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Automatic Segmentation of Individual Grains
From a Terrestrial Laser Scanning Point Cloud

of a Mountain River Bed
Agata Walicka and Norbert Pfeifer

Abstract—In this article, we propose a method for instance
segmentation of individual grains from a terrestrial laser scanning
point cloud representing a mountain river bed. The method was
designed as a classification followed by a segmentation approach.
The binary classification into either points representing river bed or
grains is performed using the random forest algorithm. The point
cloud is classified based only on geometrical features calculated
for a local, spherical neighborhood. A multisize neighborhood
approach was used together with the feature selection method
that is based on correlation analysis. The final classification was
performed using a set of features calculated for the neighborhood
size of 5, 15, and 20 cm. The achieved classification results have the
overall accuracy of 85–95%, depending on the test site. The seg-
mentation is performed using the density-based spatial clustering of
applications with noise algorithm in order to cluster the point cloud
based on Euclidean distances between points. The performed ex-
periments showed that the proposed method enables us to correctly
delineate 67–88% of grains, depending on the test site. However,
the resulting point cloud based completeness expressed as Jaccard
index is similar for each of the test sites and is approximately
88%. Moreover, the proposed method proved that it is robust to
the shadowing effect.

Index Terms—Density-based spatial clustering of applications
with noise (DBSCAN), instance segmentation, sediment transport,
terrestrial laser scanning (TLS).

I. INTRODUCTION

G EOMORPHOLOGICAL and hydrological studies of the
processes driven by the water flow often require a 3-D

model of the river bed topography. To create a topography
model, accurate measurements of the terrain surface are re-
quired. These measurements are usually performed using remote
sensing techniques, including terrestrial laser scanning (TLS).
The value and importance of TLS as a monitoring technique
in earth science, including river morphology, is investigated by
Telling et al. [1]. During the laser scanning measurements, a
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point cloud representing a river bed and its surrounding area is
produced. In the further stages, it is processed to obtain a digital
elevation model (DEM) that is employed for geomorphological
and hydrological analyzes. Examples of such studies include
estimation of the volume of transported rock material, evalu-
ation of morphological changes, roughness determination, and
description of gravel structure [2]–[4]. Similar investigations
were also performed for other measurement techniques, such as
mobile laser scanning (MLS) [5], [6]. However, the processing
of DEMs does not allow for obtaining complete information
about all changes taking place in the river bed. For instance,
the thorough investigation of the sediment transport, including
the movement path of each grain, requires the studies to be
performed directly on the point cloud [7]–[9], [5]. What is more,
a number of the applications require segmentation of individual
grains from the entire data. The segmented grains can be used for
various applications. For instance, they can be directly utilized
for grain size estimation or can be a part of a larger workflow
aiming at sediment transport monitoring.

The information about grain size distribution can be em-
ployed for hydraulic modeling, prediction of boundary shear
stress, sediment transport estimation, e.g., [10], [11], and many
others [12]. Conventionally, grain size distributions have been
obtained by clast measurements and counting grains in a river
bed, e.g., [13]. However, these methods are time-consuming and
disruptive to the river bed morphology [12], [14]. Therefore,
recently, remote sensing techniques are increasing their pop-
ularity in this application. Typically, remote sensing data are
used for the estimation of grain size distribution by the analysis
of statistical properties of images, such as semivariograms of
image texture, or autocorrelation of image intensity, e.g., [15],
[16]. On the other hand, there are methods that enable delineation
of individual grains and measurement of their size directly in
the images or orthomosaics, e.g., [17], [14]. However, these
methods enable the calculation of only the 2-D size of the grain.
As a result, photogrammetry and laser scanning point clouds
and their products, such as DEMs are commonly used to derive
the surface roughness. This information is then utilized for the
estimation of the grain size distribution, e.g., [18]. However, the
results are highly influenced by poor sorting of grains [12]. Yet,
these challenges may be overcome by segmentation of individual
grains directly from the point cloud and measurement of their
3-D size.

The knowledge about sediment transport is important for
a number of applications, such as watershed management,
ecology, channel restoration [19], engineering design, or flood
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control [20]. Conventionally, sediment transport is investigated
using sediment traps, tracers or is estimated based on sediment
equations, e.g., [18], [21], [22]. Recently, also remote sensing
techniques are utilized for the measurement of the volume of
transported rock material and detection of accumulation and
erosion zones by DEM differentiation, e.g., [3]. However, the
conventional methods require time-consuming field works and
DEMs do not provide information about horizontal changes in
the river bed. This information can be filled by a direct analysis of
the obtained point cloud. The analysis can provide information
about movement parameters, including translation and rotation
parameters, for each grain. However, the individual grains need
to be segmented to achieve the goal [7].

Since manual segmentation of grains is time-consuming,
Wang et al. [6] proposed an algorithm that uses DEM as a tool to
automatically obtain point clouds representing individual grains.
However, the proposed DEM-based approach fails for compli-
cated scenarios, because it does not allow for segmentation of
overlapping grains. What is more, the utilization of this method
is especially challenging in the presence of extensive shadows
caused by large grains obscuring smaller rock fractions. During
the creation of the DEM, it is necessary to interpolate over the
missing data. The errors and introduced artifacts resulting from
the interpolation may substantially affect the final result.

Shadows are caused by the TLS technique and result directly
from the measurement methodology, which assumes that scans
are performed from a limited number of stations. Hence, while
it is possible to partially reduce a shadowing effect, it cannot
be completely eliminated. The problem is especially enhanced
when the access to the measured object is limited. This is the
case, for instance, for many mountain rivers as they have reduced
accessibility due to steep slopes and lush vegetation. Therefore,
the placement possibilities for the laser scanner are very limited.
As a result, in the presence of objects of different sizes (such
as grains in the river bed), the space between large objects is
shadowed. However, despite these disadvantages, the use of
other techniques seems to be less justified. Due to the limited
accessibility of some of the river beds, the use of MLS would
not be possible as it requires direct access to the measured
object. On the other hand, the use of UAVs would be limited
due to the safety reasons, impact of the vegetation and changes
in the terrain height that would cause complications in the
execution of the flight plan. Another alternative technique is
terrestrial photogrammetry. However, it provides less accurate
description of the grain geometry than laser scanning [8], which
also agrees with a statement by Schwendel and Milan [23] that
“river reaches with high spatial heterogeneity are challenging for
Structure from Motion processing.” This may lead to improper
identification of corresponding grains during further analyzes. A
detailed discussion on alternative measurement techniques and
their usefulness for river bed mapping is provided in [8].

To overcome the above limitations, we propose a new method
for individual grain extraction that does not require interpola-
tion as it performs an automatic segmentation directly on the
point cloud. The development of such a method is complicated
because of several reasons. First, the point cloud obtained for
the mountain river bed is often of a very irregular density
due to shadows. What is more, the number of grains that will
be segmented is not known. Second, the sizes of the grains

vary greatly. Moreover, the grains are not grouped according to
any known pattern. As a result, the use of clustering algorithms
is difficult. Third, there are a lot of very small rock fractions and
sand in the river bed that cover a substantial part of the grains of
a size ca. 10 cm making the grain border ambiguous. Fourth, the
grains overlay each other. Thus, it is not possible to reduce the
problem to a 2-D or 2.5-D space at any stage of the processing.
Finally, the grains have oblong and rounded shapes that locally
resemble parts of the river bed.

