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Symmetric Information–Theoretic Metric Learning
for Target Detection in Hyperspectral Imagery

Yanni Dong , Member, IEEE, Yuxiang Zhang , Member, IEEE, and Bo Du , Senior Member, IEEE

Abstract—Metric learning-based methods, which yield great
performance and show considerable potential to improve
the performance of hyperspectral image processing, aim to
calculate the Mahalanobis distance metric matrix. In this
article, we proposed a symmetric information-theoretic metric
learning (SITML) method for hyperspectral target detection.
The SITML algorithm is designed based on the classical
information-theoretic metric learning (ITML) and, minimizes
the differential Kullback–Leibler (KL) divergence. To enhance
both of the detection performance and the generalization ability,
we build metric spaces from the neighborhood of training samples
to preserve the local discriminative information. Then, we conduct
local pairwise constraints to maximize the Jeffery divergence (also
named the symmetric KL divergence) of two multivariate Gaussian
distributions to solve the problem of an asymmetric KL divergence.
Finally, we use a closed-form solution to solve the optimization
problem. Intensive experiments on three hyperspectral datasets
indicate that SITML outperforms the classical ITML algorithm
and other state-of-the-art target detection methods.

Index Terms—Hyperspectral target detection, metric learning,
symmetric Kullback–Leibler (KL) divergence.

I. INTRODUCTION

HYPERSPECTRAL remote sensing covers the reflectance
of a material’s surface over hundreds of contiguous spec-

tral wavelength bands. Each material has a specific wave re-
flectance, which can be used for distinguishing different materi-
als [1]–[7]. Based on this spectral characteristic, hyperspectral
target detection, the goal of which is to distinguish pixels as
target pixels or background ones with prior information, has
attracted much interest in the remote sensing processing field
and has many applications, such as military reconnaissance
and striking, crop yield estimation, and mineralogy resource
investigation [8]–[10].
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Many target detection methods have been developed. Spectral
angle mapper is a very straightforward detection algorithm,
measuring the “distance” between the test and target spectra
[11]. Constrained energy minimization is a linear filter, in which
the amount of spectral output energy is minimized under the
same constraints [12], [13]. Adaptive coherence/cosine esti-
mator (ACE), which is considered as one of the best hyper-
spectral target detection algorithms, is derived from generalized
likelihood ratio test [14]–[16]. Orthogonal subspace projection
(OSP) projects the test spectra onto the orthogonal subspace of
undesired target signatures (background spectra), to maximize
the signal-to-noise ratio of the residual target signature [17],
[18]. Moreover, some extended versions seeking to obtain bet-
ter detection performance have been presented. For example,
kernel OSP maps the original space into the kernel space for
handling with the problem of linearly inseparability [19], [20].
Target-constrained interference-minimized filter (TCIMF) can
eliminate of the undesired targets [21].

Traditional target detection algorithms usually require rig-
orous assumptions on the spectral distribution. For example,
the ACE algorithm assumes that the background has additional
noise, leading to poor performance because it is not fully realistic
for real hyperspectral images (HSIs). Additionally, the spectrum
of a pixel may be a mixture of different ground objects due to the
low spatial resolution of HSIs with the result that it is difficult
to detect the targets of interest. For the sake of overcoming the
current boundedness of traditional target detection methods, this
article carries out research based on metric learning theory.

Metric learning springs from measurement theory to solve
the classification problem [22]. In general, supervised metric
learning, which can minimize the distance between similar
samples as much as possible while effectively separating dis-
similar samples, uses the prior information to learn an appro-
priate Mahalanobis metric matrix. Motivated by the need to
properly define similarity measures, many metric learning-based
methods have been proposed. The goal of the neighborhood
component analysis (NCA) algorithm is to maximize the random
variance, which is sensitive to the initial value and selected
parameters [23]. The large margin nearest neighbor (LMNN)
algorithm, extends NCA algorithm using the maximum mar-
gin setting [24]. Information-theoretic metric learning (ITML)
method introduces the Kullback–Leibler (KL) divergence to
measure the distance between the corresponding multivariate
Gaussians of the Mahalanobis matrix and a given Mahalanobis
distance function [25]. The ITML algorithm can obtain fast
and scalable performance with the capability to handle many
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different of constraints. Cross-view quadratic discriminant anal-
ysis (XQDA) algorithm can be specifically formulated as a
generalized eigenvalue decomposition by learning the distance
metric [26].

