forecasted neighborhood probabilities for the
threshold Pth and the window size m. The mean squared error
used as a reference (MSEref ) indicates the largest possible
MSE resulting from the forecasted and observed neighborhood
probabilities.

IV. SPROG SENSITIVITY ANALYSIS

The performance of the SPROG(p,K) model and its sensitiv-
ity to the pth order of the AR model and the spatial decompo-
sition number K are evaluated pixel-by-pixel (i.e., without the
neighborhood probability method) and at Pth equal to 0.1 and
5.0 mm h−1, as shown in Figs. 3 and 4, using the precipitation

events listed in Table I. This analysis will allow us to better
initialize and evaluate the SPROG and SPROG-LOC models as
described later in Section V. For the purpose of this analysis,
the predicted fields were not postprocessed and the advection
vectors were estimated using the DARTS optical-flow technique.

From Fig. 3, at Pth = 0.1 mm h−1, it is seen that the
configured parameters for the SPROG model led to a better
performance than that of the advection model for the 3 h
lead-time, i.e., higher values of CSI and POD and lower values
of FAR and RMSE. The results from SPROG(2,K) show in
general a slight improvement in comparison to SPROG(1,K).
The number of decomposition levels does not seem to play a
role at SPROG(1,K), whereas SPROG(2,6) leads to slightly
higher skills than SPROG(2,3). However, a further increasing
of K from 6 to 12 does not necessarily improve the prediction
skill. The different setups regarding AR order and number of
decomposition levels show that an AR process with extended
memory is able to better represent the temporal evolution of the
observed precipitation fields. However, this improved represen-
tation is limited to large-scale features as shown by the results
of using different number of cascade levels. For the prediction
of small-scale features, a first-order AR model is sufficient
since their lifetime is very short. One may also see that a low
number of cascade levels is not enough to accurately represent
the scale-dependence of predictability. In terms of RMSE, the
SPROG model exhibits a decreasing behavior compared to the
advection model. This is because the AR process tends to smooth
unpredictable components of precipitation. This smoothing may
also explain the reduced penalty in terms of FAR. However, only
when the smoothing is associated with an increase of observed
precipitation within forecast lead-time (cf. Fig. 1). If there is a
decrease of observed precipitation, it is likely that the smoothing
spreads precipitation also in nonprecipitation areas, increasing
FAR values associated with SPROG. Fig. 4 shows skill scores
lower than in Fig. 3 because the evaluated areas are associated
with values of precipitation larger than 5.0 mm h−1, i.e., with less
predictable regions of precipitation since phenomena with such
intensities are typically very small and thus have a short lifetime.
Note that SPROG(p,3) performs less well than the advection
model as depicted by the CSI and POD curves. In terms of
the CSI, the combinations of SPROG at K = 6 and 12 give
similar skill, outperforming the advection model. In terms of
POD, SPROG(2,6) leads to a lower performance than that of
SPROG(2,12), however, both SPROG(1,6) and SPROG(1,12)
are similar and also similar to that of SPROG(2,12).

The subplot in Fig. 4(b) indicates the accumulated number per
lead-time N in which a precipitation nowcasting field is verified
by an observed precipitation field. The maximum number of
N is 298 and it is the total number of observed precipitation
fields from the 10 events. One can see a decreasing tendency
of N with lead-time. This is caused by the filtering nature of
the SPROG model that leads to smoothed nowcasting fields
and whose values are not high enough compared to those from
observations. above Pth. More precisely, only these instances
where at least one nowcasting pixel exceeds the precipitation
threshold were considered. The lowest curve of N is obtained
by SPROG atp = 2 andK = 3while the three highest curves are



REINOSO-RONDINEL et al.: NATIONWIDE RADAR-BASED PRECIPITATION NOWCASTING 1679

Fig. 3. Skill scores as a function of 3 h lead-time for different configuration of SPROG (AR-order and scale levels) or SPROG(p,K) at Pth = 0.1 mm h−1,
resulting from the 10 events listed in Table I. (a) CSI scores resulting from SPROG(1,3) in grey line, SPROG(1,6) in grey dots, and SPROG(1,12) in grey crosses.
Those from SPROG at p = 2 are shown in black color. The scores from advection nowcasting (dotted line) are also shown. (b)–(d) As in (a) but for POD, RMSE,
and FAR, respectively. In this experiment, probability matching was not applied but the SPROG fields were masked following the adapted approach of [30] as
indicated in Section II.