The developed method is divided into two steps. First, the TLS
data are classified into “grains” and “background.” The latter
consists of river bed, small fractions and vegetation if present
in the point cloud. The “grains” class consists of grains with a
visible geometry that are larger than 10 cm. The classification
uses only geometrical features calculated for each point using
a multisize neighborhood approach. In the presented approach
a random forest classifier is used and the relevant features are
selected based on correlation analysis. Second, the point cloud
classified as grains is segmented into individual objects using
a clustering method that is based on a spatial proximity. In
the presented approach, the “density-based spatial clustering of
applications with noise” (DBSCAN) algorithm is applied for
this purpose.

The proposed method is validated on a real-world dataset
representing a mountain river bed and acquired using TLS. A
proof of concept was presented by Walicka et al. [24] with lower
demands on accuracy and for a small dataset only. Here, we
present the full algorithm with several modifications including
the simplification of the procedure, results of higher quality,
methodology to reduce the number of resulting clusters that do
not represent grains, and a more robust classification procedure.

Delineating one small point cloud per particle offers the pos-
sibility to monitor sediment transport on the level of individual
grains, as suggested in [8]. It requires multiple measurement
campaigns and a method to match point clouds of (moved)
grains between epochs [7]. The point cloud based approach
allows matching the shape, not only under translation but also
under rotation, in order to automatically and objectively obtain
individual particle movement.

II. RELATED WORK

The goal of this study is to develop an instance segmentation
algorithm to extract individual grains from the TLS point cloud.
In contrast to the semantic segmentation methods, instance
segmentation algorithms assign each point a label representing
an instance of an object of interest instead of the general object
category. 3-D instance segmentation algorithms are commonly
used to delineate both man-made objects, such as bricks [25],
buildings [26], or vehicles [27], [28] and natural objects, such
as trees [29]–[31], leaves [32], grains [6], rock blocks [33],
or petrified oysters [34]. However, the utilized methods vary
depending on the application, complexity of the analyzed scene,
and character of the object of interest.

Objects with relatively simple geometry, such as tree stems,
building roof facets or columns, usually can be robustly de-
scribed using a mathematical model. In this case, the most
commonly used approaches are object-based methods that rely
on robust fitting algorithms used to separate individual objects.
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Therefore, during the segmentation, different geometric shapes,
such as planes, spheres, or cylinders are fitted to the point cloud.
The set of points that are well-matched with the mathemati-
cal description of the shape are then labeled as one segment.
For example, Rabbani and van den Heuvel [35] used Hough
transform to automatically detect cylinder-shaped objects in the
laser scanning point cloud. Rusu et al. [36] utilized Randomized
M-Estimator SAmple Consensus for the planar decomposition
of kitchen utilities. Boesch [37] used the Random SAmple Con-
sensus algorithm to detect cylinder-shaped objects representing
tree stems. Although model-driven methods allow for quick
and accurate segmentation, they cannot be used for irregularly
shaped objects, such as grains. In this case, the data-driven
approaches are utilized to segment individual objects from the
3-D point clouds.

The data-driven instance segmentation of less complicated
scenes can be reduced to a 2-D or 2.5-D problem. For instance,
Wang et al. [6] used a DEM of the river bed and pouring algo-
rithm to delineate individual grains from the MLS point cloud.
Djuricic et al. [34] proposed a method for the segmentation
of individual oysters from the point cloud registered by TLS.
The proposed DEM-based algorithm utilizes negative openness,
morphological operations, and connected component analysis
to achieve the goal. Miraki et al. [38] created a canopy height
model (CHM) and tested different 2.5-D algorithms to segment
individual trees from the point cloud obtained from UAV pho-
togrammetry. The evaluated algorithms included inverse water-
shed, local maxima, and region growing. Similarly, Yang et al.
[39] divided the individual tree extraction method into two steps.
First, CHM is created and the watershed algorithm is applied to
obtain a coarse position of individual trees. Then, a 3-D analysis
of point cloud is performed using principal component analysis
(PCA) and K-means clustering algorithm to extract individual
trees. On the other hand, Weinmann et al. [40] proposed to
first classify the 3-D point cloud into points representing trees
and background. Then, they project the point cloud representing
trees onto a horizontal plane and utilize the mean shift clustering
algorithm to delineate individual trees.

Although the methods that exploit 2-D and 2.5-D data proved
to be useful and accurate in many applications, in some cases,
their use leads to significant omissions in the detected objects.
For example, these approaches do not allow for the detection of
vehicles parked under the trees [41] or delineation of overlying
grains [6]. To overcome these limitations, various methods
directly based on 3-D point clouds have been proposed. Most
of the commonly used 3-D instance segmentation methods can
be categorized as belonging either to the segmentation followed
by classification or the classification followed by segmentation
approaches. In both types, the instance segmentation is
performed in two steps: classification and segmentation but in
a different order.

In segmentation followed by classification approaches, the
point cloud is first divided into segments. Then, the resulting seg-
ments are classified and connected to obtain individual objects
of interest [29]. This procedure is also referred to in the literature
as object-based point cloud analysis [42]. The classification fol-
lowed by the segmentation approach is exploited, for example,
by Yao et al. [43] who proposed to apply adaptive mean shift
clustering followed by the modified normalized cut method to
generate segments corresponding to different objects. Then, the

classification procedure is utilized to assign a semantic label to
each segment. As a result, the segments representing individual
vehicles are obtained. The proposed method enabled to achieve
the completeness of 82%–83% and correctness of 82%–85%,
depending on the test site. Zhang et al. [44] proposed to divide
the individual vehicle extraction method into four steps. First,
the point cloud is filtered to exclude the points representing the
ground surface. Second, the points with a large above-ground
height are detected and excluded. Third, the 3-D CCA method
is used to cluster the resulting point cloud. In the last step,
the segments are interpreted based on their area, rectangularity,
and elongatedness. The achieved correctness varied between
64% and 85%, whereas the completeness varied between 76%
and 80%, depending on the test site. Zhang et al. [45] divided
the method for the detection of individual vehicles into three
steps. First, the potential vehicle-occupied areas (PVOA) are
identified based on ground points. Then, the nonground points
located in PVOA are clustered. Finally, the resulting segments
are classified using a dynamic time warping based algorithm.
The experiments performed on four datasets showed that the
algorithm enables to achieve the correctness of 89%–100%, and
completeness of 84%–92%, depending on the test site. Yu et al.
[46] proposed a method for individual tree extraction that also
consists of three steps. First, the ground points are excluded from
the point cloud. Second, the nonground points are segmented
into clusters representing individual objects using Euclidean
distance clustering and voxel-based normalized cut. Third, the
segmented point cloud is classified to identify clusters repre-
senting trees. Koma et al. [32] proposed a two-step method for
individual leaves detection. First, the point cloud is segmented
using a region growing algorithm, and then the classification
is performed to divide the segments into leaves and nonleaves
classes. All of the presented methods follow a similar pattern:
first, the point cloud is segmented, and then the segment-based
classification is performed to obtain individual objects.

