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Abstract—Deep convolutional neural networks have become an
indispensable method in remote sensing image scene classification
because of their powerful feature extraction capabilities. However,
the ability of the models to extract multiscale features and global
features on surface objects of complex scenes is currently insuf-
ficient. We propose a framework based on global context spatial
attention (GCSA) and densely connected convolutional networks
to extract multiscale global scene features, called GCSANet. The
mixup operation is used to enhance the spatial mixed data of
remote sensing images, and the discrete sample space is rendered
continuous to improve the smoothness in the neighborhood of the
data space. The characteristics of multiscale surface objects are
extracted, and their internal dense connection is strengthened by
the densely connected backbone network. GCSA is introduced into
the densely connected backbone network to encode the context
information of the remote sensing scene image into the local fea-
tures. Experiments were performed on four remote sensing scene
datasets to evaluate the performance of GCSANet. The GCSANet
achieved the highest classification precision on AID and NWPU
datasets and the second-best performance on the UC Merced
dataset, indicating the GCSANet can effectively extract the global
features of remote sensing images. In addition, the GCSANet
presents the highest classification accuracy on the constructed
mountain image scene dataset. These results reveal that the GC-
SANet can effectively extract multiscale global scene features on
complex remote sensing scenes. The source codes of this method
can be found in https://github.com/ShubingOuyangcug/GCSANet.

Index Terms—Attention mechanism, feature channel, global
context information, remote sensing, scene classification.

I. INTRODUCTION

R EMOTE sensing image scene classification marks remote
sensing scene images with specific high-level semantic

categories, which can be effectively analyzed to obtain high-
level semantic information [1]. In recent years, it has become a
prominent research area in the field of high-resolution remote
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sensing image classification [2]–[5]. It is widely used in natural
resource investigation, land use and land coverage classifica-
tion, disaster detection, environmental monitoring, and urban
planning [6]–[8].

It is well known that remote sensing image features ex-
tracted severely limit the precision of the remote sensing image
scene classification. Thus, researchers have long been devoted
to extracting various effective remote sensing image feature
representations to improve the accuracy [2]. These features
can be divided into three major categories: manual features,
middle-level features, and deep-level features.

1) Manual feature methods. Earlier scene classification meth-
ods mainly extract the local or global features of the images
based on the manual features. They distinguish between the
remote sensing image scenes via the spectrum, texture, and
structure features, roughly covering color histograms [2], scale-
invariant feature transforms [9], local binary pattern features [2]
(LBP), gray level co-occurrence matrices [10], Gabor filters,
and histograms of directional gradients [10], or a combination
of these features [4]. However, because of a strong subjectivity
and a lack of a systematic feature fusion method, the manual
feature method results in poor generalization ability and less
than ideal classification results on complex remote sensing
scenes [4].

2) Middle-level feature method. Starting with the extraction
of local attributes of image blocks, these methods map these
local attributes to a dictionary or parameter space to obtain the
overall feature representations with a stronger discrimination
sense [11]–[15]. The bag-of-words model is the most popular
middle-level feature encoding method because of its simplicity
and interpretability [16]. Sridharan and Cheriyadat [17] ex-
tended and improved the visual bag-of-words model on image
extraction, and then established the inner connections between
manual features and high-level semantic features by gathering
and integrating the manual features. However, when modeling
local and image features, a potentially severe spatial information
loss could happen. These losses are represented by the occur-
rence time of local features sharing a less closed connection
with the spatial structure. Moreover, such methods usually have
a high feature dimension, and hence it is difficult to balance
the efficiency of the feature extraction and the classification
performance.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6272-1618
https://orcid.org/0000-0003-4737-4205
https://orcid.org/0000-0003-2873-7584
https://orcid.org/0000-0001-7785-2541
https://orcid.org/0000-0003-2766-0845
https://github.com/ShubingOuyangcug/GCSANet
mailto:wtchen@cug.edu.cn
mailto:oysb@cug.edu.cn
mailto:weitong@cug.edu.cn
mailto:ddwhlxj@cug.edu.cn
mailto:zhengxiongwei@mail.cgs.gov.cn
mailto:zhengxiongwei@mail.cgs.gov.cn
mailto:lizhe.wang@gmail.com


CHEN et al.: GCSANet: A GCSA DEEP LEARNING NETWORK FOR REMOTE SENSING SCENE CLASSIFICATION 1151

3) Deep-level feature method. As computing power continues
to grow, deep learning technology has displayed an excellent
classification performance in remote sensing image classifica-
tion [18], remote sensing target detection [19], and hyperspectral
unmixing [20]. This depends on its potent feature extraction
capacity [21]–[23]. These methods usually conduct the training
on a large quantity of labeled data to extract deep image features
[8], [18], [24]. Among them, the convolutional neural networks
(CNN) are widely used; they can be divided into three categories,
depending on whether the CNN is trained and how it is used:

1) New deep network trained from scratch.
2) Pre-trained network: Cheng et al. [25] used a VGG [26]

network and an Alex [18] network to fine-tune the CNN
and introduced a variety of objective functions in metric
learning to improve its capability to distinguish deep fea-
tures.

3) The pre-trained CNN is exploited as a feature extractor
to directly extract important deep features and reprocess
them to deliver the final deep image feature representation
[8], [27], [28].

In addition, a combination of various feature fusion tech-
niques can be used to assemble different and effective deep
features [5], [29]–[35] to improve the network performance.

These three methods have their own advantages and disad-
vantages. The CNN model trained from scratch has a small
amount of data; therefore, it often has a small number of net-
work layers, which can be designed by the researcher, and has
greater flexibility [36]. However, CNNs normally need a large
amount of labeled data during the training process. Thus, in
the case of limited data, scene classification networks based on
brand-new training tend to have over-fitting problems and poor
feature generalization abilities [37], [38]. In response to these
problems, which are caused by training the deep network from
scratch, researchers have adopted well-trained neural networks
in natural scenarios as pre-training networks [5], [30], [33], [35],
[39]. This strategy usually fine-tunes the remote sensing scene
datasets directly by using a pre-trained CNN model in a bid to
produce better parameter initialization effects, faster network
convergence, and higher classification accuracy. This classifica-
tion method, with the pre-trained CNN as the feature extractor,
directly conducts the extraction and classification of the remote
sensing scene datasets by using the natural image-trained CNN
model. Therefore, there is no need for a large amount of ad-
ditional data for network retraining, thereby reducing the data
demands. By fine-tuning the pre-trained CNN, this classification
method enables the CNN and the remote sensing scene datasets
to be more compatible. While fine-tuning pre-trained CNNs can
yield significant performance, relying on pre-trained CNNs has
some limitations: the learned features do not exactly suit the
characteristics of the target dataset, and modifying pre-trained
CNNs is inconvenient for the researcher [68]. The ability of
the common CNN to extract local information from remote
sensing images is not adequately powerful; however, the local
information is important to scene classification. To address
the issue, local attention-based networks were designed [62].
Thereafter, researchers found that by combining the global and
local information or different local information, the remote

sensing scene classification results were enhanced even further
[63]–[65]. Moreover, because the potential relationships among
scene semantics in the mentioned networks are likely to be
ignored, the graph convolutional network structure is built to
investigate the class dependencies to further improve the ability
of CNN features representation [66], [67]. However, most of
those models demand large-scale labeled data. In order to reduce
the high cost of labeling, few-shot algorithms have been used to
solve remote sensing scene classification problems with datasets
that have limited annotation [69], [70].