obtained by SPROG at p = 1 and K = 6, SPROG at p = 1 and
K = 12, and by the advection model. These curves allow us to
see a connection among the decomposition levels, the AR order,
and the precipitation values of the smoothed nowcasting fields.
The N values from the advection model slightly deviate from
298 because there were episodes in which observation values
were below the threshold of 5.0 mm h−1. This was not the
case when Pth was set to 0.1 mm h−1. As the N values from
SPROG at p = 1 are larger than those from SPROG at p = 2,
for both K = 6 and 12, and the skill scores from SPROG at
p = 1 and K = 6 are similar to those at at p = 1 and K = 12,
for both Pth values, it is suggested to use an AR(1) process
with six decomposition levels to configure SPROG. Therefore,
the remainder of the analysis in this work will be conducted at
SPROG(1,6).

The radially averaged power spectral density RAPSD al-
lows to compute the 1-D spectrum of precipitation fields to
study the impact of spatial filtering methods, such as SPROG,
on the loss of small-scale variability. As an example, Fig. 5 shows
that the power distributions resulting from SPROG at different
lead-times are smaller than those from the advection model
and observations because of the spatial filtering characteristic
of SPROG driven by the AR coefficients and the iterated AR
process. For instance, the RAPSD from SPROG is reduced

by at least 10 dB at 45 min lead-time for wavelengths up to
8 km and at 120 min lead-time for wavelengths up to 32 km.
This is consistent with the decreasing tendency of N with
lead-time shown in Fig. 4. The impact of CDF-matching on
the RAPSD is clearly seen by a power increase of 10 dB for
wavelengths down to 2 km at a lead-time of at least 45 min.
This is, however, a successful adjustment assuming that the
CDF of the observed precipitation remains constant during
extrapolation.

To further illustrate the impact of CDF-matching, Fig. 6 shows
the CSI, the normalized RMSE, and the FSS atPth = 0.1 and 5.0
mm h−1 resulting from configuring SPROG with and without
CDF-matching. The normalization of RMSE (nRMSE) is
motivated to mitigate the penalty caused by the computation
of more available samples from the predicted fields with
CDF-matching. RMSE is normalized by the median of the
observed field, masked by the condition that both predicted and
observed values are larger than Pth. At Pth = 0.1 mm h−1, the
CSI indicates a similar performance from both configurations
of SPROG but associated with increased nRMSE values, which
are close to those resulting from the advection model. The
reason for that is because the predicted values from SPROG
with CDF-matching are redistributed to match the CDF from
observations, experiencing a penalty from the redistributed
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Fig. 4. (a) CSI, (b) POD, (c) RMSE, and (d) FAR as in Fig. 3, but evaluated at Pth = 5.0 mm h−1. The number of available samples for evaluation as a function
of lead-time is also shown in panel (b). Note that for lead-times larger than approximately 60 min, the scores do not represent a useful forecast skill.

Fig. 5. Radial averaged power spectral density (RAPSD) of observed and predicted fields as a function of spatial wavelength, event E4 at 1600 UTC. (a) RAPSDs
from SPROG with CDF-matching (continuous blue) and without matching (dashed blue) at 15 and 45 min lead-time. The RAPSD from advection is given at 45 min
lead-time as gray dotted-line. (b) Similar as (a) but at 60 and 120 min lead-time.

areas. At 5.0 mm h−1, a similar penalty is also observed,
however, the CSI shows enhanced values compared to those
from SPROG without CDF-matching. Thus, the CDF-matching
configuration could be a reasonable attempt to partially address
the smoothing behavior of SPROG tolerating nRMSE values
similar to those from the advection model. Results related to
the μ-adjustment, not shown here, led to similar skills to those
from SPROG without CDF-matching since the computation

during the scale decomposition and correlation coefficients
steps considered only values of RT above Rmin.