In contrast, in classification followed by segmentation ap-
proaches, the classification is first performed to eliminate the
background and to extract the points representing a whole set of
objects of one type. Then, the classified point cloud is segmented
into clusters representing individual objects. For example, Xu
et al. [47] proposed a method for individual tree identification.
First, the ground points are removed from the point cloud and the
nonground points are classified into tree points using the support
vector machine (SVM) algorithm. Then, the individual trees are
detected using supervoxel strategy. The reported completeness
was equal to 100% and correctness was equal to 94%. Luo et al.
[29] presented a method for individual tree detection that can
be divided into four steps. First, the semantic segmentation is
performed using a deep learning approach to extract all points
on trees. Second, the tree points are clustered into tree clusters
using the Euclidean distance clustering algorithm. Third, the
deep learning method is utilized to predict the vectors pointing
at the tree tops and the aggregation-based approach is used to
detect the tree centers. Finally, the region growing algorithm is
used to extract individual trees. The experiments showed that the
proposed method allowed to achieve precision between 94% and
96% and recall between 97% and 98%. Kang et al. [48] proposed
a voxel-based algorithm for extraction of pole-like objects from
MLS point cloud that consist of three steps. First, voxels are
classified into belonging to the pole-like objects and other using
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Markov random field model and shape descriptors. Second, the
vertical region growing algorithm is used to segment individual
objects. Finally, the objects are classified into specific types of
objects (e.g., posts, traffic lights, tree trunks, utility poles, street
signs) based on semantic rules. The achieved completeness var-
ied between 75% and 90%, whereas correctness varied between
75% and 99%, depending on the object of interest. Zarea and
Mohammadzadeh [49] proposed to utilize both LiDAR point
cloud and aerial photographs to delineate individual buildings
and trees. First, the terrain points were removed based on digital
surface model (DSM) and the remaining points were classified
using the SVM algorithm. Then, the individual instances of
objects were segmented using connected component analysis
and k-means algorithm. The reported completeness was between
82% and 89% and the correctness was between 81% and 97%.

Although the above-mentioned data-driven methods provide
high correctness and completeness of the results (64%–100%
and 75%–100%, respectively), they cannot be directly applied
for instance segmentation of individual grains in the problem
at hand. This is because of two reasons. First, the algorithms
for instance segmentation of grains and objects that resemble
grains (e.g., oysters) are based on DEMs [6], [34]. Therefore,
they cannot be used for the delineation of overlapping objects.
Second, due to general high adaptation of data-driven 3-D
instance segmentation methods to the delineation of one or
more types of predefined objects, the above methods need to
be modified or tuned to enable segmentation of grains. There-
fore, there is a need to develop an instance segmentation al-
gorithm that will enable segmentation of individual, overlying
grains and that will thus be based solely on 3-D point cloud
analysis.

Therefore, in this article, we present a new classification
followed by the segmentation approach for instance
segmentation of the individual grains. In contrast to the
previous methods for the instance segmentation of the grains,
our method is based on 3-D point cloud analysis. This approach
enables distinguishing overlying and partially covered grains,
which is a very important advantage over a 2.5-D approach,
especially in the mountain river environment. We propose to
segment the individual grains from the classified point cloud by
applying the DBSCAN [50] algorithm.

III. MATERIALS AND METHODS

A. Study Site

As a test site, a 30-m-long section of Łomniczka river was
chosen. Łomniczka is a medium-size mountain stream located
in the south-west part of Poland. It is characterized by high
variability of hydraulic conditions throughout the year. During
the autumn, the water level is very low. Thus, it is possible
to accurately measure the geometry of the grains of different
sizes that are present in the river bed (see Fig. 1), whereas
during the spring, high water flows occur that cause intensified
displacement of the grains. A detailed description of the test site
is provided in [8].

B. Measurements and Data

The TLS data were collected using the Leica ScanStation
C10 laser scanner in 2013. The measurements were performed

Fig. 1. Test site—Łomniczka river bed.

from two laser scanner positions. The resulting point clouds were
coregistered and georeferenced based on three evenly distributed
targets. The targets were placed outside of the changing area and
their coordinates were measured with a centimeter-level accu-
racy. The resulting point cloud is characterized by the density of
ca. 20 points/cm2 and covers the area of approximately 300 m2.

Based on the collected data, four datasets were created in
order to develop and validate the methodology. Datasets consist
of manually segmented individual grains and points belong-
ing to the river bed (vegetation, dead wood, coarse and fine
sediments—diameter smaller than 10 cm). In each dataset, the
grains of sizes greater than 10 cm and visible geometry were
manually segmented for the purposes of algorithm development
and evaluation. First, the grains with a longer axis larger than
10 cm and visible geometry were identified in the point cloud
by a visual analysis and manual measurements performed on the
point cloud. Then, the grains were manually segmented from the
point cloud. Both steps were performed using Cloud Compare
software. The datasets were selected to be spatially disjunctive
in order to ensure the independence of the results. The selected
datasets are characterized by different spatial distribution of
grains, different point cloud density, and were affected by shad-
owing effect, i.e., not complete visibility of grains and river bed,
to varying degrees. Moreover, the ratio of grain points to river
bed points fluctuates between the datasets.

The summary of the characteristics of all datasets is presented
in Table I. The grain sizes presented in Table I are estimated
based on point cloud analysis.

Dataset 1 covers the area of approximately 16 m2 and has the
average point density of ca. 32.1 points/cm2. Most of the points
in this area belong to the segmented grains (59%). However,
the difference between the number of grain and river bed points
is not substantial. In total, the dataset consists of 49 manually
segmented grains. The grain sizes vary between 12 and 114
cm but the distribution of sizes is not uniform. However, most
of the grains are in the size range from 25 to 35 cm. This
area is characterized by a relatively small shadowing effect [see
Fig. 2(a)]. Thus, the average point cloud density is higher than
in the case of the other datasets.

Dataset 2 covers the area of approximately 22 m2 and has
the average point density of ca. 11.1 points/cm2. Most of the
points in this area belong to the river bed (58%). However, this
difference is negligible in the further experiments. In this area,
there are 50 grains of sizes from 22 to 177 cm. However, most
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TABLE I
SUMMARY OF THE SELECTED DATASET CHARACTERISTICS

Fig. 2. Point clouds used in the performed experiments. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Dataset 4. The black color indicates the lack of data.

of the grains are in the size range from 35 to 50 cm. This area
is characterized by a larger shadowing effect than dataset 1 and
therefore the density of the point cloud is lower in this case [see
Fig. 2(b)].

Dataset 3 covers the area of approximately 29 m2 and has the
average point density of ca. 11.3 points/cm2. Most of the points
in this area belong to the river bed (56%) but the difference is
not substantial. In this area, 49 grains of the size greater than 10
cm were manually segmented for the evaluation purposes. The
grain sizes in this area vary from 18 to 134 cm. However, the
grain sizes are not equally distributed. Most of the grains are in

the size range of 30–40 cm. This area is characterized by a larger
shadowing effect and different spatial grain distribution than in
the case of previous datasets [see Fig. 2(c)].