Target detection has the same purpose, which aims to label
pixels as target or background [27], [28]. Thus, these aspects
motivate us to extend distance metric learning to hyperspectral
target detection. Based on this, we proposed some methods
to obtain better performance of hyperspectral target detection.
Random forest metric learning algorithm combines semimulti-
ple metrics with random forests to better separate the desired
targets and background [29]. Adaptive information-theoretic
metric learning with local constraints, which was previously
presented in [30], relaxes the fixed threshold of the ITML method
with local decision constraints to retain the locality information.

Generally, metric learning-based methods are able to offer a
natural solution for measuring the similarity of samples. Gen-
erally, the advantages of metric learning-based methods are as
follows.

1) They obtain the metric matrix, reflecting the notion of
similarity for the target detection task.

2) They need fewer hypotheses, leading to more powerful
generalization ability.

3) Most algorithms, such as NCA algorithm [23], have the
ability to handle with the high dimensional data with few
samples.

4) They are robust to noisy data and can be trained with weak
constraints.

However, for target detection tasks, most existing metric
learning methods have two major challenges. Existing metric
learning-based methods either ignore local discriminative infor-
mation or use fixed pairwise constraints to learn the distance
metric, which makes it less effective at handling data with
complex distributions. In addition, it is difficult for most metric
learning methods to determine the global minimum value of
the objective formula. Thus, considering the problems of clas-
sical target detection methods and traditional metric learning
methods, we present a novel symmetric ITML (SITML) method
for hyperspectral target detection. This article has three main
contributions, which can be summarized as follows.

1) To preserve the local discriminative information, while
considering the locality of the data distribution and im-
proving the detection performance, we consider each
training sample as a center and build a within-class dif-
ference space and between-class difference space from its
neighborhood.

2) To solve the problem of asymmetric KL divergence, which
works in a weakly supervised manner and leads to an
inaccurate description of distance, we apply local pairwise
constraints to maximize the Jeffery divergence as the
objective function by using the abovementioned neigh-
borhood of each training sample.

3) To implement and handle large scale problems, we obtain
the solution via a closed-form solution instead of using
Bregman’s method to solve the optimization problem.

The rest of this article is organized as follows. A brief
overview of metric learning theory and the ITML algorithm is

given in Section II. In Section III, SITML is introduced in detail.
In Section IV, extensive experimental results are conducted on
one synthetic and two real HSIs. Finally, Section V concludes
this article.

II. RELATED WORK

In this section, the basic concepts of metric learning theory
and the ITML algorithm are briefly reviewed.

A. Metric Learning Theory

Suppose that each sample is expressed by an Lth dimen-
sional training set X = {xi}ni=1 ∈ RL, where i corresponds
to the sample index, L is the number of feature dimensions
and n is the number of training samples. Given two samples
xi and xj , the Euclidean distance is defined as dE(xi,xj) =√
(xi − xj)

T (xi − xj), which means the square root of the
inner product of the difference of two samples. The Euclidean
distance cannot handle with the scaling and dimensionality of the
features. Therefore, most distance metric learning-based meth-
ods calculate a Mahalanobis distance metric matrix M ∈ RL×L

to ensure that dM is a meaningful distance as follows:

dM(xi,xj) =

√
(xi − xj)

TM(xi − xj). (1)

Because the metric matrix M is a symmetric and positive
semidefinite matrix, (1) can be decomposed as M = WWT,
where W is a nonsquare matrix and can map data from high-
dimensional space into a low-dimensional space for dimension-
ality reduction, and W ∈ RL×D(D � L) [31].

Equation (1) can be rewritten as

dW(xi,xj) =

√
(xi − xj)

TWWT (xi − xj)

=

√
(WTxi −WTxj)

T (WTxi −WTxj).

(2)

Once the nonsquare matric W is learned, for any test pixel
spectral vector xi ∈ RL, the metric feature representation can
be calculated in the metric feature space by x′

i = WTxi. By
sorting the nearest neighbors of the target pixel or applying
a detector in such a metric feature space, the target detection
results can be obtained.

B. Overview of the ITML Algorithm

The ITML method aims to measure the “closeness” between
the Mahalanobis matrix M and a given Mahalanobis matrix M0

via a natural information-theoretic technique. That is, the ITML
method can minimize the differential relative entropy between
two multivariate Gaussians via a natural information-theoretic
approach. The ITML algorithm has two main advantages: it can
handle many constraints while optionally incorporating the prior
information on the objective function; and it can obtain fast
and scalable results. Motivated by this article, some extended
methods, such as the LogDet divergence-based metric learning
method, have been proposed [32].



