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Incremental SAR Automatic Target Recognition
With Error Correction and High Plasticity

Jiaxin Tang, Deliang Xiang
Yongsheng Zhou

Abstract—Synthetic aperture radar automatic target recogni-
tion (SAR ATR) uses computer processing capabilities to infer the
classes of the targets without human intervention. For SAR ATR,
deep learning gradually emerges as a powerful tool and achieves
promising performance. However, it faces serious challenges of
how to deal with incremental recognition scenarios. The existing
deep learning-based SAR ATR methods usually predefine the total
number of recognition classes. In realistic applications, the new
tasks/classes will be added continuously. If all old data are stored
and mixed with newly added data to update the model, the storage
pressure and time consumption make the application infeasible. In
this article, the high plastic error correction incremental learning
(HPecIL) is proposed to address the model degradation and plas-
ticity decline in the incremental scenario. Multiple optimal models
trained on old tasks are used to correct accumulative errors and
alleviate model degradation. Moreover, the sharp data distribution
shift due to newly added data can also result in the model under-
performing. A class-balanced training batch is constructed to deal
with the issue of unbalanced data distribution. To make a tradeoff
between model stability and model plasticity, low-effect nodes in
the model are removed to boost the efficiency of model update. The
proposed HPecIL outperforms the other state-of-the-art methods
in incremental recognition scenarios. The experimental results
demonstrate the effectiveness of the proposed method.

Index Terms—Automatic target recognition (ATR), incremental
learning, synthetic aperture radar (SAR).

1. INTRODUCTION

UE to the superiorities of all-weather, day-and-night,
wide-range, and high-resolution imaging, synthetic
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aperture radar (SAR) has been widely applied in military recon-
naissance, geographic information collection, and change de-
tection [1]. Different from optical imaging, the single-polarized
SAR image characterizes the target by scattering intensity. The
SAR imaging mechanism results in the shortcomings of blurry
details and strong anisotropy. Simultaneously, limited resolution
and complex background also increase the difficulty of manual
interpretation. SAR automatic target recognition (ATR) uses
computer processing capabilities to infer the classes of the
targets without human intervention [2].

Previous SAR ATR studies mostly exploited template match-
ing [3], [4] and electromagnetic modeling [5], [6]. For the
former class, the lack of templates leads to poor recognition
performance. In contrast, the latter class requires complicated
electromagnetic knowledge and prior information about targets.
With the help of machine learning, hand-craft feature [7], [8],
and robust trainable classifier [9], [10] are applied in the SAR
ATR field. It is different from the template-based method, which
needs to select the best match. Most subsequent research is on
selecting an appropriate feature or improving the classifier.

The renaissance of neural networks makes more and more
deep learning-based SAR ATR methods emerge. Chenezal. [11]
proposed an all-convolutional network, which is efficient and
accurate. Li ef al. [12] improved recognition accuracy by adding
component information. Wang et al. [13] extracted multifarious
target attributes from the segmentation task to achieve superior
recognition performance. Besides, some other research works
focus on training deep neural networks with limited labeled
data. CHU-Net [14] utilized a convolutional highway unit to
improve the model feature extraction capacity for limited labeled
data. MCGAN [15] mixed the encoded features with noise
and category labels to generate diverse and correct samples.
DKTS-N [16] incorporated SAR domain knowledge related to
the azimuth angle, the amplitude, and the phase data of vehicles
to extract more information from a small amount of labeled data
to avoid overfitting problems. However, humans can accumulate
the knowledge step by step, instead of completing it all at
once. Neural network-based methods should be able to learn
knowledge incrementally.