Dataset 4 covers the area of approximately 26 m2 and has
the average point density of ca. 5.2 points/cm2. Most of the
points in this area belong to the grains (70%). Therefore, this
dataset should not be used for training purposes. In this area,
52 grains were manually segmented. The grain sizes in this area
vary from 15 to 121 cm. However, most of the grains are in the
size range of 35–40 cm. This area is relatively highly affected
by the shadowing effect [see Fig. 2(d)].
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Fig. 3. Flowchart of the proposed method. Each step of the method was marked with a different background color.

C. Proposed Method

The aim of the proposed method is to segment individual
grains from a dense TLS point cloud. To achieve this goal, a
procedure based on two main steps, classification and segmen-
tation, is proposed. First, the point cloud is classified to exclude
the background points. Then, the segmentation of the point cloud
classified as grains is performed in order to delineate individual
objects. Additionally, four auxiliary phases including two-step
preprocessing, postprocessing, and rejection stages (see Fig. 3)
were introduced. The purpose of preprocessing is to speed up
calculations and increase the separability of individual grains,
whereas the postprocessing and rejection steps aim at handling
point clusters that are too small to be of interest, increasing the
density of the resulting point cloud, and rejecting incorrectly
detected clusters.

The first stage of preprocessing takes place before the classifi-
cation and is applied to the whole dataset. Since both the classi-
fication and segmentation steps are performed in the point-based
manner, the aim of this stage is to reduce the number of points
that need to be processed. In this stage, 10% of points are ran-
domly selected for further analysis. This enabled substantially
reducing computation effort while maintaining sufficient repre-
sentation of grains’ geometry. Since the geometrical features are
calculated for the neighborhoods of at least 3 cm, more points
located in the immediate proximity to the currently selected
points will not provide much new information for the classifier.
Moreover, with the current cloud density and the smallest con-
sidered neighborhood radius, the neighborhood of most points
contains at least 3 points. Therefore, it is possible to calculate
the geometrical parameters for most of the points. The second
stage of preprocessing is performed after the classification and

is applied only to points that were classified as grains. The aim
of this stage is to increase the separation between the individual
grains in the point cloud. To do this, points characterized by
high local surface variance (LSV) (1) were eliminated. The LSV
calculated for 5 cm radius was used. The threshold for a high
value of the feature was established as 0.1.

The postprocessing stage aims at including all of the pre-
viously eliminated points in the resulting clusters to acquire
the highest possible point cloud completeness and is performed
after the segmentation step. First, the points with high LSV are
included. For each point, the distance to the nearest neighbor
among all grain points is computed and evaluated. If this distance
is smaller than 5 cm, the point is added to the cluster of its
neighbor. In the next step, the point cloud is completed with the
remaining 90% of points. Points are added to the point cloud
based on its proximity to the mesh calculated for each cluster. If
the distance between point and mesh does not exceed 1 cm, the
point is added to the processed cluster. The mesh is calculated
in Cloud Compare software with the maximum triangle size
restriction of 10 cm.

The rejection step is the last stage in the procedure and aims
to eliminate the clusters that represent the river bed instead of
the grains. If smooth sandy regions occur, they may wrongly
be identified as grains. However, these clusters are flat (see
examples in dataset 2). Therefore, the rejection is performed
based on the third eigenvalue of the covariance matrix of the
coordinates of points belonging to the local neighborhood. The
threshold value for this feature was estimated to 10–4 (using
dataset 2).

1) Point Cloud Classification: The aim of the point cloud
classification was to extract the background points from the
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points belonging to the objects of interest. Thus, a binary
classification was performed into sets of points representing
background (river bed, small rock fractions, vegetation, etc.)
and grains with a visible geometry that are larger than 10 cm.
To classify the point cloud a random forest algorithm in a
point-based approach was used. The classifier was chosen based
on several reasons. First, random forest is an ensemble shallow
learning algorithm that is based on the creation of multitude
decision trees. Therefore, it often provides better classification
results than other shallow learning algorithms (e.g., SVM) [51].
Second, due to its tree-based character, it is computationally
effective, rarely overfits, and is robust to data of different ranges.
On the other hand, in comparison to deep learning techniques,
it enables training based on relatively small data samples. The
point cloud was classified using only geometrical parameters
(1)–(9) calculated for a spherical neighborhood

Local surface variance Cλ =
λ3∑3

i = 1 λi

(1)

Sphericity Sλ =
λ3

λ1
(2)

Linearity Lλ =
λ1 − λ2

λ1
(3)

Planarity Pλ =
λ2 − λ3

λ1
(4)

Anisotropy Aλ =
λ1 − λ3

λ1
(5)

Omnivariance Oλ = 3
√

λ1 · λ2 · λ3 (6)

Eigentropy Eλ =
3∑

i=1

λi · ln (λi) (7)

Sum of eigenvalues Σλ =

3∑
i = 1

λi (8)

Verticality V =

∣∣∣∣∣∣∣

⎛
⎝

0
0
1

⎞
⎠

T

e3

∣∣∣∣∣∣∣
(9)

where λi, i = 1, 2, 3, λ1 > λ2 > λ3 are the eigenvalues of
the covariance matrix of the coordinates of points belonging to
the local neighborhood, e3 is the eigenvector corresponding to
the smallest eigenvalue.

In order to achieve better classification results, a multisize
neighborhood approach was used [52]. Therefore, the above
features were calculated for 15 neighborhood sizes varying from
3 to 70 cm radius. However, due to the large number of neigh-
borhood sizes, the number of features increased from 9 to 135.
Although the features calculated for varying neighborhood sizes
provide additional information to the classifier, the classification
based on a very large feature set may lead to overfitting and to
a decrease in the quality of classification results. Therefore, a
proper feature selection strategy should be introduced to assure
high overall accuracy (OA) of classification results for both
training and testing datasets.

Feature selection strategies aim at finding the smallest possi-
ble set of relevant and meaningful features. As a result, they can
lead to the reduction of overfitting probability, and improvement
of accuracy and computational efficiency of the classification
[53], [54]. The approaches for feature selection can be divided
into filter-based, wrapper-based, and embedded methods. All of
them are commonly used for point cloud classification prob-
lems [55]–[57]. The detailed overview of the feature selection
methods is provided by Saeys et al. [54].

Since all of the feature selection strategies have their
advantages and limitations, the technique used should be
adapted to the problem under consideration. Therefore, to se-
lect a proper technique for this investigation, we defined the
following goals. A selected strategy should satisfy the following
conditions:

1) ensure lack of overfitting;
2) enable the proposed method to work with small training

dataset;
3) reduce the dependence on the classifier;
4) allow to retrieve the additional information about the

classification problem;
5) minimize computing time by limiting the number of neigh-

borhood sizes for feature calculation.
Therefore, we decided to combine wrapper-based and filter-

based strategies to achieve the defined goals by exploiting the
advantages of both of them.