1472 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Given a Mahalanobis distance parameterized by M, its corre-
sponding multivariate Gaussian can be obtained, which can be
parameterized by mean vector μand covariance matrix Σ as:

p(x;M) =
1

(2π)
l
2 |Σ| 12

exp(−1

2
dM(x, μ))

=
1

(2π)
l
2 |Σ| 12

exp(−1

2
(x− μ)TΣ−1(x− μ)) (3)

where |Σ| is the determinant of Σ. The distance between two
Mahalanobis distance functions parameterized byM0 andM by
the differential relative entropy of the corresponding multivariate
Gaussians (also known as the KL divergence) can be measured
as

KL(p(x;M0)||p(x;M)) =

∫
p(x;M0) log

p(x;M0)

p(x;M)
dx.

(4)
According to [25] and [33], ITML assumes that the means of

the Gaussians are the same, and the divergence is formulated as

KL(p(x;M0)||p(x;M))

=
1

2

[
tr(Σ−1

MΣM0
) + log

∣∣ΣMΣ−1
M0

∣∣−D
]

(5)

where D is constant that represents the dimension. tr(Σ−1
MΣM0

)
denotes the trace of Σ−1

MΣM0
. Then, the LogDet optimization

problem minimizing the differential relative entropy of multi-
variate Gaussians, can be solved.

Considering the feasible solution, ITML algorithm incorpo-
rates the slack variables ξ0 and ξ (where ξ is the vector of slack
variables, and ξ0 is the initialization vector) into the formula (5),
which can ensure a viable existence of matrix M

min
M≥0,ξ

[
tr(Σ−1

M ΣM0
) + log

∣∣ΣMΣ−1
M0

∣∣−D
]

+γ ·
[
tr(Σ−1

diag(ξ)Σdiag(ξ0)) + log
∣∣∣Σdiag(ξ)Σ

−1
diag(ξ0)

∣∣∣−D
]

s.t.dM(xi,xj) ≤ ξc(i, j)(xi,xj) ∈ similarsamples

dM(xi,xj) ≥ ξc(i, j)(xi,xj) ∈ dissimilarsamples
(6)

where c(i, j) denotes the (i, j)th constraint. γ denotes the trade-
off parameter.

To solve the optimization problem of formula (6), the
methods can be extended from [34], which forms the basis
for the algorithm by repeatedly computing Bregman projec-
tions. This projection can be performed via the update Mt+1

= Mt + βMt(xi − xj)(xi − xj)
TMt, where β is the projec-

tion parameter and t is the number of iterations.

III. PROPOSED METHOD

Motivated by the ITML algorithm, we propose the SITML
method. The proposed SITML algorithm uses the local metric
spaces to preserve the local discriminative information. Then,
local pairwise constraints are constructed to maximize the Jef-
fery divergence to both improve the detection performance and
handle the problem of asymmetric KL divergence. Finally, a

closed-form solution is calculated to obtain the solution to the
optimization problem and, acquire the metric matrix. By using
the metric matrix, we can transform data into the Mahalanobis
metric feature space to achieve better detection performance.

A. Local Metric Space Formulation

Let yij ∈ (+1,−1) denotes the relations of the training sam-
ples. If xi and xj are the same class, then yij = 1, and if xi

and xj are the different classes, then yij = −1. The insight
that for each center sample xi, there are k1 nearest neighbors
in the same class (within-classes) and k2 nearest neighbors
in different classes (between-classes) can be obtained. The
sets of possible differences for sample xi and its k1 within-
class difference space, are denoted as N+

k1
(xi). Similarly, the

sets of possible differences for sample xi and its k2 between-
class difference space, are denoted as N−

k2
(xi). We can obtain

the following matrices:

S =
{
(xi − xj)|xi ∈ X,xj ∈ N+

k1
(xi)

}
D =

{
(xi − xj)|xi ∈ X,xj ∈ N−

k2
(xi)

}
. (7)

S represents the within-class difference space, and D rep-
resents the between-class difference space. The dimension of
matrices S and D is L× L. By constructing a neighborhood of
training samples, the local distinguishable information can be
retained, which can be used to consider the locality of the data
distribution and improve the detection performance.