The FSS curves, also shown in Fig. 6, at both exceeding
thresholds and at 1 km window size are consistent with the results
depicted by the CSI curves. However, at Pth = 0.1 mm h−1,
the performance of SPROG and SPROG with CDF-matching
equals that of the advection model for window sizes larger than
1 km. In contrast, at Pth = 5.0 mm h−1, the performance of both
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Fig. 6. (a) CSI scores resulting from SPROG(1,6) evaluated at Pth = 0.1 mm h−1 are shown in grey while these at Pth = 5.0 mm h−1 in black color. The scores
related to SPROG with CDF-matching are indicated by the solid lines whereas these without matching are marked by dots. (b) As in (a) but for the normalized
RMSE. FSS curves evaluated at (c) 0.1 and (d) 5.0 mm h−1 for window sizes of 1 (dark blue), 8 (medium blue), and 128 (light blue) km.

SPROG configurations at larger window sizes seems to be lower
than that from the advection model. This means that at higher
thresholds and larger window sizes, SPROG is penalized due to
its spatial filtering essence. Given this and the fact the SPROG
with CDF-matching only leads to a slightly improvement at
Pth > 0.1 mm h−1 but with increased values of nRMSE, it
is suggested to apply the μ-adjustment, when no initial mask
is used, and avoid the CDF-matching as the goal of SPROG
is to keep low nRMSE values. For visualization purposes,
the resulting SPROG precipitation fields with μ-adjustment
at 60 and 120 min are shown in Fig. 7 panels (b) and (e),
respectively.

V. SPROG-LOC EVALUATION RESULTS

In this section, we validate the skill of the SPROG-LOC
approach and evaluate its possible configurations. The skill
scores will be calculated at window sizes equal to or larger than
1 km, i.e.,m ≥ 1, in which the neighborhood probability method
allows a spatial oriented evaluation, and at multiple precipitation
thresholds Pth. First, we verify the SPROG-LOC approach in
correspondence with the SPROG and advection+ARI methods
followed by a brief analysis of the nowcasting skill of the
STEPS-LOC model in terms of FSS values. Second, we provide
a statistical evaluation and discussion of the performance of
the SPROG-LOC and advection+ARI methods.

A. Verification of SPROG-LOC

To compare the nowcasting fields from SPROG and SPROG-
LOC, Fig. 7 displays an example of nowcasting fields from both
approaches at 60 and 120 min lead-times from precipitation
observed of event E4 at 16:00 UTC. As expected, the now-
casting fields from SPROG are characterized by a smoothing
appearance, mainly over small convective precipitation regions.
However, it can be seen that SPROG-LOC is able to maintain
the intensity of small precipitation regions, i.e., reducing the
excessive smoothing, while conducting the filtering AR pro-
cess. For instance, the regions highlighted by the white circles
seem to qualitatively match those regions in the corresponding
observations fields better than those from SPROG.

Similar to Fig. 5, the RAPSDs from SPROG and SPROG-
LOC are shown in Fig. 8. One can see that the nowcasting fields
resulting from SPROG-LOC maintain a relative higher power
of precipitation than those from SPROG for wavelengths up to
32 km and with a power difference of at least 10 dB. Note that the
CDF-matching applied to SPROG-LOC led only to an increase
of 5 dB at 2 km wavelength. As expected, the RAPSD of the
observed precipitation field remains higher than the correspond-
ing curves of SPROG-LOC (up to 8 km wavelength) and SPROG
(up to 32 km wavelength).

Fig. 9 depicts the results given by CSI, POD, and FAR to com-
pare different nowcasting models and configurations evaluated
at 5.0 mm h−1 and at two window sizes, m = 1 and 21 km. At



1682 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 7. RY product from event E4 observed at (a) 17:00 and (d) 18:00 UTC. SPROG(1,6) with µ-adjustment at (b) 60 and (e) 120 min lead-time from observations
at 16:00 UTC. (c) and (f) As (b) and (e) but using SPROG-LOC(1,6) at I = 20%, with µ-adjustment, and with a minimum kernel size, for the AR estimation
parameters, of 100 km. The white circles localize areas of high intensities, matching these from observations.

1 km, the CSI curves drop quickly within the first 60 min in which
the three lowest curves are given by the advection model and
SPROG-LOC at I = 10 and 20% without any postprocessing
step, except SPROG. This becomes clear when observing the
POD results. Additionally, the highest curve is given by the
SPROG-LOC at I = 20% with μ-adjustment. In terms of the
FAR, SPROG-LOC with I = 20% and either post-processing
options leads to similar results as that from the advection model
whose FAR values are slightly larger than those of SPROG for
lead-times larger than 30 min.