In the first step, the classification accuracy is evaluated by
training and testing the classifier using all features (1)–(9) for
each neighborhood size separately. Moreover, for the compar-
ison purposes, also the accuracy of the classification using all
features calculated for all neighborhood sizes is assessed. This
step enables us to investigate the influence of the neighborhood
size on the classification accuracy, and, as a result, select a
smaller subset of neighborhood sizes and to justify the useful-
ness of feature selection in this particular classification problem.
What is more, it is possible to draw the conclusions about
the relationship between best performing neighborhood radius
and minimal grain size. As a result of the analysis, the best
performing neighborhood size is selected as a base one and the
neighborhood size can be restricted if a substantial drop of the
accuracy can be observed.

In the second step, the selected neighborhood sizes are ana-
lyzed individually using a filter-based approach to determine
the smallest possible subset of meaningful features for each
neighborhood. This step aims at identifying correlated features
by analysis of Spearman correlation rank [58]. As a result,
several sets of highly correlated features are created. The features
are considered highly correlated when the Spearman correlation
rank between them exceeds 0.9. Then, for each set, the feature
correlated the most with the reference classification results
is selected based on Kendall correlation rank. If the Kendall
correlation is the same for several features, the feature selected
for the base neighborhood size is selected. As a result, for
each of the selected neighborhood sizes, a set of uncorrelated
features is determined. In the last step, the Spearman correlation
ranks between the selected features for all neighborhood sizes
are analyzed. The features calculated for the best performing
neighborhood size are considered the base ones and the feature
set is expanded by features calculated for larger neighborhoods
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when the Spearman correlation rank is smaller than 0.3. The
proposed feature selection strategy enables to ensure the lack
of overfitting due to the application of filter-based approaches
and to reduce the computation time over the wrapper-based
methods while allowing to retrieve additional information about
the classification problem. Moreover, the dependence on the
classifier is reduced only to the base neighborhood size selection
and limitation of the considered neighborhood sizes. As a result,
both, number features and neighborhood sizes were reduced.

After the selection of appropriate features, the hyperparame-
ters (number of trees, maximum depth of the tree, the minimum
number of samples required to split the internal node, the mini-
mum number of samples required to be at a leaf node) tuning was
performed. Finally, to minimize the salt and pepper effect and to
achieve more concise results, a majority filter with a spherical
neighborhood of 10 cm radius was applied to the dataset.

The classifier was trained using dataset 1 (training dataset),
whereas the hyperparameters fitting, neighborhood size selec-
tion, and feature selection were performed based on dataset 2
(validation dataset). The final classification results were evalu-
ated based on datasets 3 and 4 (testing datasets).

2) Point Cloud Segmentation: Point cloud segmentation was
performed using DBSCAN, which is a density-based clustering
algorithm. The algorithm was applied directly on the coordinates
of points classified as grains. However, to ensure the sufficient
distance between the individual grains, the points with a high
LSV were excluded from the classified point cloud.

The DBSCAN algorithm needs two parameters to be speci-
fied: the neighborhood radius and the number of points placed
within the defined neighborhood. However, regardless of the
selected parameters, during the procedure, some small and not
meaningful clusters are produced. Because of the classification
inaccuracy, these clusters may belong both to the river bed and
to the grains. Therefore, it is beneficial to include some of them
in the final result to ensure the highest possible completeness of
the resulting point cloud for the real grain clusters. To do this, a
nearest neighbor approach was employed. Points belonging to
the clusters smaller than ca. 300 points were attached to the large
ones if their distance to the nearest neighbor in the large cluster
was smaller than 5 cm. Dataset 2 was used both to develop the
segmentation procedure and to adjust its parameters.

3) Validation of the Proposed Method: The validation of the
proposed method was performed in two stages. First, the accu-
racy of the classification was evaluated. The validation was per-
formed based on datasets 3 and 4, which were neither used for the
classifier training nor for the parameter adjustment. However, for
the comparison and to exclude the possibility of the overfitting
occurrence, also the results achieved on training (dataset 1) and
validation (dataset 2) data were analyzed. Most of the datasets
are characterized by a balanced number of points representing
both classes. Therefore, for the evaluation purposes, the OA (10)
was used. However, to provide more detailed information about
classification accuracy, also precision (11), recall (12), and F1
score (13) statistic values were provided. Additionally, the visual
analysis of the resulting classification was performed

OA =
TP+ TN

TP + TN+ FP + FN
(10)

TABLE II
USE OF INDIVIDUAL DATASETS DIVIDED INTO THE STAGES

OF THE ALGORITHM PROCESSING

precision =
TP

TP + FP
(11)

recall =
TP

TP + FN
(12)

F1 =
2TP

2TP + FP + FN
(13)

whereTP, TN, FP, FN are the elements of a confusion matrix
standing for true positive, true negative, false positive, and false
negative, respectively.

In the second step, the accuracy assessment of the whole
algorithm was performed. The analysis was mostly based on
datasets 3 and 4. Also, the results achieved for dataset 1 were
compared as it enabled us to evaluate the accuracy of the
segmentation in the condition of the best possible classification
results. Moreover, it enabled us to assess the influence of the
classification procedure on the results of the whole method. The
evaluation of the method was performed based on three metrics:
number of correctly recognized grains, number of segmented
clusters that are not grains, and completeness of the resulting
point cloud. Based on two first metrics, the completeness and
correctness, in the terms of detected objects, were calculated
based on (12) and (11), respectively. However, in this case TP
means number of correctly detected grains, FP means number
of resulting clusters that are not grains (additional clusters),
and FN means incorrectly detected grains. The completeness of
the resulting point cloud was assessed using the Jaccard index
[59] (14) that is also commonly referred in the literature as
intersection over union, and two other metrics. First one (K1)
describes a percent of points in the reference point cloud that
are not present in the resulting point cloud and describes points
belonging, for example, to the omitted grains (15). Second one
(K2) describes the percent of points that are present in the
resulting point cloud but are not included in the reference one
(16). This metric informs, for example, about clusters incorrectly
detected as grains. Consequently, the better algorithm results,
the higher value of the Jaccard index and the lower values of
K1 and K2 metrics. Additionally, for a better understanding
of the intermediate results, the following statistics were pro-
vided for each processing step: number of clusters, average size
of the cluster, Jaccard index, K1, and K2. Moreover, for the
first stage of processing, the number of small clusters and their
average size, and the number of large clusters and their average
size were provided.

A summary of the ways in which individual datasets are used
in these investigations is presented in Table II

J =
A ∩B

A ∪B
(14)
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TABLE III
CLASSIFICATION RESULTS FOR A SINGLE-NEIGHBORHOOD

APPROACH FOR ALL NEIGHBORHOOD SIZES

K1 =
A−B

A ∪B
(15)

K2 =
B −A

A ∪B
. (16)

In the definition of Jaccard’s index (J), K1 , and K2, A is the
reference dataset and B is the final result after segmentation,
postprocessing, and rejection. Both sets A and B represent only
those points that belong to the grains.