In the real-life application of SAR ATR, new tasks/classes will
continue to be added [17]. The conventional methods assume
that training data of all tasks/classes are always available in every
training phase. As shown in Fig. 1, the conventional methods
adopt joint training to retrain the model in the incremental
scenario. Reusing old data will increase time consumption. The

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0003-0152-6621
https://orcid.org/0000-0002-2058-2373
https://orcid.org/0000-0003-4906-6142
https://orcid.org/0000-0001-7261-7606
https://orcid.org/0000-0002-9735-570X
mailto:tangchiahsin@outlook.com
mailto:tangchiahsin@outlook.com
mailto:zhangf@mail.buct.edu.cn
mailto:mafei@mail.buct.edu.cn
mailto:zhyosh@mail.buct.edu.cn
mailto:xiangdeliang@gmail.com
mailto:lihengchao_78@163.com
mailto:lihengchao_78@163.com

1328

well-trained model

training data

EEER
* K Kk Kk

joint training

old data

EEER
* Kk k Kk

model training

well-performance

[

+ model trammg

newly added

time-consumin;
data e

lossy-performance

exemplars

" x

ha model trammg

newly added
data high-efficiency

=,

Fig. 1. TIllustration for the retraining phase of the conventional methods and
incremental learning methods.

amount of newly added data only accounts for a small ratio of
the total amount of data, which means that the most resource is
used on the old data. However, most well-performance methods
exploit the backpropagation algorithm to update parameters.
If the old data are unavailable, the knowledge about the old
data will be completely lost (i.e., catastrophic forgetting [18],
[19]). The data-driven methods suffer from this issue severely.
Humans can continuously acquire knowledge when observing
new instances. Old concepts may change or be forgotten, but
a complete loss is nearly impossible. Incremental learning can
continuously acquire knowledge from newly added data and
maintain the old knowledge like humans, which is regarded as
a more appropriate learning mode to cope with this scenario,
where data increase gradually [20].

The up-to-date incremental learning methods can be divided
into three main categories: data replay-based methods, weight
regularization-based methods, and model growth-based meth-
ods. Data replay-based methods [21]-[27] construct a small
exemplar set from old data or synthesize samples to keep recog-
nition capacity for old categories. Weight regularization-based
methods [28]—-[30] penalize the modification of important model
parameters to overcome the performance degradation. Model
growth-based methods [31]-[36] fix parameters and extend
models to cope with old knowledge reservation and new knowl-
edge acquirement. The data replay-based method consumes
more training time. The model growth-based method needs extra
memory for a growing model. The weight regularization-based
method does not require old data and extension models but the
performance is unsatisfactory. Applying incremental learning
methods directly cannot satisfy the requirements (i.e., high
accuracy, low time consumption, and low data loss risk).

Existing incremental SAR ATR methods are based on con-
ventional machine learning [37] and [38] proposed a dynamic

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

feature learning method based on nonnegative matrix factor-
ization (NMF). However, the classifier still needs to be re-
trained and the recognition performance is not satisfactory.
Dang et al. [39] and Ma et al. [40] improved open set SAR
target recognition with incremental learning. Nevertheless, the
main focus is on how to cope with unknown categories. CBe-
sIL [17] improved exemplar selection in [39] and synthesizes
extra samples. Yet, synthetic data increase computational time.
Some common issues in incremental SAR ATR are listed as
follows:

1) Error accumulation: As the backpropagation algorithm is
used to update the model parameters, the model is only
locally optimal for the newly added data. The errors for old
classes will be accumulated with continual model updates.
None of the existing methods corrects the errors in the
subsequent training phase.

2) Stability-plasticity dilemma: Most methods pay much
attention to the capacity of preserving knowledge from
previous data (i.e., stability) but damage the capacity of ac-
quiring knowledge from newly added data (i.e., plasticity).

3) Class imbalance: The dataset shift is a basic issue in the
incremental recognition scenario. The training set distri-
bution changes from old classes to newly added classes.
Most methods preserve an exemplar set to solve the issue.
However, few methods pay attention to the class imbalance
issue degraded from the dataset shift.

To overcome these problems, a plastic error correction incre-
mental learning method is proposed and the overall framework
is shown in Fig. 2. In addition to the basic CNNs model structure,
the method includes exemplar management, knowledge inheri-
tance, data distribution balance, and pruning initialization parts.
The exemplar management part selects key samples to construct
a limited exemplar set. The knowledge inheritance part utilizes
multiple old models to guide the current model training and
correct the accumulation errors. The data distribution balance
part constructs class-balanced training batches to avoid a sharp
data distribution shift. The pruning initialization part increases
the contribution rate of the old data in the training phase to
improve the model plasticity.