At 21 km window size, a much clearer distinction of the
forecast skills among the SPROG, SPROG-LOC, advection,
and advection+ARI models can be observed. The SPROG and
SPROG-LOC at I = 10% perform similar, meaning that both are
more conservative models, one because of its excessive smooth-
ing and the other due to its mean bias during the spatial decom-
position. A slight improvement is seen when I is set to 20% due
to the slower decorrelation of the adjusted AR coefficients. Note
that the SPROG-LOC at I = 20% and with either postprocessing

step, a balance is obtained as this configuration of SPROG-LOC
conducts a spatial filtering process while considering the spatial
variability of precipitation. Although the skills, at 1 km, given by
the advection+ARI and SPROG-LOC models are comparable,
at 21 km window size the advection+ARI shows a better skill
than that of SPROG-LOC. This is due to the utilization of a
source/sink term by the former method that allows capturing
the growth and decay process of precipitation while avoiding
smoothing nowcasting fields.

The nowcasting fields were extrapolated using the advection
vectors derived from the Dual TV-L1 technique. From a quali-
tative assessment, it is observed that the CSI from the advection
model, Fig. 9(a), is nearly equal to the one shown in Fig. 6(a)
at 5.0 mm h−1, where the advection vectors were estimated
using the DARTS approach. This is consistent with the results
given by [54], who provided a detailed analysis on the impact
of optical-flow methods to nowcasting.

Fig. 10 shows a similar verification but in terms of the FSS at
1) 1 km and 0.1 mm h−1 and 2) 21 km and 5.0 mm h−1. Fig. 10(a)
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Fig. 8. RAPSD as in Fig. 5 but for SPROG-LOC. The light green (light red) curve depicts SPROG-LOC with (without) CDF-matching at a lead-time of 60 min.
For a lead-time of 120 min, RAPSD of both SPROG-LOC settings are illustrated by a dark green and dark red curve, respectively. Further, the RAPSD of the
corresponding observation is shown in black and the one of SPROG with µ-adjustment is represented in light blue and dark blue at a lead-time of 60 min and
120 min, respectively.

highlights that the best performance is given by SPROG due to
its better skill on predicting precipitation areas that consist of
low intensities. As in the case of the CSI, the FSS curve from
the advection model seems to match well with the one from
the advection model but using the DARTS approach as seen in
Fig. 6(c) at 1 km window size. Fig. 10(b) indicates a similar
balance obtained by SPROG-LOC with either postprocessing
option but with a narrow distinction from the SPROG and
advection models. Note that, at 1 km and 0.1 mm h−1, all
nowcasting models give useful nowcasting skill for lead-times
up to 3 h approximately. However, at 21 km and 5.0 mm h−1,
useful lead-times are reduced to 120 min (advection+ARI),
110 min (advection), and 100 min (SPROG-LOC). In general,
the scores resulting from the SPROG-LOC and possibly ad-
vection+ARI models can further increase when most of the
observations are related with large wet-area ratios. However,
the presented evaluation also included precipitation periods in
which the wet areas were reduced to less than 25% of the
spatial domain with the goal of evaluating under operational
conditions.

Fig. 10(c) and (d) shows the FSS results when the AR process,
both globally and locally, is perturbed by the stochastic term,
i.e., the STEPS and STEPS-LOC model. The CDF-matching
was selected for both models because the spatial resolution of
the ensemble nowcasting fields is similar to that of observations.
It can be seen that at both evaluating set-ups related to the win-
dow size and precipitation threshold, the average FSS resulting
from STEPS-LOC, represented by a randomly selected member,
show values higher than those obtained by STEPS for the 3 h
lead-time. As the STEPS-LOC leads to FSS values near to those
of advection, it can be said that the ensemble members generated