The algorithm’s performance was also evaluated in regards
to the grain sizes. To do this, the length of the longer axis of
each grain was estimated based on the reference dataset using
PCA [60]. As a result, the influence of shadows is included in
the grain size. However, for method development, the size of
the scanned part of the grain is of most importance. Thereafter,
the number of correctly segmented and the number of connected
grains was evaluated in the defined size ranges.

IV. RESULTS AND DISCUSSION

A. Point Cloud Classification

The classification results for all features calculated for dif-
ferent neighborhood sizes are presented in Table III. To select
the base neighborhood size, 15 different neighborhood radii
were tested. The evaluated sizes vary from 5 to 70 cm, in steps
of 5 cm. Tested sizes were selected taking into consideration
the properties of objects of interest. Since the algorithm should
enable proper classification of grains with a diameter equal to at
least 10 cm, the smallest neighborhood radius was selected as
half of this value. Moreover, a large neighborhood radius would
prevent the proper classification of smaller grains. Additionally,
the neighborhood size of 3 cm was included in the experiments
to ensure that the classification accuracy will not increase when
further reducing the size of the neighborhood. The best OA
was obtained for 5 cm radius, whereas the worst accuracy was
reported for the 55 cm radius. For the 5 cm neighborhood
size also the smallest difference between OA for training and
validation dataset was reported. A constant downward trend

of the OA on the validation dataset with increasing neighbor-
hood size can be observed. Moreover, the classification results
dropped for the neighborhood size smaller than 5 cm. This was
caused by an increasing number of cases in which the features
could not be calculated due to insufficient number of points in
the neighborhood. The classification accuracy achieved for all
neighborhood sizes was slightly worse than the accuracy for
the 5 cm neighborhood. However, the classification accuracy
on the training dataset almost reached 1, which indicates a
high probability of overfitting. Therefore, in the further inves-
tigations, the neighborhood with a radius of 5 cm was treated
as the base. Moreover, the performed analysis resulted in the
restriction in the neighborhood sizes to a maximum of 25 cm
due to the substantial drop in the classification accuracy reported
for the validation dataset (less than 70% OA) when using larger
neighborhoods.

In the second step, the feature selection within the 5 cm radius
was performed. The calculated Spearman correlation rank values
are presented in Fig. 4. The analysis of the results showed that
two groups of mutually correlated features can be constructed.
Group 1 includes sphericity, anisotropy, omnivariance, eigen-
tropy, and LSV, whereas group 2 includes linearity and planarity.
In group 1, LSV feature was the most correlated with the
reference result, thus it was selected for the further processing.
In group 2, the planarity feature was selected. Additionally, the
features that were not highly correlated with any other feature
were added to the feature set. As a result, the feature set consisted
of LSV, planarity, sum of eigenvalues, and verticality calculated
for 5 cm neighborhood radius.

In the next step, the correlation of each of the selected
features for different neighborhood sizes was calculated and
analyzed (see Fig. 5). The analysis was performed taking into
account the conclusions from step 1 regarding the maximum
size of the neighborhood. Consequently, the resulting feature
set included the following features: LSV, planarity, sum of
eigenvalues and verticality calculated for 5 cm radius neigh-
borhood, LSV and planarity calculated for 20 cm radius neigh-
borhood, and sum of eigenvalues calculated for 15 cm radius
neighborhood.

In the last step, the random forest hyperparameters were inves-
tigated. The following parameters were tested for the specified
values.

1) Number of trees—1, 3, 5, 10, 50, 80, 100, 300.
2) Maximum depth of the tree—5, 8, 15, 25, 30, not defined.
3) Minimum number of samples required to split internal

node—2, 5, 10, 15.
4) Minimum number of samples required to be at a leaf

node—1, 2, 5, 10.
All the parameter combinations were tested in order to achieve

the highest OA for the validation dataset. As a result of the exper-
iments, the following hyperparameters were selected: number of
trees equal to 300, maximum depth of the tree of 8, minimum
number of samples required to split internal node equal to 2, and
minimum number of samples required to be at a leaf node equal
to 10.

After the features and classification parameters were selected,
the accuracy on training (dataset 1), validation (dataset 2),
and two testing (datasets 3 and 4) datasets was evaluated. The
achieved accuracy was equal to 91%, 85%, 86%, and 81% on
dataset 1, 2, 3, and 4, respectively. Although the achieved OA
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Fig. 4. Spearman correlation matrix for features with 5 cm neighborhood.

TABLE IV
QUANTITATIVE ANALYSIS OF THE CLASSIFICATION RESULTS

was high, the results contained a lot of salt and pepper noise (see
Fig. 6). Therefore, in order to solve this problem, the majority
filter was applied to the results, which enabled us to achieve 95%,
89%, 91%, and 85% OA on dataset 1, 2, 3, and 4, respectively.
Thus, the achieved accuracy significantly increased and the re-
sults are much more concise (see Fig. 6). These conclusions were
also confirmed by the analysis of precision, recall, and F1-score
for each class (see Table IV). Although the classification results
are very accurate and concise, there are still some errors in the
classified point cloud. The most common error is classification
of flat parts of the river bed as grains (example: Fig. 6—green
ellipse). This is caused by large, locally flat grains present in the
training dataset and, at the same time, lack of flat parts of the river
bed. Moreover, the classification of small grains (10–25 cm) is
challenging and many errors occur in this case. This is caused by
a limited number of small grains whose geometry is sufficiently
well described to distinguish them from the river bed. They are
also very commonly shadowed by larger fractions. Therefore, it

is highly probable to confuse them with the river bed. Moreover,
the number of points belonging to a small grain is substantially
smaller than the number of points belonging to the large one.
Thus, this effect is not visible in the case of very large grains that
also occur very rarely in the datasets. Another type of error that
is visible mostly in datasets 3 and 4 is classification of part of the
points belonging to the grains as a river bed (example: Fig. 6—
yellow ellipse). This happens mostly for the concave parts of the
grains. Although the classification errors still occur in all of the
datasets, they are not major and some of them will be eliminated
or reduced in the postprocessing or in the rejection stage.

B. Point Cloud Segmentation

To segment the individual grains, a clustering procedure based
on the DBSCAN algorithm was performed. The segmentation
was based on Euclidean distance between points and was applied
to the classified data. In the next step, the postprocessing of data
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Fig. 5. Correlation between features calculated for different neighborhood sizes. (a) LSV. (b) Planarity. (c) Sum of eigenvalues. (d) Verticality.

and rejection of clusters were executed. The statistics represent-
ing the results achieved for each processing step are presented
in Table V. The postprocessing procedure enabled reduction of
number of clusters by 84%–91%, depending on a test site. The
number of clusters rejected in the last processing step varies
between 3 and 9, depending on the test site. For two out of four
datasets, this procedure enabled to increase the value of Jaccard
index. For all datasets, this step enabled to increase the mean
number of points in cluster.