Despite avoiding the resource consumption of traditional arti-
ficially designed operators, it is still difficult for the method with
a CNN as the feature extractor to obtain multiscale information
and global features among various surface objects. Owing to the
complicated backgrounds and variable surface objects, remote
sensing scene images often present the characteristics of intra-
class diversity and interclass similarity, thereby decreasing the
remote sensing scene classification accuracy. Intraclass diver-
sity refers to the tremendous differences among major surface
objects appearing in the same scene category. Surface objects
usually vary in style, size, shape, and distribution. For example,
there are different road forms in the same category of “mountain
roads.” The challenge of interclass similarity mainly lies in the
overlapping of the same surface feature among different scenes.
For instance, surface objects involving buildings and roads exist
in both dense and medium-dense residential areas; additionally,
there are large-scale mountains in the “mountain range” as
well as the “mountain road” categories. Thus, one of the key
scientific problems for remote sensing scene classification is
how to obtain the global feature relationship and lessen the
influence of intraclass diversity and interclass similarity.

Traditional deep CNNs are based on local convolution opera-
tions; thus, it is difficult to obtain the long-distance dependence
of features. Graph convolution methods can obtain global de-
pendencies; nevertheless, they are limited to extracting detailed
image features [40]. However, the attention mechanism enables
us to acquire important features by simulating how people under-
stand and perceive images, thus providing a significant solution
for remote sensing scene classification in feature capture [41].
Currently, attention methods normally carry out sampling on
the whole area or other sampling strategies. With regards to the
feature, the attention method needs less spatial information. It
also needs to mention the connection with our previous pro-
posed attention network (Channel-Attention-Based DenseNet)
for remote sensing image scene classification, called CAD,
which adopts the channel attention mechanism to give more
attention to important features [41]. It has the same backbone of
DenseNet121 as the GCSANet. The comparison of GCSANet
and CAD can better reflect the different roles of the channel
attention mechanism and the spatial attention mechanism for
remote sensing scene recognition.

In addition, usually there are two data enhancement methods
before training the network. The first is a data generation method
based on a generative confrontation network. Although there is
no need for prior knowledge, this method still conducts training
on the same data type to generate more samples. However,
these methods need a larger amount of data and have a more
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Fig. 1. GCSANet framework based on the GCSA.

difficult training convergence [43]. The second one is based on
prior knowledge, which is used to describe the neighborhood
around each training sample. The data enhancement method
then extracts additional virtual samples from the neighboring
distribution to expand the training distribution. However, most
of them perform traditional data enhancement on a single image,
including image flipping, image scaling, image rotation, etc. In
our work, to provide smoother neighborhood dataspace, we use
mix-up operations on images and corresponding labels for data
enhancement of remote sensing scene [42].

To the best of our knowledge, we are the first to investi-
gate the effectiveness of global context spatial attention, within
DenseNet framework (GCSANet), for remote sensing scene
classification. The GCSANet network extracts the features of
multiscale surface objects, establishes internal feature connec-
tions, and introduces an attention mechanism in the spatial
domain, which aims to extract the global features of remote
sensing scene images. The objectives of this study are as follows.

1) Constructing a method to integrate the GCSA module
and the densely connected network to improve the feature
extraction ability of the scene classification model.

2) From the aspect of remote sensing scene data enhance-
ment, we first apply a method that will improve the effi-
ciency of data utilization and improve the smoothness of
the data space in the neighborhood.

3) Creating a complicated mountain scenes’ dataset and val-
idating its generalization ability of the GCSANet.

II. METHODS

The proposed GCSANet adopts DenseNet121 as the network
backbone and improves the densely connected network using
data enhancement and GCSA.

First, a spatially mixed data enhancement is conducted on
the remote sensing scene image samples to render the discrete

sample space continuous and enhance the smoothness of the
data space in the neighborhood. Second, the GCSA module is
designed as the transform module, which updated input features
by the global context information. Then the output features into
the backbone of the densely connected network to form a GCSA
block, which encodes the context information of the remote
sensing scene image as local features, thereby enhancing the
feature extraction capability of the classification model. The
GCSA block 1 includes a GCSA module, a dense block, and a
transition layer for reducing the size of the feature map. The other
GCSA blocks maintain the same structure and are represented
by the thumbnails of the gradually decreasing feature maps. The
network architecture is shown in Fig. 1.

A. Mixup-Based Data Enhancement

To make data utilization more efficient, the original training
data is replaced by a mixup operation and then fed into the
network. It proportionally performed a weighted summation
of randomly selected images at the pixel level and integrated
the existing samples in the dataset into a mixed sample. Si-
multaneously, through a proportionally weighted summation
performance of the corresponding labels, an augmented mixed
sample data was used as the virtual sample for training. For
two random samples (xi, yi) and (xj , yj), where xi and xj

represent two randomly selected training sample images from
the training sets, and yi and yj stand for the labels of the two
training samples, we have

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ) yj (1)

where λ ∈ [0, 1] represents the weight of the sample.
x̃ represents the result of the mixing operation for two training
sample images. ỹ represents the result of the mixing operation
for two training sample labels. The linear weighting process of
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Fig. 2. Schematic diagram of the new mixed category of “Airplane” and
“Airport” upon the mixup operation.

intersample regions performed by mixup enables the model to
learn extra samples besides the training sample, thus diminishing
the inadaptability of the data prediction targeting beyond train-
ing samples and providing a smoother uncertainty evaluation.
Although it constructs virtual scenes that partially do not exist
in reality, it can really mix the characteristics of different scenes
in the remote sensing image by weight, as observed from the
mixed images. Moreover, the data enhancement is for all training
data. Although in an epoch, there is no guarantee that all training
data can become mixup enhanced images after mixup operation,
because when λ equals 0 or 1, the image has not been changed
and remains the original image. However, in each of all epochs,
the value of λ is taken randomly, and the probability that λ takes
the same value for the same image is small, and the probability
that it takes 0 or 1 at the same time is even smaller. In the case
of augmentation of all training data, the training model upon
the mixup operation is more stable than the traditional one or
two models with identical network structures, training processes,
and datasets. This reveals that the model is an effective data
enhancement solution to over-fitting [42]. Taking the “airplane”
and the “airport” categories as examples, the calculation method
for the mixup on remote sensing scenes is as follows: fuse the
images in the current and next input batches and send them into
the neural network to obtain the ỹ in the form of a one-hot.
Subsequently, apply the ỹ to perform the loss function on the
labels corresponding to the two images used during the fusion.
Finally, the loss is fused in the same way by the beta distribution
calculation; we then adopt this loss as the final loss. The new
mixed category of “airplane” and “airport” upon the mixup
operation is shown in Fig. 2.

