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Abstract—The state-of-the-art crop phenological classifiers use
vegetation index (VI) time-series data and deep learning (DL) tech-
niques. However, the scarcity of training samples limits the perfor-
mance of these approaches. Unlike the conventional augmentation
techniques, the data augmentation of VI curves should preserve
the crop-specific phenological events. The DL-based augmentation
approaches do not give good results when the training samples
are limited. Also, the conventional approaches such as translation,
rotation, scaling, and wrapping do not preserve the characteristic
features of the index curves, thereby making them inappropriate
for the VI-curve-based augmentations. This article proposes a non-
DL-based data augmentation strategy that requires only a minimal
number of actual training samples. In the proposed approach, the
periodic phenological events and the underlying trend for each
crop class are modeled to improve the augmentation. The trends
of different crop classes are estimated by jointly maximizing the
autocorrelation and variance, while the optimal subsequences are
generalized as the phenological events. The proposed augmentation
strategy of using Maximal overlap discrete wavelet transform for
obtaining the surrogates that retain the crop-specific features and
periodicities significantly improves the results. It may be noted that
the proposed approach does not alter the wavelet coefficients that
are characteristics of a given crop class. The experiments using time
series VI data, covering 90 fields of wheat, and 60 fields of barley,
confirm better accuracy of the proposed augmentation approaches
as compared to the prominent approaches.

Index Terms—Crop classification, deep learning, maximal
overlap discrete wavelet transform, normalized differential
vegetation index (NDVI), time series, VENµS.

I. INTRODUCTION

EXTRACTION of information from earth observation data
forms the basis of many applications in the agriculture

domain ranging from acreage estimation, crop condition as-
sessment, and yield forecasting. Recently, multitemporal satel-
lite/airborne data is being explored to model different peri-
odic events in the growth cycle of crops [1]–[6]. Most of the
phenology-based classifiers use vegetation index (VI) time-
series data [e.g., normalized differential VI (NDVI)], estimated
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from temporal images over a given season, as phenology fin-
gerprints to model seasonal variations of different crops [1],
[7]–[10]. Recent studies indicate that conjunctive consideration
of feature extraction and classification by deep learning models,
improves the time-series classifiers [11], [12]. However, the
lack of sufficient training samples affects the implementation
of DL-based approaches for VI-curve-based classification.

Different strategies such as network pruning [13], transfer
learning [14]–[17], deep data augmentation [5], [18]–[21], and
generative networks [19], [22]–[25] are being widely used to
address the scarcity of training samples. The network pruning
strategies, which remove the least useful filters and channels,
have limited success as the complex datasets still require a lot of
training samples [13]. Recently, generative adversarial network
(GAN) [26] and its variants have been employed to resolve
the bias and class imbalance problem by generating synthetic
class-specific samples [26]–[28]. However, generative models
trained on a class imbalance dataset may not necessarily capture
the actual data distribution, especially in extreme conditions,
resulting in artifacts [29]–[33]. Different alternatives of GANs
such as auxiliary classifier GAN (AC-GAN) [30], conditional
GAN (C-GAN) [27], and few shot classifier GAN (FSCGAN)
[31] avoid generating minority classes in extreme class imbal-
ance cases [32], [33]. The samples generated by FSCGAN are
affected by artifacts or white noise patches [31]. The multiple
fake classes GAN model adopted generator conditioning and
resampling of minority classes to generate images from imbal-
ance classes [34]. Most of these GAN-based approaches are
suited for the image datasets and are not directly applicable to
the multitemporal VI data [35], [36]. Besides, the DL-based
augmentation approaches do not generally consider the features
and phenological events specific to each crop and require a
considerable amount of training samples [31], [35]. The trans-
fer learning-based approaches project the label information to
unlabeled data using proximity measures [37]. Most of these
techniques still require enough labeled information to capture
the intra-class variability. Additionally, their effectiveness is
sensitive to the efficiency of the adopted distance measures and
the similarity of the source and target distributions [13], [37].