To summarize, our contributions are the following:

1) The proposed knowledge inheritance preserves multiple
optimal models trained on old data to correct the accumu-
lative errors. The current model accumulates errors due
to the continuous reduction of old category data in the
training phase, which results in the model performance de-
teriorates. With the guidance of multiple optimal models,
the recognition performance of the current model achieves
a significant improvement.

2) The data distribution balance is exploited to cope with the
class imbalance in the training batches. Due to the emer-
gence of newly added data in the incremental recognition
scenario, the exemplars of old classes only account for a
small ratio. The catastrophic forgetting degenerates into
an imbalance problem. Class-balanced training batches
alleviate the sharp shift in the training data distribution
and achieve better performance.



TANG et al.: INCREMENTAL SAR AUTOMATIC TARGET RECOGNITION

step 1: data distribution balance I

exemplars

EEER
* ok Kk

Number of Number of

data :> data

Cp C2 C3-- Cy

L

Cp C2C3- Gy

J

L/

newly added
data

data distribution balance

4
o0

step 2: pruning initialization |

new model
parameters

the last model
parameters

maximum value

threshold

minimum value

mini-batches

>

new model

well-trained model

R

=
>

train

step 3: soft targets generation |

N -
L
model 1
S\
N )

1329

model n-1

Fig. 2. Proposed incremental recognition framework.

3) The unstructured pruning initialization, instead of the ini-
tialization by all parameters of the last model, is used in the
proposed HPecIL. The initialization by all parameters of
the last model can maintain past recognition performance
but reduces the update efficiency of the exemplars to the
model. The unstructured pruning initialization removes
low-effect nodes, which gives a momentum boost to the
model update.

The rest of this article is organized as follows. More related
work in incremental learning based on deep learning is discussed
in Section II. The details of the proposed method and each part
are described in Section III. In Section IV, the experimental
setup, experimental results, and analysis are presented. The anal-
ysis contains average accuracy comparison, accuracy change of
each class per incremental stage, and time consumption. Finally,
Section V concludes this article.

II. RELATED WORK

Our work is mainly related to the data replay-based [21]-
[23] and weight regularization-based incremental learning [28],
[30], [41]. In this section, the common technical terms and basic
strategies of incremental learning are described.

A. Definitions of Terms

The common technical terms used in the data replay-based and
weight regularization-based incremental learning are described.
The proposed HPecIL also follows the same definitions of the
terms.

1) Class-incremental learning [21]-[23] is a specific incre-
mental learning scenario, which regulates that the new task
only includes unseen classes.

2) Old data are training data that have been used to update
the model parameters.

3) Newly added data emerge with the new task. And they
will be used to train the new model.

4) Old models [41] have been trained on the old data. Their
performances are locally optimal for the training classes.

5) The new/current model is initialized by the last old model.
And it will be updated by the newly added data and
exemplars.

6) Exemplars [21]-[23] are representative samples selected
from old data. They will be added to the training data for
the parameter update of the new model.

7) Soft targets [30] are old model outputs with the training
data as inputs. The soft targets used by the distillation
loss are efficient to transfer knowledge to the new/current
model.

B. Incremental Learning

In recent years, neural network models have surpassed
human-level performance on individual tasks, e.g., object detec-
tion, object recognition. While the results of these static models
are impressive, they are incapable of adapting the behavior over
time [20]. Therefore, these models should be retrained when
newly added data emerge. In our realistic world, reusing all
training data to update model parameters is intractable for data
streams [41]. Moreover, the storage constraints and data loss
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risk make the practice unavailable. This calls for a continually
adaptive method, which can keep on learning over time.
Incremental learning methods attempt to follow the human
cognition system, that is, learn concepts sequentially [32]. Ac-
cording to gradually extending acquired knowledge, incremental
learning methods can adapt the data streams from different
domains or tasks. The old concepts can be reawakened by
observing exemplars, but it is not significant to preserve all old
data. The forgetting of partial old knowledge is allowed, but
complete loss (i.e., catastrophic forgetting) should not occur.