B. Backbone Network Selection

Remote sensing scene classification usually adopts CNNs
such as AlexNet, VGGNet, GoogLeNet, as the network back-
bones [2]. Although CNNs display a remarkable ability for
feature representation in scene classification, there still exist two
issues: one is the potential over-fitting phenomenon, which is a

result of insufficient training data; the other is a limited high-
level feature extraction ability for relatively shallow network
layers. In response to the latter issue, network layers deepening
can be used to learn more latent and robust features. However,
as the number of layers increases, issues such as gradient dis-
appearance tend to arise and undermine the classification effect
of the network model to some extent. Regarding the gradient
disappearance, researchers [44]–[46] usually adopt jump con-
nections from the front convolutional layer to the back layer
to create a network model. Furthermore, a densely connected
layer has been proposed to ensure full interlayer information
utilization in the network [47].

In this study, a densely connected network was adopted as the
backbone network. Not only can this network be used to extract
the multiple features of different receptive fields, but also the
features that can be reused in the interlayer. This can further
integrate the features of the receptive fields on different scales,
thus presenting a further complicated semantic relationship be-
tween multiscale objects in remote sensing scene images. In
addition, the same DenseNet121 backbone as CAD was used for
the purpose of better comparing the capabilities of the different
attention mechanisms between GCSANet and CAD.

C. Global Context Information Module Establishment

The CNN model is generally based on local operations. It is
difficult to learn the relationship among nonadjacent pixels in the
image. To capture the long-distance dependence of nonadjacent
pixels, convolutional layer stacking is used [48]. Three problems
occur during the process of continuously repeated convolutions.

1) The computational efficiency is very low, and deepening
the convolutional layer requires more training parameters.

2) Parameter optimization is difficult; therefore, the param-
eter optimization process must be carefully designed.

3) Network modeling is difficult, specifically for multilevel
dependencies; information must be transmitted at different
distances.

In contrast to the progressive behavior of ordinary convolu-
tion operations, nonlocal operations capture the long-distance
dependence relationship by calculating the interactive features
between two random locations; it does not use the notion of
distance [48]. The nonlocal operation in the convolutional layer
considers the weighted sum of features of all positions on a
specific position as the response value of the position. The
generated nonlocal features can better identify the spatial layout
and object distribution of complex remote sensing scenes. The
nonlocal operation stands out in several tasks, including remote
sensing image classification and segmentation [34], [49], [50].

In this study, the nonlocal computing and CNN framework
were integrated into a nonlocal block, as shown in Fig. 3.
The input of the feature map is T ×H ×W × 1024 and both
mappings θ, ∅ are in a convolutional form of 1×1×1.

The calculation for the specific global context information of
each location in the nonlocal network is fused into the part of
feature conversion [51]. The parts of global context attention
and feature conversion of the nonlocal network were improved
in this article (see Fig. 3). This module reduces the number of
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Fig. 3. Schematic diagram of the nonlocal block. � represents the ma-
trix multiplication operation and � is the element addition operation [48].
“T×H×W×512” and “THW×512” represent the data dimensions after two
consecutive data operations, the first operation is to reduce the number of
channels of data from 1024 to 512, and the second operation is to reshape the
data from four dimensions to two dimensions.

Fig. 4. Network structure schematic diagram of the global context information
module. The context modeling module represents the global context information
module [51].

parameters of traditional nonlocal networks and makes network
training easier. As shown in Fig. 4, context modeling is used for
extracting global context features which were obtained from
aggregating all position features via the convolution module
weight. The transform module was used to capture interchannels
dependencies, and original features were updated by the global
context information.

III. DATASET AND EXPERIMENT SETTINGS

The proposed GCSANet model was conducted on three open
remote sensing scene datasets to verify its performance: the
UC Merced (UCM) land use dataset, the AID dataset, and the
NWPU-RESISC45 dataset.

A. Adopted Remote Sensing Scene Dataset

1) UCM Dataset: The UCM dataset is widely used in remote
sensing image scene classification [52]. These images of dataset
were manually extracted from large images of the USGS Na-
tional Map Urban Area Imagery series for use in urban areas
across the country. It consists of 21 land use scenes, each of
them covers 100 pieces of 256 × 256-pixel images, which are
RGB images with a spatial resolution of 0.3 m per pixel. Fig. 5
shows a schematic diagram of these 21 types of datasets.

2) AID Dataset: Compared to the UCM dataset, AID col-
lected from Google Earth is more challenging and is widely used
to evaluate by various remote sensing image scene classification
methods [53]. First, it is a large-scale image dataset featuring a
greater number of scene types and images. It contains 10 000
images, which can be divided into 30 categories, each has a
size of 600 × 600 pixels. The number of images in different
scene categories ranges from 220 to 420. Furthermore, there
are more interclass differences, including images collected at
different times and seasons under different imaging conditions
across the world. The resolution of the AID data set is from
about 0.5–8 m. The scene classes include airport, bare land,
baseball field, beach, bridge, center, church, commercial, dense
residential, desert, medium residential, mountain, park, parking,
playground, pond, port, railway station, resort, river, school,
sparse residential, farmland, forest, industrial, meadow, square,
stadium, storage tanks, and viaduct.

3) NWPU-RESISC45 Dataset: The NWPU-RESISC45 data
set is a large-scale image dataset published in 2017. This dataset
is even more complicated than the UCM and AID datasets. It
contains a total of 31 500 images and 45 scenes; the images have
an RGB color space. Each category contains 700 images that
are 256 × 256 pixels, whose spatial resolution is about 0.2–30
m. It was created using Google Earth and it covers more than
100 regions around the world. The scene categories in NWPU-
RESISC45 dataset are airplane, airport, baseball diamond, bas-
ketball court, beach, bridge, chaparral, church, circular farm-
land, cloud, commercial area, intersection, island, lake, dense
residential, desert, forest, freeway, golf course, ground track
field, harbor, industrial area, meadow, medium residential, mo-
bile home park, mountain, overpass, palace, river, roundabout,
runway, sea ice, ship, snowberg, sparse residential, stadium,
storage tank, tennis court, terrace, thermal power station parking
lot, railway, railway station, rectangular farmland, and wetland.

B. Evaluation Criteria

The overall accuracy (OA) and confusion matrix were used
as the accuracy evaluation criteria in this article. The OA refers
to the total number of correctly classified images divided by the
number of images in the test set; this indicates the classifica-
tion performance in predicting actual images. In the confusion
matrix, each column represents the predicted category, and each
row represents the actual data category. Therefore, the confusion
matrix can directly show each distribution of the categories and
simply analyze the misjudgments among different categories.
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Fig. 5. Example diagram of UCM dataset.