B. Maximization of the Jeffery Divergence

Although ITML is an effective algorithm for different applica-
tions, the KL divergence of ITML, which works in a weakly su-
pervised manner may lead to inaccurate description of distance,
is asymmetric (KL(P1||P2) �= KL(P2||P1)). In addition, by
constantly changing the parameters of the predicted distribution,
different values of the KL divergence can be obtained. Thus,
we apply the symmetric KL divergence, which is also known as
Jeffrey divergence, to build a framework from the neighborhood
of each training sample. Compared to the KL divergence, the
Jeffery divergence can better judge the similarity of samples.

Suppose PS is the distribution of the within-class difference
space and PD is the distribution of the between-class difference
space. Given a Mahalanobis distance, we achieve the corre-
sponding multivariate Gaussian distributions of PS and PD,
where ΣS and ΣD are the covariance matrices, respectively. To
compute the within-class and between-class covariance matrices
ΣS and ΣD, respectively, we apply the maximum likelihood
estimation as

ΣS =
1

|S|
n∑

i=1

⎡
⎢⎣ ∑
xj∈N+

k1
(xi)

(xi − xj)(xi − xj)
T

⎤
⎥⎦

ΣD =
1

|D|
n∑

i=1

⎡
⎢⎣ ∑
xj∈N−

k2
(xi)

(xi − xj)(xi − xj)
T

⎤
⎥⎦ (8)

where n is the number of training samples.
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Considering M = WWT , the Jeffery divergence between
the transformed distributions PSW

and PDW
which is with zero

mean and covariance matrices WTΣSW and WTΣDW, can
be formulated as

J(W) = KL(PSW
, PDW

) + KL(PDW
, PSW

)

=
1

2

[
tr((WTΣDW)

−1
(WTΣSW)

+ log
∣∣∣(WTΣDW)(WTΣSW)

−1
∣∣∣)−D

]

+
1

2

[
tr((WTΣSW)

−1
(WTΣDW)

+ log
∣∣∣(WTΣSW)(WTΣDW)

−1
∣∣∣)−D

]

=
1

2

[
tr((WTΣSW)

−1
(WTΣDW)

+(WTΣDW)
−1
(WTΣSW))

]
−D (9)

where D is constant. Thus, we can calculate (9) by removing D
and obtaining the transformed metric matrix as

agrmax
W∈RL×D

J(W)

= tr((WTΣSW)−1(WTΣDW)

+ (WTΣDW)−1(WTΣSW)). (10)

According to our previous work [30], ITML is subject to a
fixed threshold, which cannot be used to handle data subject
to complex distributions. Thus, we use a local decision function
f(dij), instead of a fixed threshold. Combined with (6) and (10),
we can obtain the final objective function as

agrmax
W∈RL×D

J(W) = tr((WTΣSW)−1(WTΣDW)

+ (WTΣDW)−1(WTΣSW)).

+ γ ·
[
tr(Σ−1

diag(ξ)Σdiag(ξ0))

+ log
∣∣∣Σdiag(ξ)Σ

−1
diag(ξ0)

∣∣∣−D
]

s.t. dM(xi,xj) ≤ fsame(dM(xi,xj))

+ ξc(i, j)(xi,xj) ∈ similarsamples

dM(xi,xj) ≥ fdiff (dM(xi,xj))

+ ξc(i, j)(xi,xj) ∈ dissimilarsamples

ξc(i, j) ≥ 0, ∀(i, j), d ≥ 0 (11)

where

fsame(dij)

= dij − (d
(1/Nsame)
ij /dmax)(xi,xj) ∈ similarsamples

fdiff (dij)

= dij + (dmax/d
(1/Ndiff )
ij )(xi,xj) ∈ dissimilarsamples

(12)

where dij is the distance of (xi,xj). dmax is the maximal
distance among all the pairs (xi,xj). Nsame is the scale factor
that controls the shrinkage of similar samples. And Ndiff is the
scale factor that controls the expansion of dissimilar samples. To
guarantee that the local decision function fsame(dij) can shrink
faster, we set Nsame = 1 in this article. Likewise, to guarantee
the local decision function fdiff (dij) can expand faster, we set
Ndiff = 1/log2(dmax/(dmax − 2)).