by STEPS-LOC are able to reduce the penalty from the spatial
filtering aspect by imprinting unpredictable precipitation struc-
tures at high spatial resolution during extrapolation to model
the resulting forecast uncertainty. In contrast, the perturbation
term in STEPS is driven globally by a single AR coefficient
and when it is evaluated at Pth values higher than 0.1 mm h−1,
the average skill reduces even lower than that of the advection
model. Namely, because the stochastic term in STEPS is corre-
lated to the spatial distribution of the observed precipitation with
values equal to or larger than 0.1 mm h−1. Thus, the benefit of
the localization approach is also imprinted on the distributed
spatially localized field of AR coefficients Φk,0 that model
the evolution of the stochastic term. As these coefficient fields
are straightforward derived from Φk,n, it is expected that the
computational burden required to generate localized ensemble
members will be comparable to that of STEPS, which is suitable
for operational purposes. A detailed analysis on the performance
of ensemble members resulting from STEPS and STEPS-LOC
and their forecast skill based on probabilistic scores (e.g., CRPS,
reliability diagram, ROC curve) is encouraged but it goes beyond
the scope of this work.

B. Statistical Evaluation of SPROG-LOC and Advection+ARI

To extend the analysis of SPROG-LOC at several Pth and
window size m values, the heatmaps shown in Fig. 11 display
in a) the median CSI of SPROG as basis for the average skill
difference versus SPROG-LOC and advection+ARI, respec-
tively, at 60 min lead-time. The areas in red indicate a better
performance of SPROG, whereas the areas in green represent
improvements from SPROG-LOC at different configurations
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Fig. 9. Skill scores for different configurations of SPROG-LOC(1,6) as well as SPROG(1,6), advection with ARI(2,1,6) and advection only. Left column:
(a) CSI, (c) POD, and (e) FAR curves evaluated at Pth = 5.0 mm h−1 and at 1 km window size. Right column: same es left column but evaluated at 21 km window
size using a neighborhood approach. Scores resulting from SPROG(1,6) and advection are indicated by the solid and dash-dotted lines, respectively. Results of the
ARI model are depicted with filled squares. One should note that values of CSI and POD scores smaller than approx. 0.2 and 0.3 do not represent an useful forecast
skill.
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Fig. 10. Top: As in Fig. 9 but for FSS at (a) Pth = 0.1 mm h−1 and 1 km window size and (b) Pth = 5.0 mm h−1 and 21 km window size. Bottom: Mean
FSS curves resulting from one randomly chosen member of each CDF-matched STEPS ensemble forecast. The blue line depicts STEPS whereas the green dots
represent STEPS-LOC with I = 20% in (c) for Pth = 0.1 mm h−1 and 1 km window size and in (d) for Pth = 5.0 mm h−1 and 21 km window size. As in the top
row, the dash-dotted line indicates the advection.

and advection+ARI, respectively. For example, for an increased
value of I from to 10% to 20%, it is seen that SPROG-LOC
outperforms SPROG at Pth and window size m values of at least
1.5 mm h−1 and 11 km. This is because an increase on the ad-
justment of the AR coefficients mitigates the tendency of faster
decorrelation rate, mainly at lower spatial scales. The green areas
are further expanded and enhanced when a postprocessing step is
applied to SPROG-LOC. For instance, the μ-adjustment allows
a better performance of SPROG-LOC when it is evaluated at
values of Pth and window size m as low as 0.1 mm h−1 and
11 km or at a smaller window size of 5 km but at larger Pth of
1.5 mm h−1. A similar result is obtained when SPROG-LOC is
followed by CDF-matching. Since an initial mask cannot be used
for SPROG-LOC, either the μ-adjustment or CDF-matching is

needed. The advection+ARI extrapolations model solely pre-
cipitation tendencies and not the whole field itself. Therefore,
the SPROG typical smoothing is prevented. This behavior could
be seen in Fig. 11(b). Advection+ARI extrapolations exhibit at
grid-scale and up to a threshold of 5.0 mm h−1 a slightly lower
score compared to SPROG. However, at larger window sizes
a strong improvement is apparent ranging over all considered
thresholds.