C. Experimental Setup and Environment

To reduce the influence of randomness on the results, the
dataset was randomly divided in this study, and the experiment
was repeated 10 times, taking the average and standard deviation
of the total accuracy as the result. In addition, to fairly evaluate
the proposed GCSANet, we maintained the same training test
ratio as previous studies on the open dataset; two different
ratios for training versus validation were set for each dataset.
The ratios for training versus validation were set at 50% and
80%, 20% and 50%, and 10% and 20% on the UCM, AID, and
NWPU-RESISC45 datasets, respectively. Comparative experi-
ments were all evaluated on the same dataset. Among them, the
CAD network and GCSANet network have the same backbone
to further compare the effects of two different attention mecha-
nisms on remote sensing scene recognition.

The Pytorch deep learning framework was used to build the
network model in this article. The adopted network parameters
and settings were as follows: the images of the training set were
input and the middle size of 288 × 288 for the three open
datasets was chosen to ensure that less information about the
image is lost while minimizing the amount of computation.
In the training process, each dataset had 16 samples in each
batch; the dataset was then inputted into the neural network
for training. All our experiments were run for 100 epochs
utilizing the ReduceLRonPlateau schedule with the patience of
five epochs and decay factor of 0.2 to ensure that the network
was fully fitted. The cross-entropy loss, combined with label
smoothing [60], reduces the effect of interclass similarity in
representing scene images. Whereas conventional cross-entropy
loss only considers the optimal result for a single true label,
label smoothing takes multiple categories of losses into account

in the loss function to reduce the incidence of overfitting. The
experiment was conducted on a computer equipped with dual
Intel Xeon E5-2620v4 processors, two GeForce RTX 2080Ti,
and 128 GB RAM.

IV. RESULTS AND ANALYSIS

A. Experimental Results and Analysis on the UCM Dataset

To evaluate the efficiency of the GCSANet, 15 of the latest
methods were used for comparison on the UCM dataset. The
results are shown in Table I.

Compared to the other 15 models, the GCSANet displays a
significant improvement in classification accuracy. The results
show a 4.29% and 4.34% higher classification accuracy than
that of the CaffeNet method at a training versus validation ratio
of 80% and 50%, respectively. The performance of the CAD
network is the best on the UCM data set, and the OAs of
training versus validation ratio of 80% and 50% are 99.66%
and 98.57%, respectively, while the corresponding results of the
GCSA network are 99.31% and 98.32%, a decrease of 0.35% and
0.25%, respectively. This can be because there are less than 100
images in each dataset and there being more network parameters
in the GCSANet network model than in the CAD network could
result in a relatively low precision because of the under-fitted
model.

The 50% training versus validation ratio in terms of the
confusion matrix is generated by the classification results in the
GCSANet network. The accuracy for each category is higher
than 92%, and it reaches 100% in 10 of them. This shows that
the classification performance of the GCSANet is stable. The
ratio of the category of “dense dwellings” with the greatest
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TABLE I
ACCURACY EVALUATION COMPARISON OF THE GCSANET AND 15 OTHER METHODS ON THE UCM DATASET

TABLE II
ACCURACY EVALUATION COMPARISON OF THE GCSANET NETWORK AND 11 OTHER POPULAR MODELS ON THE AID DATASET

chance of misclassification to be classified as “medium-dense
dwellings” is 8%, owing to the extremely similar surface objects
of the buildings and streets. By the same token, categories of
“medium-dense dwellings” and “sparse dwellings” tend to be
misclassified.

B. Experimental Results and Analysis on the AID Dataset
The results of the GCSANet and 11 other popular models on

the AID dataset are shown in Table II. We can see that when
the training versus validation ratio is 50% and 20%, the OAs of
the GCSA network are 97.53% and 95.96%, respectively, 1.21%
and 2.17% higher than the Inception-v3-CapsNet network. Com-
pared to the CAD network, the GCSANet network performs
better on the AID dataset, with an advantage of 0.37% and
0.23%, respectively. Owing to the densely connected network

backbones of both methods, the GCSANet performs better than
the channel attention mechanism in the CAD network and on
large datasets such as the AID. Its highest classification accuracy
also reveals that the GCSANet has an excellent remote sensing
scene classification capability. The confusion matrix generated
from the GCSANet with training versus validation ratio of 20%
is shown in Fig. 6. It can be seen that the classification accuracy in
26 categories is higher than 90% and exceeded 83% in the other
ones. Several categories with difficult identification on the UCM
data set, involving “sparse residential,” “medium residential,”
and “dense residential,” obtained a 99.6%, 97.4%, and 97.6%
classification accuracy, respectively. The classification accura-
cies of the “school” and “central area” were relatively low at
83.8% and 88%, respectively. The reason is that they share sim-
ilar architectural arrangements. Similarly, it is easy to confuse
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Fig. 6. Confusion matrix of the GCSANet on the AID dataset.

“school” and “commercial area,” “square” and “church,” and
“resort” is easily confused with the “park” because considerable
vegetation and house coverage exist in both images. Neverthe-
less, when compared to the 49% and 60% classification accuracy
of the VGGNet-16 [2], the GCSANet network made remarkable
progress, indicating that it can effectively identify images on the
AID remote sensing scene dataset with interclasses similarity.

C. Experimental Results and Analysis on the
NWPU-RESISC45 Data Set

The experimental results on the most challenging dataset,
NWPU-RESISC45, comparing the GCSANet with 12 other
popular models are listed in Table III. With ratios for training
versus validation at 20% and 10%, the classification accuracy of
the GCSANet is 94.95% and 93.39% respectively, 2.35% and
4.36% higher than that of the Inception-v3-CapsNet network.
The results indicate that the GCSANet is more effective for
large-scale remote sensing scene data. A 3.57% difference was
recorded between the 20% and 10% ratios of training versus
validation for the Inception-v3-CapsNet network, while the
gap was only 1.56% for the GCSANet. This indicates that the
GCSANet has a powerful learning capacity for image feature
representations on large-scale datasets.

For the confusion matrix generated from the GCSANet with
training versus validation ratio of 20% on the NWPU-RESISC45
dataset, the accuracy of the “palace” scene is only 83%. The rea-
son is that some samples are mistakenly classified as “church,”
because of certain similarities in the buildings and streets. Fur-
thermore, parts of the “rectangular farmland” are identified as
“terraced fields” because of the similar surface cover character-
istics. Overall, the classification accuracy of 40 categories was
higher than 90%, while the remainder exceeded 83%; however,
the classification accuracy of only three categories was higher
than 90% in the CAD network, which proves the superior
robustness and classification effect of the GCSANet.

V. DISCUSSION

A. Ablation Experiment on the GCSANet

To further analyze the role of each module in the GCSANet,
we carried out ablation experiments on the AID and NWPU
datasets, including the attention mechanism without the global
context and the mixup operation.