C. Optimization Problem and Its Solution

Our goal is to find the linear transformationW that maximizes
the Jeffrey divergence J(W). To achieve this, according to [35],
we take the derivative of the objective function J(W) with
respect to W as

∂

∂W
J(W)

= −2ΣSW(WTΣSW)−1WTΣDW(WTΣSW)−1

+ 2ΣDW(WTΣSW)−1

− 2ΣD(WTΣDW)−1WTΣSW(WTΣDW)−1

+ 2ΣSW(WTΣDW)−1. (13)

The optimal matrix W should satisfy ∂
∂WJ(W) = 0, thus

we can obtain the following formulas:

Σ−1
S ΣDW = W(WTΣSW)−1(WTΣDW)

Σ−1
D ΣSW = W(WTΣDW)−1(WTΣSW). (14)

In addition, we assume that Λ ∈ RD×D is the diagonal ma-
trix, where λ1, λ2, · · · λD are the eigenvalues of Σ−1

S ΣD. Thus,
we have

Σ−1
S ΣDW = WΛ. (15)

Because the inverse of a nonsingular matrix shares identical
eigenvectors and reciprocal eigenvalues, once we have the eigen-
vectors and eigenvalues of the matrix, we can obtain analogous
information on the inverse of the matrix. Σ−1

D ΣS is the inverse
matrix of Σ−1

S ΣD, and hence

Σ−1
D ΣSW = WΛ−1. (16)

Combined with (14)–, we can obtain the following formula:

(WTΣSW)−1(WTΣDW) = Λ

(WTΣDW)−1(WTΣSW) = Λ−1. (17)

Finally, the objective function can be simplified as

agrmax
W∈RL×D

J(W)

= tr((WTΣSW)−1(WTΣDW))

+ tr((WTΣDW)−1(WTΣSW))

= tr(Λ) + tr(Λ−1)

=
D∑
i=1

(λi + λ−1
i ) (18)
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Fig. 1. (a) AVIRIS LCVF dataset. (b) Implanted target locations. (c) Target
spectrum and some typical spectra of background samples.

TABLE I
DETAILS OF THE IMPLANTED TARGET PANELS FOR THE AVIRIS LCVF

DATASET

To solve (11), we set the linearly independent ω1,ω2, . . . ,ωi

as eigenvectors of Σ−1
S ΣD. That is, we can solve (11) via a

closed-form solution [36], [37]. The eigenvalues λi of Σ−1
S ΣD

can be obtained with generalized eigenvalue decomposition by
solving the following formula:

ΣDωi = λiΣSωi. (19)

Then, we can obtain matrix W, the columns of which are the
vectors ωi, where i = 1, 2, . . . D. That is, we can acquire linear
projection matrix W (or M). For any arbitrary xi ∈ RL×n, we
can obtain the transformed data via

x′
i = WTxi. (20)

Finally, we can detect targets by using any detector.

IV. EXPERIMENTAL RESULTS

In this section, we present the three popular HSI datasets
employed, describe the experimental settings of the parameters,
and analyze the effectiveness of SITML.

A. Hyperspectral Datasets Description

The first synthetic image was acquired by the airborne vis-
ible/infrared imaging spectrometer (AVIRIS) sensor, covering
the lunar crater volcanic field (LCVF) in USA, with 200× 200
pixels and 188 bands, which was created in [38] and [39]. In addi-
tion, the alunite spectrum was selected from the U.S. Geological
Survey digital spectral library and used as the target spectrum.
Fig. 1(a) and (b) shows the image scene and the locations of
target panels, which are implanted. There are two mixed pixels,
which are mixed with prior target spectrum t and background
spectrab of the original position as:x = pt+ (1− p)b, in each
target panel. p represents the fraction, which varies from 10%
to 50% from left to right. Table I gives the details. Fig. 1(c)
shows the target spectrum and typical spectra of the background

TABLE II
AVERAGE COMPUTATIONAL TIME (IN SECONDS) ANALYSIS OF DIFFERENT

ALGORITHMS FOR THE THREE DATASETS

Fig. 2. (a) Nuance CRI stone dataset. (b) Target locations. (c) Target spectrum
and some typical spectra of background samples.

Fig. 3. (a) AVIRIS San Diego airport dataset. (b) Target locations. (c) Target
spectrum and some typical spectra of background samples.

samples. Eight background pixels are randomly chosen as the
background samples.