A similar pattern is observed in Fig. 12 but in terms of the
FSS. For example, the SPROG-LOC outperforms SPROG when
the nowcasting fields are evaluated using at least a Pth value of
0.5 mm h−1 and a window size of 21 km or at 5.0 mm h−1 and
smaller window size of 5 km. This is observed when either the
μ-adjustment or CDF-matching are applied to SPROG-LOC’s
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Fig. 11. Heatmaps representing (a) the median CSI of SPROG with µ-adjustment as basis for (b)–(f) the median containing differences in CSI of all forecasts
(Q2(ΔCSI)) versus CSI(SPROG-LOC) and CSI (advection + ARI), respectively, at 60 min lead-time as a function of Pth threshold (x−axis) and window
size (y−axis). Greenish colors indicate higher scores compared to SPROG. (b) Advection + ARI(2,1,6), (c) SPROG-LOC(1,6) with I = 10%, (d) I = 20%,
(e) and (f) as in (d) but with µ-adjustment and CDF-matching, respectively. The three values in each tile indicate the Q1, Q2, and Q3 quartile of the aforementioned
differences in CSI in ascending order. (a) SPROG(1,6), µ-adjustment. (b) Advection + ARI(2,1,6). (c) SPROG-LOC(1,6), I = 10%. (d) SPROG-LOC(1,6),
I = 20%. (e) SPROG-LOC(1,6), I = 20%, µ-adjustment. (f) SPROG-LOC(1,6), I = 20%, CDF-matching.
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Fig. 12. As in Fig. 11 but for Q2(ΔFSS). (a) SPROG(1,6), µ-adjustment. (b) Advection + ARI(2,1,6). (c) SPROG-LOC(1,6), I = 10%. (d) SPROG-LOC(1,6),
I = 20%. (e) SPROG-LOC(1,6), I = 20%, µ-adjustment. (f) SPROG-LOC(1,6), I = 20%, CDF-matching.
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Fig. 13. Top: Q2(ΔCSI) heatmaps at (a) 60 min and (b) 120 min lead-time. Bottom: Q2(ΔFSS) heatmaps at (c) 60 and (d) 120 min lead-time. SPROG-LOC(1,6)
with I = 20% and µ-adjustment. (a) Q2(ΔCSI) at +60 min. (b) Q2(ΔCSI) at +120 min. (c) Q2(ΔFSS) at +60 min. (d) Q2(ΔFSS) at +120 min.

nowcasting fields. To summarize the statistical evaluation and to
include these at 120 min lead-time, Fig. 13 illustrates analogous
heatmaps at a suggested configuration of SPROG-LOC with I =
20% and μ-adjustment. One can see that at 120 min lead-time
the skill from SPROG-LOC outperforms that of SPROG for
values of Pth and window size as low as 5.0 mm h−1 and 1 km,
respectively. These results highlight the scenario in which the
localization extension of the SPROG model is most beneficial.
Moreover, such extension was seen without any significant
burden on the computational processes of the distributed AR
coefficients because of the convolutional scheme explained in
Section II.

VI. CONCLUSION

Radar-based precipitation nowcasting methods have offered
the capability of prediction at high temporal and spatial reso-
lutions with increasing lead-time, providing support to, among
others, decision makers in the hydrological and meteorological
communities. One of these predicting methods is the SPROG

model which uses spatio-temporal properties of rain, and thereby
improves the skill of the nowcast compared to that from classic
advection techniques. However, the SPROG model tends to
smooth the nowcasting fields especially in small but convective
precipitation areas and at longer lead-times. In this work, we ex-
plored and presented 1) a model referred to as the SPROG-LOC
to improve the skill of the SPROG model by estimating localized
2-D parameters of the AR process, 2) a sensitivity analysis of
the SPROG model to its parameters, such as the order of the
AR process and the spatial decomposition levels, and 3) the
degree of dependency to postprocessing. For these purposes,
the performance of the SPROG-LOC model was demonstrated
and evaluated at several precipitation thresholds using 10 pre-
cipitation events collected by the DWD radar network.

The analysis on the AR order and the spatial decomposition
levels of SPROG suggested a first order AR process, AR(1), and
six cascade levels. This configuration allows SPROG to perform
equal to or better than the advection model at precipitation
thresholds up to 5.0 mm h−1 while maintaining a reasonable
smoothing degree and computational burden compared with
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other possible combinations. More specifically, it was observed
that the nowcasting fields related to an AR(2) led to smoother
fields than those from an AR(1) process because values of at least
5.0 mm h−1 were more difficult to maintain. We also showed that
one can reduce the loss of these values by increasing the number
of cascade levels although at a cost of increasing computational
time, or by including CDF-matching, however, with an inherent
penalty in terms of normalized RMSE. For the CDF-matching,
the extrapolated nowcasting fields are redistributed to match the
CDF of the latest observed precipitation field. This redistribu-
tion could be observed by the radially averaged power spectral
density in which precipitation components at short wavelengths
were corrected much stronger than those at longer wavelengths.
However, the SPROG fields with CDF-matching revealed that
such enhancement was not necessarily occurring in isolated
areas.