Table IV shows the classification results. The average ac-
curacy of the GCSANet was 1.69% higher than that of the
GCSANet without the global context attention mechanism. This
indicates that the GCSANet framework has a potent feature
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TABLE III
ACCURACY RESULTS OF THE GCSANET AND 12 OTHER POPULAR METHODS ON THE NWPURESISC45 DATASET

TABLE IV
ABLATION EXPERIMENT RESULTS OF THE GCSANET ON BOTH THE AID AND NWPU DATASETS

extraction capability. This is especially true in the case of a
backbone network with high accuracy, where the GCSANet
is still able to achieve an accuracy improvement. In addition,
the average classification accuracy of the GCSANet only using
the mixup operation increased by 0.55%, showing the effect of
continuous-discrete spatial samples in this article.

B. Generalization Ability of GCSANet Network

1) Classification Performance on Complicated Mountain
Scene Data Sets: Currently, owing to the lack of public moun-
tain remote-sensing scene datasets, we created a dataset in
a mountain area covering 2589 km2 using China’s Ziyuan-3
satellite images to further verify the generalization ability of the
proposed GCSANet. The Ziyuan-3-02, whose imaging time was
December 17, 2018, and was obtained without cloud coverage,
was used to generate the dataset used in this article. First,
we used the ENVI 5.3 software to extract the digital terrain
model of the area based on the Ziyuan-3-02 stereo pair data.
Second, we extracted a digital terrain model to ortho-rectify the
multispectral and panchromatic images. Thereafter, we fused
the rectified multispectral image with the panchromatic image

using the pan-sharpening method to produce a fused image with
a resolution of 2.1 m.

The total number of image patches was 1060, including six
types of scene images: farmland, residential area, mountains,
mountain roads, rivers, and terraces; these are listed in Table V.
The size of the patch was 256 × 256 pixel. There are patchy
towns distributed along the river, roads connecting towns, farm-
land, and rivers, as well as overlapping terraces and farmland.

To examine the validity of the dataset, we refer to Google
Earth and compare it to the data of the third national land survey.
The mountain scene datasets can be downloaded.1 Some typical
patches are shown in Fig. 7. Unlike the land cover images of the
public dataset, first, the image was collected from Zhiyuan-3.
Second, the dataset exhibits a high degree of similarity between
classes in the background of the same complex mountain sce-
nario, for example, “mountain roads” are often existed in the
background of “mountains.” It is also a challenge to verify the
generalization ability of the GCSANet network.

1[Online]. Available: https://pan.baidu.com/s/18NW5syly4WnrHOXDO8u
SmQ, watchdog: cug0

https://pan.baidu.com/s/18NW5syly4WnrHOXDO8upenalty -@M SmQ
https://pan.baidu.com/s/18NW5syly4WnrHOXDO8upenalty -@M SmQ
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TABLE V
NUMBER OF EACH CATEGORY IN THE MOUNTAIN SCENE DATASET

Fig. 7. Sample image of a mountainous scene data set.

TABLE VI
PERFORMANCE COMPARISONS OF THE GCSA AND SIX OTHER POPULAR MODELS UNDER DIFFERENT RATIOS OF TRAINING VERSUS VALIDATION

ON THE MOUNTAIN REMOTE SENSING SCENE DATASET

The results of the GCSANet which applying the mixup oper-
ation and other six popular methods on the mountainous scene
data set are shown in Table VI. For the 70% and 50% ratios of
training versus validation, the OAs of the GCSANet are 95.85%
and 94.13%, respectively, 1.2% and 1.1% higher than that of
the ResNet-18. The average accuracy of the GCSANet is higher
than that of the CAD network with a feature channel attention
mechanism [41]; meanwhile, the variances of the GCSANet in
each of these cases were 0.49 and 0.52, respectively, a 0.19 and
0.27 reduction than that of the CAD network. These indicate
that the GCSANet is more stable in terms of classification than
the feature channel-based attention mechanism on the mountain
scenes dataset. Moreover, the GCSANet of 8.11M parameters is
1.49% higher than the GoogLeNet of the lowest parameters on
all methods. This demonstrates that the GCSANet is a relatively
lightweight network.

2) Prediction Analysis on Results of Remote Sensing Scene
Datasets in Mountainous Areas: In the 70% and 50% ratios
of training versus validation, the prediction accuracy of the
GCSANet is 95.85% and 94.13%, respectively. However, the
“mountain road” category is only 79.6%. And 20.4% of them
are mistakenly classified as “mountains” as a result of a relatively
high level of confusion between them as shown in Fig. 8. We
can see that the misclassified mountains tend to lie in the images
with mountain features. When the road is small in proportion to
the mountain patches, it becomes more difficult to distinguish it
owing to the large interclasses similarity.

Furthermore, to reveal the effect of sample spatial indepen-
dence on the classification accuracy, we carried out an exper-
iment based on sample validation and test dataset in discon-
tinuous regions. The results show that the average accuracy of
prediction is 93.36% and 91.53% when the ratios of training
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Fig. 8. Image feature of “Mountain Road” scene was mistakenly divided into
the “mountain” scene.

versus validation are 70% and 50%, respectively, which is a small
decrease. This indicates that the spatial independence of samples
has a certain bearing on the mountain scenes classification of the
GCSANet.

VI. CONCLUSION

The ability to extract multiscale features of local and global
features of ground objects is insufficient for remote sensing
image scene classification. Thus, the GCSANet based on GCSA
was proposed in this article. First, experiments were carried out
on three open remote sensing scene datasets to evaluate the per-
formance of the GCSANet. Second, to validate the generaliza-
tion ability of the GCSANet, experiments were carried out on the
self-built challenging mountain remote sensing scene dataset.
The main conclusions are as follows. First, the GCSANet can
effectively extract the global features of remote sensing scene
images compared to other popular models. Furthermore, it has
a stronger learning ability for large and complex scene datasets.
The variance of accuracy is smaller under different proportions
of training sets versus validation sets, and its robustness and
stability are better. Second, the mixup operation can effectively
enhance the smoothness and classification accuracy of the data
space in the neighborhood and improve the utilization efficiency
of the remote sensing scene sample data. Finally, the GCSANet
presents the highest classification accuracy among other popular
models on the mountain image scene dataset and is more stable
than the feature channel attention network with high precision.
Owing to certain limitations, such as inefficient dataset, we will
further develop an improved GCSANet framework to ensure
stronger transferability and add more comparative experiments
to demonstrate the strong classification accuracy of the model.

REFERENCES

[1] Y. Zhong, Q. Zhu, and L. Zhang, “Scene classification based on the
multifeature fusion probabilistic topic model for high spatial resolution
remote sensing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 53,
no. 11, pp. 6207–6222, Nov. 2015.

[2] C. Gong, J. Han, and X. Lu, “Remote sensing image scene classifica-
tion: Benchmark and state of the art,” Proc. IEEE, vol. 105, no. 10,
pp. 1865–1883, Apr. 2017.