The second dataset was acquired by the Nuance CRI hy-
perspectral sensor, including 400× 400 pixels and 1186 target
pixels of stone, as shown in Fig. 2(a). Fig. 2(b) and (c) shows the
locations of the stones and the spectral signatures, respectively,
[40], [41]. The number of spectral bands is 46. Ideally, spectra
should be from the spectral library for target detection. In this
experiment, the red line of Fig. 3(c) represents the priori target
spectra, which are chosen from the center of a stone. Twenty
background spectra are randomly chosen as the background
samples.

The third dataset was collected by AVIRIS, located in San
Diego, USA. Fig. 3(a) shows the image scene, including 189
spectral bands. The image size is 100× 100 pixels [42]–[45].
The 58 target pixels of the three aircrafts are the targets of
interest, which are shown in Fig. 3(b). Three pixels labeled at the
center of each aircraft are selected as target samples, while ten
background pixels are randomly chosen as background samples.
Fig. 3(c) displays the target spectrum and some typical spectra
of background samples.
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Fig. 4. AUC values of SITML with respect to parameter k. (a) AVIRIS LCVF dataset. (b) Nuance CRI stone dataset. (c) AVIRIS San Diego airport dataset.

Fig. 5. 2-D plots on the AVIRIS LCVF dataset. (a) Ground truth. (b) Adaptive coherence/cosine estimator. (c) Orthogonal subspace projection. (d) Target-
constrained interference-minimized filter. (e) Large margin nearest neighbor. (f) Cross-view quadratic discriminant analysis. (g) Information-theoretic metric
learning. (h) Symmetric information-theoretic metric learning.

B. Experimental Setting

To prove the significance of the proposed SITML algorithm,
the two-dimensional (2-D) detection maps, obtained by the
detection test statistic results, are used to qualitatively analyze
the detection performance. Higher brightness implies that target
locations are more obvious and the ability to detect targets of
interest is higher. Moreover, the receiver operating characteristic
(ROC) curve and the area under the ROC curve (AUC) value are
regarded as the classic comparison measurements [46], [47].
The ROC curves, which illustrate the relations between the
false positive rates and the probability of detection at a set of
different thresholds, are widely used in the target detection ap-
plications as a standard performance evaluation tool. Generally,
at the same level of false positive rates, an algorithm that has
a higher probability of detection performs better. That is, the
ROC curve of a good detection method should be closer to the
upper left of the coordinate axis. However, the ROC curves of
different algorithms may alternate with each other, making it
difficult to judge which method performs better. The AUC value
represents the average behavior used to assess the accuracy. The
method with the larger AUC value is considered to be the better
method. To further prove the ability of the SITML algorithm,

the situations of separation between the target and background
were evaluated. For each detector, we normalize the target and
background columns from 0 to 1. The positions of the columns
represent the separability of the target and background.

To evaluate the effectiveness of SITML, we compared it with
three classical target detectors, i.e., ACE, OSP, and TCIMF;
and three effective metric learning-based methods, i.e., LMNN,
XQDA, and ITML algorithms; on three HSIs.

To conduct impartial comparison, for each HSI, SITML, and
all comparison algorithms adopt the same target spectra and
background ones as the priori samples for each algorithm except
the ACE method, which only needs the same target samples. For
the metric learning-based methods, i.e., LMNN, XQDA, ITML,
and SITML methods, we use the ACE as the target detector.
Thus, we also use the ACE as the comparison algorithm to prove
the ability of SITML.

The parameters of the LMNN, XQDA, and ITML algorithms
are adjusted according to the relevant [48]–[50]. As mentioned in
Section III, for the proposed SITML algorithm, k1 and k2 are the
within-class and between-class nearest neighbors, respectively.
To simplify the analyses, we set k = k1 = k2. To investigate the
impact of the choice of the nearest neighbors on the performance
of the proposed SITML algorithm, Figs. 4(a)–(c) illustrate the
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Fig. 6. 2-D plots on the Nuance CRI stone dataset. (a) Ground truth. b) Adaptive coherence/cosine estimator. (c) Orthogonal subspace projection. (d) Target-
constrained interference-minimized filter. (e) Large margin nearest neighbor. (f) Cross-view quadratic discriminant analysis. (g) Information-theoretic metric
learning. (h) Symmetric information-theoretic metric learning.

Fig. 7. 2-D plots on the AVIRIS San Diego airport dataset. (a) Ground truth. b) Adaptive coherence/cosine estimator. (c) Orthogonal subspace projection.
(d) Target-constrained interference-minimized filter. (e) Large margin nearest neighbor. (f) Cross-view quadratic discriminant analysis. (g) Information-theoretic
metric learning. (h) Symmetric information-theoretic metric learning.