The results of the whole procedure executed on each dataset
are presented in Figs. 7 and 8. The reference data for instance
segmentation are visualized in the Appendix. First, the results
were visually examined. The analysis revealed that most of
the grains are correctly segmented. However, in some cases,
a few clusters exist that contain more than one grain (usually
two, rarely three grains). This was mainly caused by too small

distance between two grains. However, in some cases, classifi-
cation errors also led to the formation of such clusters because
of incorrect classification of the river bed between grains as
grain class. Moreover, for a small number of clusters, the result
is slightly spatially extended by points belonging to the river
bed or reduced by points belonging to the grain but incorrectly
classified as river bed. In the very rare situations, one grain can
be segmented as two. This might be caused by smaller fractions
covering the grain surface.

The quantitative analysis of the results (see Table VI) con-
firmed that the proposed methodology enabled correct segmen-
tation of most of the individual grains. The highest accuracy
(88% completeness and 77% correctness) was achieved for
dataset 2, which was used for segmentation methodology devel-
opment. Additionally, very high accuracy (76% completeness
and 93% correctness) was reached by dataset 1 that was used
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Fig. 6. Classification results on training (dataset 1), validation (dataset 2), and testing (datasets 3 and 4) datasets.
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TABLE V
SUMMARY OF THE CHARACTERISTICS OF THE RESULTS OF EACH STEP OF DATA PROCESSING

Fig. 7. Results of individual grain segmentation—top view. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Dataset 4. Each segmented grain is presented in a
different color. The background (river bed) is shown with the original color of the colorized point cloud.
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Fig. 8. Results of individual grain segmentation—side view. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Dataset 4. Each segmented grain is presented in a
different color. The background (river bed) is shown with the original color of the colorized point cloud.
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TABLE VI
QUANTITATIVE ANALYSIS OF THE RESULTS AFTER SEGMENTATION, POSTPROCESSING, AND REJECTION

TABLE VII
RESULTS OF THE VISUAL ANALYSIS OF ADDITIONAL CLUSTERS

for the training of the classifier. Moreover, for this dataset, the
smallest number of clusters without grains was produced. Since
dataset 1 was used as a training dataset for the classifier and, as
a result, was characterized by very high classification accuracy
(OA of 95%), it can be concluded that the classification step is
crucial for the accuracy of the whole method. The completeness
of the method for datasets 3 and 4 was high and reached 67%
and 77% of correctly recognized grains, respectively, whereas
the achieved correctness was equal to 87% and 78% for datasets
3 and 4, respectively. The slightly lower completeness for dataset
3 was caused by the occurrence of many small grains (< 25 cm)
that were incorrectly assigned to the river bed class during the
classification step. The instance segmentation algorithms pre-
sented in Section II showed the results with both completeness
and correctness between 64% and 100%. This fits well with the
instance segmentation results presented here.

The rejection step enabled removing most of the clusters that
did not represent grains. However, some of the clusters that were
not included in the reference data still remain in the results (see
Table V). Several of these clusters represent river bed, thus their
presence in the results can be classified as an error. However,
an additional, thorough analysis of the point cloud revealed
that, in a few cases, the additional clusters represent grains
that were placed at the edge of the datasets. As a result, they
were partially cut. This led to the identification errors during
the manual analysis, since the examination of the surrounding
point clouds was required to reveal that a certain part of the
point cloud represents a grain. Moreover, some of the additional
clusters represent small grains whose geometry was partially
covered by sand. As a result of this and because of very poor
quality of RGB data, these grains were also missed during the
manual analysis. The results of thorough analysis of the source
of additional clusters are presented in Table VII.

The procedure of joining small clusters and points with high
LSV together with the upsampling algorithm enabled obtaining
high completeness of the resulting point cloud (see Table VI).
The experiments revealed that the achieved point cloud based
completeness is similar for all datasets and varies from 83%
to 91% (Table VI, column J). These values do not directly

Fig. 9. Histogram of the grain distribution in regards to the length of the
longest axis. (a) Histogram of correctly segmented grains in regard to all grains.
(b) Histogram of connected (merged) grains in regard to all grains.

correspond to the percentage of correctly segmented grains. This
observation additionally confirms that in dataset 3, most of the
omitted grains belong to the smallest of the target rock fractions.
Thus, the loss in the point cloud based completeness is minor.

To gain a better understanding of the quality of the results,
the segmentation outcomes were analyzed as a function of grain
size. During the experiments, the status of each grain (correctly
segmented, connected, omitted) was analyzed in relation to grain
size calculated based on the manually segmented reference data.
As a result, the number of correctly recognized and connected
grains in different size ranges was calculated. The results are
shown in Fig. 9. The analysis confirmed that the highest error in
grain segmentation occurs for the smallest grains with the size
of 10–30 cm. The larger the grain, the smaller the probability
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Fig. 10. Segmentation results for the whole study site. Each segmented grain is presented in a different color. The background (river bed) is shown with the
original color of the colorized point cloud.

of segmentation error. The number of connected grains in each
grain size range was similar for each grain size range.

Instance segmentation of grains from a TLS point cloud
proved to be a challenging task because of several reasons. First,
the reduction of the problem to the 2-D case is not possible,
even after the classification step since it would lead to omitting
small grains covered by very large fractions and, as a result,
not visible in the top view. On the other hand, the processing
of point clouds representing a complex structure of a river bed
is complicated and leads to the generation of numerous clusters
that do not represent individual grains. This effect is typical
for instance segmentation tasks and is solved by the proper
rejection method. However, it is a very complicated problem
in the case of grains because of the following reasons. First,
large sediments (diameter larger than 10 cm) present in the
mountain river bed are distributed in a disordered way. Second,
they are characterized by high variability of shapes and sizes.
As a result, the possibilities to apply rejection criteria based on
size, geometrical shape description, or the grain location are very
limited. Finally, these problems are enhanced by the shadowing
effect produced by TLS (line of sight obstruction). However,
typically the grains are of a rounded shape. Therefore, in this
investigation, the incorrectly detected grains were rejected when
the delineated point cloud represented a flat object.

The proposed algorithm was also used to segment individual
grains from the point cloud representing the whole river bed. The
results of the experiment were visually inspected and suggest
that the same quality as shown for datasets 1–4 can be obtained
for the entire dataset (see Fig. 10).

C. Comparison Method

Instance segmentation methods are highly adjusted to the
delineation of a specified type of objects. Therefore, most of the
methods developed for trees, buildings, or vehicles would need
large adjustments to produce meaningful results of instance seg-
mentation of individual grains. Therefore, the method described
in this article is compared to the algorithm introduced in [6],

which proved to be effective in the delineation of individual
grains.

The method proposed by Wang et al. [6] is one of the data-
driven approaches that are based on DEMs. As a result, the
data are transformed to a 2.5-D space during the procedure.
Although this approach enables to expedite the whole procedure,
it is expected that some of the 3-D components will be missing
in the results.

The algorithm works iteratively and is divided into the
following five steps.

1) The DEM is created and smoothed using morphological
operations (opening and closing).

2) The morphological pouring is applied for a rough division
of the DEM into smaller regions that contain a dominative
grain and/or some smaller fractions.

3) The active contours without edges algorithm are applied
to delineate the dominant grain.

4) The values of pixels representing dominant grain are
changed to background value.