The non-DL-based data augmentation techniques are gaining
popularity as they address the sample scarcity by learning the
class-specific features from a small set of samples. Details of the
commonly employed non-DL-based augmentations discussed in
this study can be referred from [38]–[42]. Reclassification and
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removal of samples, proposed to improve the quality of training
data, do not apply to the generation of training samples [43], [44].
The non-DL-based augmentation techniques generally adopt
transformations to generate samples similar to the available ones
without using complex models. The conventional approaches,
such as geometric transformations, kernel filters (smoothing or
enhancement), image mixing (interchanging slices), and random
erasing (removing random slices), are suited only for image-
related tasks [35], [40], [42]. For time-series data, augmentations
such as jittering (random noise addition) [45], slicing (crop-
ping) [46], magnitude warping (smooth elementwise magnitude
change) [18], [38], permutation (rearranging slices) [45], [47],
rotation (flipping for univariate; rotation for multivariate) [35],
scaling (patternwise magnitude change) [47], random warping
in the time dimension (time step deformation) [45], [47], and fre-
quency warping (frequency deformation) [48] are adopted. The
slicing-based augmentations responded positively with more
extended time series, but pattern mixing methods are negatively
correlated to the time series length. Most of these approaches
result in massively inflated dataset sizes that may cause over-
fitting in domains with limited data [36]. Moreover, they fail to
properly model the characteristic phenological features of the
VI curves [35], [46].

The conventional augmentation approaches have little or con-
verse effect on the performance of advanced time-series net-
works such as long short-term memory (LSTM), bidirectional
LSTM, LSTM-fully connected network, and ResNet [35]. Al-
ternatives of dynamic time wrapping (DTW) have been adopted
for leveraging the phenological information of labeled samples
to generate labels of unlabeled ones [44], [49]–[51]. However,
these approaches require finetuning of the proximity parameters
and the samples to have less intraclass variability. Recently,
Fourier transform (FT) based data augmentation approaches,
such as Iterative amplitude adjusted FT (IAAFT), adopted phase
alternations to preserve the power- and cross-spectrum of the
signals [52]–[54]. The stochastic versions of IAAFT, which im-
plement fractional amplitude adjustment, preserve the amplitude
distribution, and the power spectrum of the measured time series
[55]. Kayal et al. [56] employed jittering of discrete cosine and
wavelet transforms’ bases to generate surrogates having slightly
different noise properties. Maximal overlap discrete wavelet
transform (MODWT) based augmentation approaches combine
IAAFT schemes to each level of MODWT coefficients with-
out assuming stationarity [57], [58]. Although transform-based
approaches do not require many training samples, they fail to
model the characteristic phenological events of different crops.
Hence, wavelet- and Fourier-based approaches have limited
applications for the augmentation of the VI curves.

This article investigates augmentation approaches that con-
sider the characteristic features and phenological events of dif-
ferent crops. This article hypothesizes that augmentations of VI
curves should not alter the phenological events and their char-
acteristics. The adopted approaches and optimizations should
model the phenological characteristics and consider the existing
samples, class imbalances, and intra- and interclass variances.
The proposed non-DL-based augmentations are hypothesized to
be suitable for addressing the lack of training samples compared

to the DL-based approaches. Additionally, the proposed ap-
proaches do not require finetuning of the smoothing parameters.
Based on the abovementioned discussions, the main contribu-
tions of this research can be summarized as follows.

1) Modeling of the phenological events specific to different
crops with minimum training samples.

2) Augmentation of index curves preserving the phenological
events.

3) Reduction of training sample requirement and computa-
tional complexity for effective augmentation

II. PROPOSED APPROACH

Consider a vegetation index curve v, constituting VI values
derived from N multitemporal images, thus having a vector
length N. Let there be C types of crops whose temporal VI curves
are considered. This article constructs surrogate VI curves of
different crop classes for addressing the scarcity of training
samples to improve the classification. The augmentations are
implemented in an interpretable latent space considering the
characteristic features and phenological events of each crop. In
addition, the class imbalance, existing samples, and intra- and
interclass variances are also considered. The following sections
discuss the strategies adopted to formulate an optimal framework
to accomplish the same.

A. Extraction of Class-Specific Trend and Phenological
Events From Index Curves

The index curves of a given crop class are decomposed to
model the trend and phenological characteristics. The season-
ality of a curve denotes periodic patterns that fluctuate near a
baseline, and trend describes the baseline [57]. For a given class
of crops, the denoised index curve vc can be decomposed as

vc = τ c + Sc + γc (1)

where τ c is the crop-specific baseline curve, c denotes the crop
class, Ѕc the phenological events or the seasonality, and γc the
remainder of the index curves.