The SPROG-LOC model is based on the localization of
the AR parameters, through a running kernel, to consider the
nonhomogeneity of precipitation while controlling its temporal
evolution (i.e., the spatial variability of predictability). That is
slowing down the decorrelation in areas, where spatial gradients
of observed precipitation are significant. Overall, the statistical
results exhibited an improved performance of SPROG-LOC over
SPROG when both are evaluated at precipitation thresholds and
window sizes larger than 0.1 mm h−1 and 1 km and for lead-times
up to 2 h. Besides the recommended AR(1) process and six
decomposition levels, this study found a suitable configuration
of SPROG-LOC that mainly consists of a minimum kernel size
of 100 km, an adjusting factor of 20%, and the μ-adjustment.
Furthermore, the SPROG-LOC model also included a stochastic
term (STEPS-LOC) that simulates the uncertainty of precipita-
tion during extrapolation by multiple realizations. The results
indicated that the STEPS-LOC model can increase the lead-time
by 20 min, with respect to STEPS, to keep an FSS value equal
to 0.5 at a precipitation threshold of 5.0 mm h−1 and window
size of 21 km. Thus, the ensemble members of STEPS-LOC
are capable to lessen the penalty from the AR spatial filtering
process by adding localized stochastic perturbations at high
spatial resolution to consider the uncertainty induced by growth
and decay processes of precipitation during the extrapolation.

Although SPROG-LOC showed improvements in better mod-
eling the evolution of precipitation while addressing, to some
extent, the spatial heterogeneity of precipitation, it is still a
filtering-based approach (i.e., a conservative approach) and it
is driven by user-defined values. Further improvements can
be done when estimating the AR parameters, for example, by
formulating the scale-dependent optimization factor as a spatial-
distributed factor through an adaptive weighting obtained from
the observed precipitation field. Another approach to improve
the nowcasting skill is by including the well known moving-
average model to consider previous errors resulting from the
observations and the nowcasting fields. External processes such
as the diurnal cycle of precipitation can also enhance the balance
between the filtering attribute of SPROG-LOC and the possible
growing tendency of precipitation areas. Regarding STEPS-
LOC, further research and depth evaluation on the generation of
the perturbation term is essential, for instance, by considering a
localized-variance model for the stochastic field. Nevertheless,

we can say that the added value of the localization filtering
approach is key in scenarios, where observed events encom-
pass large precipitation areas that are nonuniformly distributed
having either an embedded or isolated convective feature.

A comparison of SPROG-LOC with advection+ARI showed
that the latter technique is able to outperform the advection
nowcasting and further on SPROG-LOC. Despite this, the
SPROG-LOC model offers a rather simple 2-D AR model with
the capability of maintaining precipitation areas at small scale
for lead-times longer than those resulting from the SPROG
model. Moreover, it is expected that the generation of nowcast-
ing ensemble members, obtained by the STEPS-LOC model
at national scales, will be operational feasible because the 2-D
AR parameter that scales the stochastic noise field could be ob-
tained directly from the optimized 2-D correlation coefficients,
as shown in Section II-C. At DWD, this will become highly
advantageous for an ongoing seamless combination approach
among ensemble members from the STEPS-LOC model and
those resulting from the short-range NWP model known as
the Icosahedral Nonhydrostatic Rapid Updated Cycle (ICON-
D2-RUC) model. Yet, it is also of interest to the forecasting
community to extend the advection+ARI model to include the
stochastic perturbation term during extrapolation and investigate
its operational performance.

This study evaluated the capabilities of a combined
localization-filtering approach, which can serve for the genera-
tion of real-time nowcasting fields in Germany or in countries
having a similar or larger radar network coverage. Moreover, it is
foreseen that this work can be extended to include the generation
of radar-based nowcasting ensemble members and, at a later
stage, can be combined with NWP models, thereby enhancing
the skill of a nationwide forecasting system.
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