[3] G. Yue, S. Jun, L. Jun, and W. Ruoyu, “Remote sensing scene classification
based on high-order graph convolutional network,” Eur. J. Remote Sens.,
vol. 54, no. sup1, pp. 141–155, Feb. 2021.

[4] B. Luo, S. Jiang, and L. Zhang, “Indexing of remote sensing images with
different resolutions by multiple features,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 6, no. 4, pp. 1899–1912, Aug. 2013.

[5] L. Ye, L. Wang, Y. Sun, L. Zhao, and Y. Wei, “Parallel multi-stage
features fusion of deep convolutional neural networks for aerial scene
classification,” Remote Sens. Lett., vol. 9, no. 3, pp. 294–303, Mar. 2018,
doi: 10.1080/2150704X.2017.1415477.

[6] W. Chen, X. Li, H. He, and L. Wang, “Assessing different feature sets’
effects on land cover classification in complex surface-mined landscapes
by ziyuan-3 satellite imagery,” Remote Sens., vol. 10, no. 1, Jan. 2017,
Art. no. 23, doi: 10.3390/rs10010023.

[7] C. Gong, Z. Li, X. Yao, G. Lei, and Z. Wei, “Remote sensing image scene
classification using bag of convolutional features,” IEEE Geosci. Remote.
Sens. Lett., vol. 14, no. 10, pp. 1735–1739, Aug. 2017.

[8] F. Hu, G. Xia, J. Hu, and L. Zhang, “Transferring deep convolutional neural
networks for the scene classification of high-resolution remote sensing
imagery,” Remote Sens., vol. 7, no. 11, pp. 14680–14707, Nov. 2015,
doi: 2015 10.3390/rs71114680.

[9] Y. Yang and S. Newsam, “Comparing SIFT descriptors and gabor texture
features for classification of remote sensed imagery,” in Proc. IEEE Int.
Conf. Signal Image Process. Appl., 2008, pp. 1852–1855.

[10] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, Jul.
2002.

[11] Z. Li, Z. Zhou, and D. Hu, “Scene classification using a multi-resolution
bag-of-features model,” Pattern Recognit., vol. 46, no. 1, pp. 424–433,
Jan. 2013, doi: 10.1016/j.patcog.2012.07.017.

[12] L. Zhao, T. Ping, and L. Huo, “A 2-D wavelet decomposition-
based bag-of-visual-words model for land-use scene classification,”
Int. J. Remote Sens., vol. 35, no. 5/6, pp. 2296–2310, Mar. 2014,
doi: 10.1080/01431161.2014.890762.

[13] L. Zhao, P. Tang, and L. Huo, “Land-use scene classification using a
concentric circle-structured multiscale bag-of-visual-words model,” IEEE
J. Sel. Topics Appl. Earth Observ., vol. 7, no. 12, pp. 4620–4631, Aug.
2014.

[14] S. Chen and Y. Tian, “Pyramid of spatial relations for scene-level land
use classification,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4,
pp. 1947–1957, Apr. 2015.

[15] F. Hu, G. S. Xia, Z. Wang, X. Huang, L. Zhang, and H. Sun, “Unsupervised
feature learning via spectral clustering of multidimensional patches for
remotely sensed scene classification,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 8, no. 5, pp. 2015–2030, May 2015.

[16] Q. Zhu, Y. Zhong, Z. Bei, G. Xia, and L. Zhang, “The bag-of-visual-
words scene classifier combining local and global features for high spatial
resolution imagery,” in Proc. 12th Int. Conf. Fuzzy Syst. Knowl. Discov.,
2015, pp. 717–721.

[17] H. Sridharan and A. Cheriyadat, “Bag of lines (BoL) for improved aerial
scene representation,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 3,
pp. 676–680, Mar. 2015.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Adv. Neural Inf. Process. Syst.,
vol. 25, pp. 1097–1105, 2012.

[19] G. Xia et al., “DOTA: A large-scale dataset for object detection in aerial
images,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 3974–3983.

[20] X. Lu, H. Wu, and Y. Yuan, “Double constrained NMF for hyper-
spectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5,
pp. 2746–2758, May 2014.

[21] E. Othmana, Y. Bazi, N. Alajlan, H. Alhichri, and F. Melgani, “Using
convolutional features and a sparse autoencoder for land-use scene classi-
fication,” Int. J. Remote Sens., vol. 37, no. 10, pp. 2149–2167, May 2016.

[22] F. Zhang, B. Du, and L. Zhang, “Scene classification via a gradient boosting
random convolutional network framework,” IEEE Trans. Geosci. Remote
Sens., vol. 54, no. 3, pp. 1793–1802, Mar. 2016.

[23] W. Zhang, P. Tang, and L. Zhao, “Remote sensing image scene classifica-
tion using CNN-CapsNet,” Remote Sens., vol. 11, no. 5, pp. 494, Feb. 2019,
doi: 10.3390/rs11050494.

[24] A. Ma, Y. Wan, Y. Zhong, J. Wang, and L. Zhang, “SceneNet: Remote
sensing scene classification deep learning network using multi-objective
neural evolution architecture search,” ISPRS J. Photogramm., vol. 172,
pp. 171–188, Feb. 2021, doi: 10.1016/j.isprsjprs.2020.11.025.

[25] G. Cheng, C. Yang, X. Yao, L. Guo, and J. Han, “When deep learning
meets metric learning: Remote sensing image scene classification via
learning discriminative CNNs,” IEEE Trans. Geosci. Remote., vol. 56,
no. 5, pp. 2811–2821, Jan. 2018.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2014.

https://dx.doi.org/10.1080/2150704X.2017.1415477
https://dx.doi.org/10.3390/rs10010023
https://dx.doi.org/2015 ignorespaces 10.3390/rs71114680
https://dx.doi.org/10.1016/j.patcog.2012.07.017
https://dx.doi.org/10.1080/01431161.2014.890762
https://dx.doi.org/10.3390/rs11050494
https://dx.doi.org/10.1016/j.isprsjprs.2020.11.025


CHEN et al.: GCSANet: A GCSA DEEP LEARNING NETWORK FOR REMOTE SENSING SCENE CLASSIFICATION 1161

[27] S. Chai, H. Liu, Y. Gu, and H. Yao, “Deep feature fusion for VHR remote
sensing scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 8, pp. 4775–4784, Aug. 2017.

[28] E. Li, J. Xia, P. Du, C. Lin, and A. Samat, “Integrating multilayer features
of convolutional neural networks for remote sensing scene classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 10, pp. 5653–5665,
Jun. 2017.

[29] C. Qiao, J. Wang, J. Shang, and B. Daneshfar, “Spatial relationship-
assisted classification from high-resolution remote sensing imagery,”
Int. J. Digit Earth, vol. 8, no. 9, pp. 710–726, Jun. 2014,
doi: 10.1080/17538947.2014.925517.