The trend τ c of a group of p index curves of the cth crop class
is estimated based on the maximization of autocorrelation as

w′ = argmax
w

{
ρ
(
wVc

t ,wV
c
t+1

)}
(2)

τk = w′Vc
t (3)

where ρ(., .) denotes the autocorrelation of the index curves,
w the transformation matrix, w′ the maximum autocorrelation
factor, Vc

t and Vc
t+1 the matrices of the index curves and their

time-shifted versions, respectively. Based on [59], (3) is refor-
mulated as

τk =
(
C

1
2CδC

− 1
2

)
Vc

t (4)

where C denotes the covariance matrix of the index curves, Cδ

is the p × p covariance matrix of the p time-differenced index
curves, and Vc

t the index curve matrix. The trend computation,
based on autocorrelation maximization, is invariant to rescaling
and recombining the original data [59].
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The phenological events of crop classes are modeled upon
the subsequences that cause entropy gain to classify the index
curves. In this regard, the joint learning of optimal subsequences
and hyperplane is formulated as

argmin
S, W

L (yi, ỹi) + λW ‖W‖ (5)

where L(.) denotes the misclassification loss, ||.|| the L2 norm,
λW is the scaling constant, and yi and ỹi, respectively, the
expected and predicted labels. It may be noted that learning
of the subsequences s is incorporated in as the following:

ỹi = W0 +

K∑
k=1

Mi,kWk, ∀i ∈ {1, . . . , p} (6)

where W0 is the bias, W is the model weights, M is the predictors
in the transformed space, p is the number of index curves, and
K is the number of subsequences. Adopting a differentiable
proximal approximation, as discussed in [60], the predictor M
is modeled as

Mi,k =

∑J
j=1 Di,k,j e

αDi,k,j∑J
j′=1 e

αDi,k,j′
(7)

where α denotes the tunable parameter and Di,k,j the distance
between the jth segment of series i and the kth subsequence. The
distance between the ith index curve vci and the kth subsequence
Sck is defined as

Di,k,j =
1

N

N∑
l = 1

(
vci,j+l−1 − Sck,l

)2
(8)

where vci denotes the ith index curve of the cth crop class, Sck
denotes the kth subsequence of the cth crop class, and N is the
total number of classes. It may be noted that instead of using the
subsequences, only the most relevant ones are chosen. In this
context, the most likely input ωc for the cth crop class is found
by optimizing

ωc = max
v

(log p(c|v) + log p (v)) (9)

where p(c|v) and p(v) are the class conditioned data den-
sity and data model, respectively. The importance of a subse-
quence is measured by estimating its distance from the seg-
ments of the representative curves through DTW based distance
measure [49].

B. Wavelet Transform-Based Augmentation of the Index
Curves Preserving the Characteristic Features of Different
Crops

The Maximal overlap discrete wavelet transform (MODWT)
[61] decomposes the original signal based on the quadrature
mirror filter that divides the frequency band. The discrete wavelet
transform reduces the number of signal samples in each decom-
position level while MODWT maintains the signal length. The
VI curve v can be decomposed based on MODWT as

vt = S̃J,t +

J∑
j=1

D̃j,t, t = 1, . . . , N (10)

where J is the number of scales, N is the length of the index curve,
and S̃J and D̃j, respectively, denote the tendency and local details
of the index curve v at each scale. The proposed augmentation
strategy adopts a stochastic version of IAAFT algorithm [54],
[55] to each set of the detailed coefficients independently to
obtain randomized values that retain the original values and
periodicities. It should be mentioned that both the amplitude
spectrum and phase spectrum are perturbed at each level of
MODWT coefficients. The approach does not alter the wavelet
coefficients that are characteristics of a given crop class. These
distinctive wavelet coefficients are determined based on the
trends and prominent subsequences of the corresponding crop
classes. In addition, a threshold based on the unaltered fractional
energy of the curves is also employed. As the wavelet power
spectrum is proportional to the coefficients, the threshold τ for
unaltered energy of the given index curve is formulated as

τ = 1−
∑N

i = 1

∑J
j = 1 D

2
ij∑N

i = 1

∑J
j = 1 D̃

2
ij

(11)

where N is the length of the index curve, J is the number of
scales, and D and D̃, respectively, denote the unaltered and
altered wavelet coefficients.