AUC values of the SITML method for different parameter k.
Obviously, the detection performance behaves very stably and
effectively when k is sufficiently small. Consequently, we set
k = k1 = k2 = 5 for all the experiments.

C. Experimental Results and Analysis

1) Detection Performance: To analyze the results qualita-
tively, the 2-D results on the AVIRIS LCVF dataset, which
are normalized from 0 to 1, are shown in Fig. 5(a)–(h). For
the AVIRIS LCVF dataset, except for the TCIMF and SITML
algorithm, none of the algorithms show good distinguishable
detection maps. The proposed the SITML algorithm obtains the

highest detection values for the target pixels when they suppress
the background effectively. This indicates that SITML algorithm
is more robust than the comparison algorithms. Fig. 6(a)–(h)
show the 2-D plots of the detection results on the Nuance CRI
stone dataset. We can again observe that the target locations
of the ACE and SITML algorithms are more obvious while
suppressing the background than those of the other comparison
algorithms. That is, only the ACE and SITML algorithms obtain
satisfactory detection results, while the OSP, TCIMF, LMNN,
XQDA, and ITML algorithms hardly work on this dataset be-
cause of the high false positive rates. Similar to the above two
datasets, we plot the 2-D plots of the results on the AVIRIS
San Diego airport dataset, as shown in Fig. 7. The SITML
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Fig. 8. ROC curves and AUC values for the three datasets. (a) AVIRIS LCVF.
(b) Nuance CRI stone. (c) AVIRIS San Diego airport.

algorithm outputs high statistical values of target pixels while
suppressing the background effectively. As for the other compar-
ison algorithms, i.e., ACE, OSP, TCIMF, LMNN, XQDA, and
ITML, are insufficient at suppressing the background, although
they can recognize all the targets, which may cause high false
positive rates. This is probably because SITML considers the
local pairwise constraints derived from the neighborhood of each
training sample, which can maximize the Jeffery divergence and
significantly improve the performance of the detector.

Fig. 9. Separability maps for the three datasets. (a) AVIRIS LCVF. (b) Nuance
CRI stone. (c) AVIRIS San Diego airport.

In order to assess the detection performance quantitatively, we
plot the ROC curves in log-scale and obtain the AUC values by
using the detection test statistic results of different algorithms, as
shown in Fig. 8. Furthermore, we use the AUC values to measure
the general behavior to further evaluate the performance.

As shown in Fig. 8(a), on the AVIRIS LCVF dataset, it can be
observed that the ITML and SITML algorithms achieve better
detection performances since their ROC curves are always above
those of the other comparison algorithms. However, the ROC
curves of the ITML and SITML algorithms alternate with each
other, making it difficult to judge which method performs best.
However, the AUC value, achieved by the SITML algorithm
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Fig. 10. 2-D plots on OHS Qingdao vessel dataset. (a) False-color composite map. (b) Adaptive coherence/cosine estimator. (c) Orthogonal subspace projection.
(d) Target-constrained interference-minimized filter. (e) Large margin nearest neighbor. (f) Cross-view quadratic discriminant analysis. (g) Information-theoretic
metric learning. (h) Symmetric information-theoretic metric learning.

improves from 0.9993 to 1 compared with the ITML algorithm.
This indicates that SITML can obtain better performance than
the ITML algorithm.

As shown in Fig. 8(b), for the Nuance CRI stone dataset, the
false positive rate of the SITML algorithm decreases to the 10−1

level when the probability of detection is 100%, while the false
positive rates of the comparison algorithms are approximately 1
when the probability of detection is 100%. Compared with the
other algorithms, the ROC curve of SITML illustrates the better
performance under the FAR 10−3 level, which is the primary
range of interest. The AUC value of the proposed SITML algo-
rithm is the largest value compared with the other algorithms,
showing that SITML has the best performance compared with
the other methods.

As shown in Fig. 8(c), the ROC of SITML is closest to the
upper left and always above those of the comparison algorithms
on the AVIRIS San Diego airport dataset. The SITML algorithm
has the best probability of detection under the same false pos-
itive rate, which indicate that SITML has the highest detection
performance. As expected from the ROC curve analysis, the
AUC values of the comparison algorithms are less than that of
SITML.