5) If 95% of the DEM is covered with detected grains, the
algorithm stops. Otherwise, it starts again from step 2).

For the comparison purposes, in this article, a DEM with a
resolution of 1 cm was created based on the detrended point
cloud of dataset 1. In the next step, the watershed algorithm was
applied to the DEM to roughly divide the data into smaller re-
gions. The watershed algorithm implemented in QGIS software
was used for this purpose. The region expansion was started with
local maxima values. The segments were joined based on seed to
saddle distance. The threshold of this value was set to 5 cm. The
results of first iteration of watershed algorithm are presented in
Fig. 11. Then, the active contour without edges was applied to
each region extracted by watershed. The algorithm was started in
the pixel representing the maximum height value in the region
to first detect a dominative grain. This was performed using
scikit-image Python library [61].

After the application of the watershed algorithm, there are
several regions that contain only one grain but typically each
region consists of one dominative boulder and several smaller
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Fig. 11. Results of watershed segmentation. The background is DEM (in gray).
The blue lines represent watersheds. The reference data are presented as grains
in different colors.

boulders or cobbles. However, there are also individual regions
that contain only very small fraction of the river bed grains.
There is also one boulder that was divided into two regions.
The selected results of the application of the active contour
without edges algorithm are presented in Fig. 12. There are
several cases when the algorithm presented very accurate results
[e.g., Fig. 12(a)]. This happens when the grain lies flat at the
river bed. As a result, there are no points belonging to the river
bed or smaller grains under it. However, in the case of most
of the larger boulders, the results present points belonging to
both the grain and river bed or smaller grains under it [see
Fig. 12(b)]. Moreover, additional errors caused by interpolation
appear that result in both selecting several grains instead of one
[see Fig. 12(c)] and only part of a grain.

The differences in the results between the algorithms are
caused by different characteristics of the datasets used for their
development. The data presented in [6] were acquired with MLS
system for a river bed that consists of smaller rock fractions. As a
result, the shadowing effect was very small. Moreover, most area
of the river bed was covered with grains that were well sorted.
Most of them do not overlay each other. Consequently, the
algorithm presented the high accuracy of the results achieved in
short processing time. However, in the complex scene scenario,
when many poorly sorted grains of various sizes frequently
overlay each other, the method does not produce accurate results.
This effect is also enhanced with the influence of interpolation
over shadows.

D. Advantages and Limitations

In this article, we propose a method for an automatic seg-
mentation of individual grains from TLS point clouds in the
environment of the mountain river. Due to the character of the
TLS measurement, which can be performed only from a limited

number of stations, the resulting data are often influenced by
shadows. The number of possible locations for a measurement
station is additionally limited by a complex terrain relief in the
proximity of mountain rivers. However, the conducted experi-
ments proved that the proposed method is robust to the occur-
rence of shadowing effect. It was achieved by direct processing
of point clouds instead of DSMs that require data interpolation
in the shadowed areas. Moreover, contrary to the DSM-based
approaches, the developed algorithm enables to segment grains
that are partially or completely covered by larger fractions in the
top view (see Fig. 13).

The proposed method is based only on the analysis of the geo-
metrical characteristics of the point cloud in the neighborhoods
of defined size. Since the laser scanning intensity information
and RGB data interpolated from photographs are not used, the
method does not require intensity correction and is independent
from lighting conditions. Moreover, because of this reason, the
method has a potential to be adapted to the processing of data
collected by other techniques, such as photogrammetry or MLS.

However, since the method is based only on the analysis of
geometry, small grains (longest axis smaller than 25 cm) are
often incorrectly classified as a river bed. This problem is caused
by the structure of a mountain river bed, which contains small
rock fractions that, in some cases, may geometrically resemble
a cobble (64–256 mm). Since the results of the proposed method
are highly influenced by the classification quality, small grains
are often omitted during the procedure. Moreover, because of
both the classification inaccuracy and the point cloud density
variation caused by shadowing effect, the individual grains
segmented using the proposed method may contain holes (see
Fig. 14). However, this situation does not occur often and it
should not cause severe effects on the further results, because
the grains are typically flat or slightly concave in the area of
hole.

V. CONCLUSION

The article presents research on the method of automatic
segmentation of single grains from the TLS point cloud rep-
resenting the mountain river bed. The performed experiments
showed that the developed method enables correct identifi-
cation and segmentation of 67%–88% of individual grains
depending on the testing site. Moreover, in some cases, the
developed method allowed for the segmentation of grains,
the identification of which by humans was problematic and
time-consuming.

The proposed method represents a classification followed
by the segmentation approach and is based on random forest
and DBSCAN algorithms. These algorithms are additionally
supported by preprocessing and postprocessing stages enabling
the reduction of processed points and ensuring proper separation
of individual grains. The method was specifically designed for
the robust processing of TLS data affected by shadowing effect
and representing natural objects of oblong and rounded shapes.
It enables segmentation of individual objects of different sizes,
shapes, and represented by point clouds of different densities
(5.2–32.1 points/cm2).

The points belonging to individual grains were identified
with a point cloud based completeness of ca. 88%, similar in
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Fig. 12. Results of application of active contours without edges algorithm. Left: The resulting curve (colored) with a background of DEM. Middle: The top view
of the point cloud delineated by a resulting curve. Right: The side view of the point cloud delineated by a resulting curve.

Fig. 13. Example of two segmented grains. (a) Top view. (b) Side view. The colors indicate segmented grains.

each dataset. The further investigations showed that the number
of correctly recognized grains is highly dependent on the
classification results. The classification of the point clouds was
performed using random forest algorithm employing only geo-
metrical features and supported by the custom feature-selection

strategy. This approach enabled us to achieve the accuracy of
81–91%. The application of the majority filter allowed reducing
the salt and pepper effect and led to more concise classification
results. As a consequence, the classification accuracy increased
to 85–95%, depending on the test site.
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Fig. 14. Example of the segmented grain with a hole. (a) Top view. (b) Side view. The color indicates segmented grain.

The analysis of the number of correctly detected grains in
regard to the estimated grain size showed that for the grains
smaller than 25 cm only ca. 33% of grains are correctly seg-
mented, whereas for the grains of sizes between 25 and 50 cm
the segmentation accuracy achieves ca. 76% and for the grains
larger than 60 cm the segmentation accuracy reaches the highest
value of ca. 87%.

The proposed method proved to be useful for the segmentation
of individual grains. In comparison to the existing methods, it

processes directly point clouds instead of a DSM. As a result, it
is robust to a high degree of shadowing and enables segmenting
grains that are covered by large boulders and are not visible in
the top view at the test site.

APPENDIX

The reference data for the developed instance segmentation
results are presented in Figs. 15 and 16.

Fig. 15. Reference data for instance segmentation—top view. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Dataset 4. Each segmented grain is presented in a
different color. The background (river bed) is shown with the original color of the colorized point cloud.
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Fig. 16. Reference data for instance segmentation—side view. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Dataset 4. Each segmented grain is presented in a
different color. The background (river bed) is shown with the original color of the colorized point cloud.
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