C. DL Model for Phenological Classification of Crops

Prominent DL-based classification models applicable to the
VI curves are employed for analyzing the effectiveness of the
proposed augmentation scheme. LSTM based approaches con-
sider the current and previous VI values using a gated network
to assign the crop labels. This article adopts a 27-layer stacked
LSTM architecture similar to the discussions in [62]. The ap-
proach uses the time-frequency and time-space properties of the
index curve as a robust tool for modeling the index curves. The
GAN-based VI curve classification approach, adopted in this
article, jointly optimizes the supervised and adversarial losses
to learn an embedding space to preserve the temporal dynamics.
As discussed in [78], the framework employs a one-dimensional
convolutional GAN having a depth of 38 layers.

D. Evaluation of the Data Augmentation Techniques

The characteristic phenological events, such as the planting,
heading, and harvesting, are specific to a given crop. These
events are reflected in the VI values and can be estimated from
the index curves. Comparing the phenological events estimated
from the surrogate and actual index curve samples serves as
an evaluation measure for the data augmentation. In addition, a
comparison of the trend of the available index curves with those
of the surrogates can also be used as an evaluation measure.
Large deviations of the surrogates and their trends respectively
from the characteristic phenological events (measured in terms
of days) and trends (measured in terms of cosine dissimilarity
measure) indicate the ineffectiveness of the augmentation strat-
egy.

The DL-based classification models (see Section II-C) are
also employed to evaluate the effectiveness of the augmentation
techniques. High values of the confusion-matrix-based accuracy
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Fig. 1. Location map of the study fields in Israel over a VENµS false color
composite image.

measures such as overall accuracy and Kappa statistics indicate
that the training samples are well augmented, preserving the
crop-specific phenological characteristics.

III. EXPERIMENTS

For analyzing the proposed augmentation approach concern-
ing the VI curve classification, multitemporal VENμS images
covering 90 fields of wheat and 60 fields of barley are em-
ployed. The study area is shown in Fig. 1. The VENμS sensor
(https://karnieli-rsl.com/venμs) is characterized by a high spa-
tial resolution of 5 m, a high spectral resolution of 12 narrow
bands in the visible to near-infrared regions of the spectrum, and
a high revisit time of 2 days at the same viewing and azimuth
angles. The NDVI of fields computed over three crop years,
2018, 2019, and 2020 are used for the analysis. It should be
mentioned that the VI curves, having a vector length of 27, are
used for training the classification models. The shapefiles of crop
fields and the cropping, harvesting, and irrigation information
obtained from framers serve as ancillary data for labeling the
phenological curves. In the experiments adopted in this article,
400 actual (among available 900) and 1600 augmented samples
are employed for training the model. It is to be noted that 60–100
samples in proximity are employed to generate an augmented
sample to consider the spatial autocorrelation. For all the exper-
iments, a grid search-based approach was adopted to finetune
the values of α and λW (see Section II-A) that are empirically
set to 0.89 and 0.40, respectively. Among 900 actual samples,
400 are used for training, 200 for validation, and 300 for testing.

The classification models, adopted in this article to evaluate
the augmentation approaches, are trained for a mini-batch size
of 200; momentum and weight decay for the backpropagations

TABLE I
COMPARISON OF THE AUGMENTED SAMPLES WITH THE ACTUAL SAMPLES

FOR WHEAT AND BARLEY CROP

are set to 0.8 and 10−3, respectively (obtained through cross
validation); learning rate is initially set to 0.6 and is depreciated
by a factor of 10 after every 100 epochs. All the models are
analyzed for 200 epochs.

A. Phenological Characteristics of the Surrogates

In order to compare the effectiveness of the augmentation
schemes, a cosine-similarity-based comparison of the aug-
mented samples with the actual samples for each of the ap-
proaches is presented in Table I. As is evident, the proposed
augmentation approach gives the maximum average cosine sim-
ilarity indicating a better augmentation. However, to further
evaluate the effectiveness of augmentation, a comparison based
on the phenological characteristics is preferred.