[30] R. M. Anwer, F. S. Khan, J. van de Weijer, and M. Molinier, “Binary
patterns encoded convolutional neural networks for texture recognition
and remote sensing scene classification,” ISPRS J. Photogramm., vol. 138,
pp. 74–85, 2018, doi: 10.1016/j.isprsjprs.2018.01.023.

[31] X. Lu, X. Zheng, and Y. Yuan, “Remote sensing scene classification by
unsupervised representation learning,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 9, pp. 5148–5157, May 2017.

[32] N. Liu, L. Wan, Y. Zhang, T. Zhou, H. Huo, and T. Fang, “Exploiting
convolutional neural networks with deeply local description for remote
sensing image classification,” IEEE Access, vol. 6, pp. 11215–11228, Jan.
2018, doi: 10.1109/ACCESS.2018.2798799.

[33] Y. Liu, Y. Liu, and L. Ding, “Scene classification based on two-stage
deep feature fusion,” IEEE Trans. Geosci. Remote Sens., vol. 15, no. 2,
pp. 183–186, Feb. 2018.

[34] H. Wang, Q. Hu, C. Wu, J. Chi, and X. Yu, “Non-locally up-down con-
volutional attention network for remote sensing image super-resolution,”
IEEE Access, vol. 8, pp. 166304–166319, 2020.

[35] Y. Yu and F. Liu, “Aerial scene classification via multilevel fusion based
on deep convolutional neural networks,” IEEE Geosci. Remote Sens. Lett.,
vol. 15, no. 2, pp. 287–291, Feb. 2018.

[36] Y. Liu, Y. Zhong, F. Fei, Q. Zhu, and Q. Qin, “Scene classification based
on a deep random-scale stretched convolutional neural network,” Remote
Sens.-Basel, vol. 10, no. 3, pp. 444, Mar. 2018, doi: 10.3390/rs10030444.

[37] K. Nogueira, O. Penatti, and J. Santos, “Towards better exploiting convo-
lutional neural networks for remote sensing scene classification,” Pattern
Recognit., vol. 61, pp. 539–556, 2016, doi: 10.1016/j.patcog.2016.07.001.

[38] J. Chen, C. Wang, Z. Ma, J. Chen, D. He, and S. Ackland, “Remote sensing
scene classification based on convolutional neural networks pre-trained
using attention-guided sparse filters,” Remote Sens., vol. 10, no. 2, pp. 290,
Feb. 2018, doi: 10.3390/rs10020290.

[39] B. Yuan, L. Han, X. Gu, and H. Yan, “Multi-deep features fu-
sion for high resolution remote sensing image scene classification,”
Neural Comput. Appl., vol. 33, no. 6, pp. 2047–2063, Mar. 2021,
doi: 10.1007/s00521-020-05071-7.

[40] U. Chaudhuri, B. Banerjee, and A. Bhattacharya, “Siamese graph
convolutional network for content based remote sensing image re-
trieval,” Comput. Vis. Image Understand, vol. 184, pp. 22–30, 2019,
doi: 10.1016/j.cviu.2019.04.004.

[41] W. Tong, W. Chen, W. Han, X. Li, and L. Wang, “Channel-attention-based
densenet network for remote sensing image scene classification,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 4121–4132, Jul.
2020, doi: 10.1109/JSTARS.2020.3009352.

[42] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in Proc. Int. Conf. Learn. Representations,
Feb. 2018.

[43] G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, and C. Malossi, “BAGAN:
Data augmentation with balancing GAN,” Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Mar. 2018.

[44] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very
deep networks,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 2377–2385.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 770–778.

[46] H. Gao, S. Yu, L. Zhuang, D. Sedra, and K. Weinberger, “Deep net-
works with stochastic depth,” in Proc. Eur. Conf. Comput. Vis., 2016,
pp. 646–661.

[47] G. Huang, Z. Liu, L. Van Der Maten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 4700–4708.

[48] X. L. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural net-
works,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 7794–7803.

[49] R. Lei, C. Zhang, S. Du, C. Wang, and M. Yu, “A non-local cap-
sule neural network for hyperspectral remote sensing image classi-
fication,” Remote Sens. Lett., vol. 12, no. 1, pp. 40–49, Jan. 2021,
doi: 10.1080/2150704X.2020.1864052.

[50] M. Zhang, Q. Cheng, F. Luo, and L. Ye, “A triplet non-local neural network
with dual-anchor triplet loss for high resolution remote sensing image
retrieval,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14,
pp. 2711–2723, Feb. 2021, doi: 10.1109/JSTARS.2021.3058691.

[51] Y. Cao, J. Xu, S. Lin, F. Wei, and H. Hu, “GCNet: Non-local networks
meet squeeze-excitation networks and beyond,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2019, pp. 1971–1980.

[52] Y. Yi and N. Shawn, “Bag-of-visual-words and spatial extensions for land-
use classification,” in Proc. Adv. Geograph. Inf. Syst., 2010, pp. 270–279.

[53] G. Xia et al., “AID: A benchmark data set for performance evaluation of
aerial scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 7, pp. 3965–3981, Jul. 2017.

[54] X. Bian, C. Chen, L. Tian, and Q. Du, “Fusing local and global features
for high-resolution scene classification,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 10, no. 6, pp. 2889–2901, Apr. 2017.

[55] M. Castelluccio, G. Poggi, C. Sansone, and L. Verdoliva, “Land use
classification in remote sensing images by convolutional neural net-
works,” Acta Ecologica Sinica, vol. 28, no. 2, pp. 627–635, 2015,
doi: 10.1016/S1872-2032(08)60029-3.

[56] K. Qi, Q. Guan, Y. Chao, F. Peng, S. Shen, and H. Wu, “Concentric
circle pooling in deep convolutional networks for remote sensing scene
classification,” Remote Sens., vol. 10, no. 6, Jun. 2018, Art. no. 934,
doi: 10.3390/rs10060934.

[57] Y. Yu and F. Liu, “Dense connectivity based two-stream deep feature fusion
framework for aerial scene classification,” Remote Sens., vol. 10, no. 7,
Jul. 2018, Art. no. 1158, doi: 10.3390/rs10071158.

[58] X. Gong, Z. Xie, Y. Liu, X. Shi, and Z. Zheng, “Deep salient fea-
ture based anti-noise transfer network for scene classification of remote
sensing imagery,” Remote Sens., vol. 10, no. 3, 2018, Art. no. 410,
doi: 10.3390/rs10030410.

[59] D. Zeng, S. Chen, B. Chen, and S. Li, “Improving remote sensing scene
classification by integrating global-context and local-object features,”
Remote Sens., vol. 10, no. 5, 2018, Art. no. 734, doi: 10.3390/rs10050734.

[60] R. Müller, S. Kornblith, and G. Hinton, “When does label smoothing
help?,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 4694–4703.