2) Separability Analysis: The separability between the tar-
get and background is shown in Fig. 9. For all three datasets, the
proposed SITML algorithm can always restrain the background
information and has the best separability between the target and
background. For the AVIRIS LCVF dataset in Fig. 9(a), we
can observe that there is a small gap between the target and
background for the ACE, OSP, TCIMF, XQDA, and ITML, but
SITML illustrates the best separability. For the Nuance CRI
stone dataset in Fig. 9(b), the gap between the two columns
of each comparison algorithm is not very obvious except for

ITML. Although the gap between the target and background
for ITML is obvious, it cannot restrain background information
very well. For the AVIRIS San Diego airport dataset, ITML and
SITML show the best separability, while ITML cannot suppress
the background very well.

3) Computational Time: To compare the computational time
of different algorithms, all the experiments are implemented on
the same computer. Table II gives the average running time of
each method for ten times on the AVIRIS LCVF dataset, Nuance
CRI stone dataset and AVIRIS San Diego airport dataset. The
computational time is related to the pixel size, the number of
bands and the number of prior samples. In general, the running
time of the proposed SITML algorithm has comparable speed
performance compared with the TCIMF and LMNN, while it
is a little slower than the running time of the other comparison
algorithms. That is, although SITML needs to construct a within-
class difference space and between-class difference space from
the neighborhood of each sample, SITML is still competitive
with the comparison algorithms. That occurs because SITML
solve the optimization problem via a closed-form solution.

Although the efficiency of our method is not dominant, it
outperforms the comparison algorithms on all the datasets. We
believe that the computational time of the proposed SITML
algorithm can be accelerated through GPU acceleration.

V. PRACTICAL APPLICATION AND ANALYSIS

In this section, we further verify the practicability of the
proposed SITML method, using the newest data collected by
the orbita hyperspectral (OHS) satellite. OHS satellite is the first
hyperspectral satellite with surface coating technology for sen-
sors in the world. Compared with other hyperspectral satellites,
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OHS breaks through the bottleneck of hyperspectral satellites
and opens a new era of remote sensing image processing [51],
[52].

This article uses the HSI of the Qingdao coast acquired on
April 17, 2019, and applies one of the scenes as an example for
experiment. The raw data has been preprocessed, including radi-
ation correction and geometric correction. The spectral coverage
of this scene is 466–940 nm, including 32 bands from visible to
near-infrared wavelengths. And the spatial resolution is 10 m.
The image window size is 1000 × 1000 pixels. Three vessels
are the main targets of interest, which are marked in red box in
Fig. 10(a). In this experiment, six pixels labeled at the center
of each vessel are selected as target samples, eight background
spectra are randomly chosen as the background samples.

We qualitatively analyze the performance of the proposed
SITML method compared with the comparison methods by
drawing the 2-D plots according to the detection test statistic
results, which are shown in Fig. 10(b)–(h). On the OHS Qingdao
vessel dataset, the ACE and OSP can identify the desired targets,
while failing to restrain the background pixels. In contrast,
the TCIMF can effectively suppress the background pixels,
while failing to highlight the desired targets. Compared with
the LMNN, XQDA and ITML methods, the proposed SITML
algorithm can further suppress the background while the target
positions of SITML are more prominent. In this experiment,
our proposed SITML algorithm is superior to the comparison
methods in qualitative evaluation.

VI. CONCLUSION

Target detection is very important for HSI processing, but
its performance is far from satisfying. Metric learning-based
methods are straightforward and effective at offering a natural
solution to measure the similarity of samples. In this article,
we present the SITML method to detect targets of interest. To
preserve the discriminative information, our method constructs
a within-class difference space and between-class difference
space from the neighborhood of each sample. To solve the prob-
lem of asymmetric KL divergence, we use the Jeffery divergence
to build the metric learning framework, which can be optimized
by a closed-form solution. To demonstrate the effectiveness of
the SITML algorithm, extensive experiments are implemented
on three HSIs. Six benchmark algorithms are compared with
the proposed algorithm via 2-D plots, ROC curve analysis,
AUC values and separability maps. The experimental results
indicate that the SITML algorithm is superior to the comparison
algorithms. In future work, we will focus on code optimization
to accelerate the calculation time to achieve further superior-
ity in real applications. Additionally, we will compare the 3D
ROC curves [53] of different algorithms to further evaluate the
effectiveness of SITML.
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