The change in greenness estimated using VI over a period
is the characteristics of a given crop type. Hence, this article
analyzes the changes in VI, corresponding to planting, head-
ing, and harvesting events, to estimate the correctness of the
augmented index curves. The VI of fields decreases during
the planting period and increases again after planting. The
maximum VI appears around the heading phase and decreases
abruptly because of harvesting. In this regard, the heading date
is estimated as the duration with the maximum VI in the time
profile of the phenological curves. The date of an inflection
point later than a fixed number of days (specific to the crop
understudy) after the estimated heading date is defined as the
harvesting date. The minimal and inflection points earlier than
a fixed number of days (specific to the crop understudy) from
the estimated heading date are identified as the planting date. An
illustration of the augmented samples for barley crops, presented
in Fig. 2, shows the variation of NDVI (x-axis) with respect to
the no. of times the samples have been collected (y-axis). It
may be noted that the NDVI samples were computed six times
in a given month. Fig. 2 illustrates features preserved and the
variabilities introduced. It may be noted that the crop-specific
events have been well preserved, i.e., the sowing, heading, and
harvesting periods of the augmented samples are consistent with
the metadata obtained from the farmers.

https://karnieli-rsl.com/ven$mu $s
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Fig. 2. Two VENµS-derived augmented samples for barley crops: (a) sample-1
and (b) sample-2.

Tables II and III show the performance of the different
augmentation methods in preserving the distinct phenological
events of the wheat and barley crops. As is evident, Fourier- and
wavelet-based augmentations alter the crop-specific character-
istic features of the index curves. The proposed approach gives
accurate results owing to the consideration of the crop-specific
phenological characteristics. It is shown that the planting, head-
ing, and harvesting periods are very accurately preserved in the
surrogate samples generated through the proposed approach. In
addition, as is evident from Table IV, the trend of each crop class
also aligns well with the trend of the corresponding surrogate
samples. The plot depicting actual and estimated NDVI during
different phenological events is presented in Fig. 3. It may be
noted that the y-axis (Time period) denotes the sampling time
period in which the temporal images were collected (36 times
in 6 months). The comparative analysis presented in Table V
indicates that the proposed approach performs well compared
to the other approaches in terms of computational efficiency. It
may be noted that the root-mean-square error (RMSE) for the
growing period of the proposed approach is less than that of
other phenological dates. This can be attributed to the fact that
growing period covers a lengthier duration as compared to the
other phenological events making it easier for the approach to
select and generalize the most relevant features.

TABLE II
COMPARISON OF RMSE OF THE ESTIMATED PHENOLOGICAL DATE AND

GROWING PERIOD AGAINST THE STATISTICAL DATA FOR THE WHEAT CROP

TABLE III
COMPARISON OF RMSE OF THE ESTIMATED PHENOLOGICAL DATE AND

GROWING PERIOD AGAINST THE STATISTICAL DATA FOR BARLEY CROP

B. Improvement in Classification Results

This section compares different augmentation approaches
in terms of the overall accuracy and Kappa statistics of the
corresponding classification results. Experiments reveal that the
classification frameworks adopted in this article overfit 400 sam-
ples. Table VI presents the results of the comparisons where 70%
of the total 900 samples are augmented training samples, i.e.,
630 augmented and 270 actual samples. In the graphs presented
in Fig. 4, different augmentation approaches are compared for
varying percentages of actual training samples where 650 train-
ing samples are employed. Note that when the percentage of
actual training samples is less than 60%, the DL-based augmen-
tations do not give acceptable results. As is evident from the
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TABLE IV
COMPARISON OF THE DEVIATION OF THE TREND OF THE AUGMENTED VI

CURVE SAMPLES FROM THE TREND OF THE AVAILABLE TRAINING SAMPLES

TABLE V
COMPARISON OF COMPUTATIONAL PERFORMANCE OF AUGMENTATION

TECHNIQUES

results, even when the percentage of actual training samples is
relatively low, the proposed augmentation approaches give good
results compared to the conventional ones. In order to further
illustrate the better performance of the proposed approach, a
comparison of the visual results of classification is presented in
Fig. 5. As is evident the proposed approach gives better results
as compared to the existing state-of-the-art.