[61] Y. Liu and C. Huang, “Scene classification via triplet networks,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 1, pp. 220–237,
Oct. 2017.

[62] Y. Guo, J. Ji, X. Lu, H. Huo, T. Fang, and D. Li, “Global-local at-
tention network for aerial scene classification,” IEEE Access, vol. 7,
pp. 67200–67212, 2019.

[63] R. Fan, L. Wang, R. Feng, and Y. Zhu, “Attention based resid-
ual network for high-resolution remote sensing imagery scene clas-
sification,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2019,
pp. 1346–1349.

[64] J. Shen, T. Zhang, Y. Wang, R. Wang, Q. Wang, and M. Qi, “A
dual-model architecture with grouping-attention-fusion for remote sens-
ing scene classification,” Remote Sens., vol. 13, 2021, Art. no. 433,
doi: 10.3390/rs13030433.

[65] X. Tang, Q. Ma, X. Zhang, F. Liu, J. Ma, and L. Jiao, “Attention consistent
network for remote sensing scene classification,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 14, pp. 2030–2045, Jan. 2021,
doi: 10.1109/JSTARS.2021.3051569.

[66] Y. Gao, J. Shi, J. Li, and R. Wang, “Remote sensing scene classification
based on high-order graph convolutional network,” Eur. J. Remote Sens.,
vol. 54, pp. 141–155, 2021, doi: 10.1080/22797254.2020.1868273.

[67] K. Xu, H. Huang, P. Deng, and Y. Li, “Deep feature aggregation framework
driven by graph convolutional network for scene classification in remote
sensing,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–15, Apr. 2021,
doi: 10.1109/TNNLS.2021.3071369.

[68] G. Cheng, X. Xie, J. Han, L. Guo, and X. GS, “Remote sensing image scene
classification meets deep learning: Challenges, methods, benchmarks, and
opportunities,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 13, pp. 3735–3756, Jun. 2020, doi: 10.1109/JSTARS.2020.3005403.

[69] L. Li, J. Han, X. Yao, G. Cheng, and L. Guo, “DLA-MatchNet for few-shot
remote sensing image scene classification,” IEEE Trans. Geosci. Remote
Sens., vol. 59, no. 9, pp. 7844–7853, Sep. 2021.

[70] G. Cheng et al., “SPNet: Siamese-prototype network for few-shot remote
sensing image scene classification,” IEEE Trans. Geosci. Remote Sens.,
pp. 1–11, Jul. 2021, doi: 10.1109/TGRS.2021.3099033.

https://dx.doi.org/10.1080/17538947.2014.925517
https://dx.doi.org/10.1016/j.isprsjprs.2018.01.023
https://dx.doi.org/10.1109/ACCESS.2018.2798799
https://dx.doi.org/10.3390/rs10030444
https://dx.doi.org/10.1016/j.patcog.2016.07.001
https://dx.doi.org/10.3390/rs10020290
https://dx.doi.org/10.1007/s00521-020-05071-7
https://dx.doi.org/10.1016/j.cviu.2019.04.004
https://dx.doi.org/10.1109/JSTARS.2020.3009352
https://dx.doi.org/10.1080/2150704X.2020.1864052
https://dx.doi.org/10.1109/JSTARS.2021.3058691
https://dx.doi.org/10.1016/S1872-2032(08)60029-3
https://dx.doi.org/10.3390/rs10060934
https://dx.doi.org/10.3390/rs10071158
https://dx.doi.org/10.3390/rs10030410
https://dx.doi.org/10.3390/rs10050734
https://dx.doi.org/10.3390/rs13030433
https://dx.doi.org/10.1109/JSTARS.2021.3051569
https://dx.doi.org/10.1080/22797254.2020.1868273
https://dx.doi.org/10.1109/TNNLS.2021.3071369
https://dx.doi.org/10.1109/JSTARS.2020.3005403
https://dx.doi.org/10.1109/TGRS.2021.3099033


1162 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Weitao Chen (Member, IEEE) was born in Wugang,
Henan province in China. He received the B.E. degree
in land resource management from the Jiaozuo Insti-
tute of Technology, Jiaozuo City, China, in 2003, the
M.E. degree in quaternary geology and doctor’s de-
gree in environmental science and engineering from
China University of Geosciences (CUG), Wuhan,
China, in 2006 and 2012.

He is a Professor with the School of Computer
Science, China University of Geosciences. He has
authored or coauthored more than 30 papers. His main

research interests include machine learning and remote sensing of environment.

Shubing Ouyang was born in Minhou County,
Fuzhou City, Fujian Province, China, in 1990. She
received the B.S. degree in geology from the Wuhan
University of Engineering Science, Wuhan, China,
in 2012, and the M.S. degree in mineral resource
prospecting and exploration from the China Univer-
sity of Geosciences, Wuhan, China, in 2015. She is
currently working toward the Ph.D. degree in geo-
science information engineering with the School of
Computer Science, China University of Geosciences,
Wuhan, China.

Her research interests include geoscience information processing, remote
sensing image processing, and deep learning.

Wei Tong received the B.S. degree in electronic in-
formation engineering from the Wuhan University of
Technology, Wuhan, China, in 2018, and the M.S.
degree in computer technique with the School of
Computer Science, China University of Geosciences,
Wuhan, China, in 2021.

His research interests include remote sensing im-
age processing, computer vision, and deep learning.

Xianju Li received the B.S. degree in geomatics
engineering, M.S. degree in geodesy and survey engi-
neering, and Ph.D. degree in surveying and mapping
from the China University of Geoscience, Wuhan,
China, in 2009, 2012, and 2016, respectively.

Since 2016, he has been an Associate Professor
with the School of Computer Science, China Univer-
sity of Geosciences. He has authored or coauthored
more than ten papers. His main research interests in-
clude remote sensing image processing and analysis,
computer vision, and machine learning.

Xiongwei Zheng born in Tianmen, Hubei Province,
China. He received the bachelor’s degree in pho-
togrammetry and remote sensing from Wuhan Uni-
versity, Wuhan, China, in 2003. He is currently work-
ing toward the doctor’s degree in geoscience infor-
mation engineering from China University of Geo-
sciences, Wuhan, China.

He is a professor level Senior Engineer. He is
the Director of Big Data Center of China Airborne
Geophysical and Remote Sensing Center for natural
resources. His research interests include data acqui-

sition and processing of satellite multi spectral, hyperspectral, laser sounding,
and radar remote sensing.

Lizhe Wang (Fellow, IEEE) received the B.E. and
M.E. degrees in electrical engineering from Tsinghua
University, Beijing, China, in 1998, 2001, respec-
tively, and the Doctor of Engineering degree from
University Karlsruhe (Magna Cum Laude), Germany.

He is a ChuTian Chair Professor with the School of
Computer Science, China University of Geosciences,
Wuhan, China. His research interests include HPC,
e-Science, and remote sensing image processing.

Prof. Wang is a Fellow of IET and British Computer
Society.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