IV. DISCUSSION

The DL-based augmentation techniques require a large num-
ber of training samples [19], [34]. DL-based approaches do
not give acceptable results because this article focuses on data
augmentation with minimal training samples [36]. Additionally,
it is not easy to model the phenological events using DL-based
approaches [40]. The classical augmentation approaches, such as
translation, rotation, scaling, and wrapping, also do not preserve
the characteristic phenological events of the VI curves [36], [46],
[51]. Therefore, only transform-based approaches that consider
the characteristic features of the index curves are suitable for
the augmentation of the VI curves. Although MODWT-based
augmentation approaches report good results for time series
data, the non-consideration of crop-specific features makes
the approach unsuitable for VI curve augmentation [7], [63].

Fig. 3. Actual and predicted NDVI during crop-specific phenological events
for (a) wheat and (b) barley.

TABLE VI
COMPARISON OF THE CLASSIFICATION RESULTS USING 270 ACTUAL TRAINING

SAMPLES (AMOUNTING TO 30%) AND 630 AUGMENTED SAMPLES

(AMOUNTING TO 70%)
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Fig. 4. Comparison of the augmentation methods for varying percentage of
training samples. (a) LSTM-based classification. (b) GAN based classification.

Fig. 5. Visual illustration of the proposed augmentation strategy. (a) Ground
truth data. (b) Wavelet based approach. (c) Proposed augmentation strategy.

The proposed augmentation strategy of combining MODWT
with entropy-based subsequence estimation generates surro-
gates that retain the crop-specific features and periodicities.
Furthermore, phenological events and the underlying trend of
the VI curves of each of the crop classes are accurately modeled
using computationally optimal transformations [64]. Unlike the
existing transform-based approaches, the proposed approach
does not alter the wavelet coefficients that characterize a given
crop class [35], [45].

This article also illustrates that the accuracy of VI curve
augmentation can be estimated by comparing crop-specific
phenological events, such as planting, heading, and harvesting
events, of the surrogates with those of the available actual
training samples. The proposed strategy of using the prior
information derived from trend and seasonality to refine the
transform coefficients accurately preserves the cop-specific
features [54], [59]. Unlike the existing approaches that require
a lot of actual training samples, the proposed approaches give
good results even when actual training samples are pretty scarce
[9], [65]. The generalization capability of the proposed approach
can be attributed to the non-DL-based strategy of using entropy
and transforms to model the characteristic features.

Although the proposed approach reduces the number of pa-
rameters and requires only a few samples, efficient finetuning of
hyperparameters requires further research. In addition, alterna-
tive approaches may be adopted to identify the relevant subse-
quences efficiently. The generic nature of the proposed approach
needs to be further investigated for different applications. The
proposed approach generalizes the features based on a group
of index curves belonging to a given class. The approach well
preserves the crop phenological features. However, the approach
is needed to be adaptive in eliminating the noisy features that
may be prevalent in a group of VI curves due to environmental
impacts. Although some efforts have been taken to incorporate
spatial autocorrelation, an optimal strategy is needed to avoid
the anomaly due to environmental impacts covering large areas.

V. CONCLUSION

The massive requirement of training samples makes the data
augmentation techniques essential for prominent DL-based
VI curve classifiers. However, conventional augmentation
approaches alter the crop-specific phenological features and
are not suitable for the VI curves. Additionally, DL-based
augmentation approaches are applicable only when sufficient
training samples are available. This article indicates that the
effective modeling of phenological characteristics is essential
for the proper augmentation of the VI curves. Maximization
of autocorrelation in conjunction with the variance is
found to be effective in modeling crop-specific trends. The
phenological events are accurately modeled as subsequences
that cause entropy gain for the classification. The activation
maximization is also found to be effective in identifying the
most significant subsequences that are characteristics of a
given crop. The proposed augmentation strategy of using
MODWT, crop-specific trends, and phenological events,
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to obtain the surrogates significantly improves the results.
The phenological-event-based comparison of surrogates with
respect to the actual training samples is found to be more effec-
tive than the confusion-matrix-based approaches for estimating
the accuracy of augmentation strategies. The better performance
of the proposed approach compared to the existing approaches
can be attributed to the proper modeling and use of phenological
events to fix the characteristic MODWT coefficients.
However, the incorporation of spatial autocorrelation to the
proposed augmentation strategy requires further investigation.
Additionally, an optimal strategy is needed to avoid the
generalization of anomalies caused by environmental impacts.
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