III. PROPOSED METHOD

In this section, the overall framework is described, and the
implementation of incremental recognition is explained. Sec-
tion III-A introduces the data format, basic network architecture,
and incremental training phase of the proposed method in an
overview perspective. Section III-B presents the main compo-
nents including exemplars management, knowledge inheritance,
data distribution balance, and pruning initialization.

A. Overall Process

1) Data Format: The continuously increasing data streams
can be denoted as X', X2 ..., and the sample set XV =
{z¥,...,2¥,} means that there are n¥ samples of class y € Y.
Our method selects exemplars from XY to construct exemplar
sets £Y. The total number of exemplars is a fixed number K. The
exemplar management algorithm is described in Section III-B1.

2) Architecture: As the underlying support, our method
makes use of CNN with residual structure as feature extrac-
tor and exploits an adaptive average pooling and linear layer
combined with sigmoid function as a classifier. The model is
denoted as ®(w, b, v, 8, ), where w includes the weight of the
convolutional (conv) layer w.o,y and the weight of the linear
layer wy., b is the bias of the linear layer, +y is the weight of the
batch normalization (BN) layer, 3 is the bias of the BN layer,
and z is the input image. The network architecture is ResNet18.
If there are specific requirements, such as model size, inference
speed, and feature space, the network architecture used in our
method can be replaced by any other architecture.

The feature extractor §(weony, ¥, B, ) : X — RY can learn a
feature representation from incremental datasets. The feature
map z is obtained by the feature extraction operation defined as:

z = e(wconv7’775ax)~ (1)

Then, the feature map z is reduced to the vector s by the
adaptive average pooling operation defined as

s = pool(z). (2)

The number of known classes is denoted as C, The linear
layer o(wy., b, s) maps s into a vector v of length C'. Then, the
sigmoid function is used to activate the vector and output the
predictions § € {1,...,C}

vo = o(wye, b,s), 3)
1

arg max~ m .

Y “
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3) Incremental Training Phase: The incremental recognition
framework is shown in Fig. 2. The base model architecture has
been introduced above. In the first recognition task, the training
dataset includes C1 classes, which determines the output number
of the linear layer. Due to the class imbalance, the training
set will be preprocessed to balance the data distribution. The
balanced training set is inputted into the model to predict the
classes. The error between predictions and labels are calculated
through the classification loss function, and the model parame-
ters are updated through the backpropagation algorithm. When
the training iteration condition is met, the model can predict the
first recognition task as follows:

g:(bl(w7b77a6amy)7ye17"'a017 (5)

where @ is the model for the first recognition task. To realize in-
cremental recognition, exemplars are selected from the training
dataset to construct an exemplar set based on herding as follows:

EY <+ herd(XVY). (6)

The model after training will be also saved to supervise future
model training, the operation can be defined as

M @1 (7)

where M stores all previous models.

When the tth recognition task brings new data, the model
training has changed into the incremental recognition mode.
The parameter size of the feature extractor is fixed, while the
parameter size of the classifier is variable with the number of
known classes. The number of known classes C; will update by
the number of newly added classes Ciy as follows:

Ct — thl + CYnew (8)

where C;_1 represents the previous number of know classes.
The number of the output of the linear layer of the classifier
changes with C}. The lower weight of the last saved model will
be pruned and the rest will be utilized to initialize the ¢th model.
The newly added nodes in the linear layer of the classifier are
initialized by (16)—(18). The t¢th model is initialized as follows:

0; = pruning(6;_,) ©)

oy = pruning(o;_1 ) + initializing(opew) (10)

where 0, is the feature extractor of the ¢th model, 6;_; is the
feature extractor of the (¢ — 1)th model, o, is the linear layer
of the classifier of the tth model, o;_; is the linear layer of the
classifier of the (¢ — 1)th model, 0y is the newly added nodes
of the linear layer.

The training batches consisting of newly added data and
selected exemplars will be balanced before it is used to train the
new model. In the incremental recognition stage, the training set
will be respectively inputted into old models and the new model
to produce soft targets i and predictions ¢. The generation of

soft targets is as follows:
Uije = u(wig)t =1,..., M, (11)

where z; ; is the sample 7 of class j in the training set, M is the
number of previous models in M. The loss function consists of



TANG et al.: INCREMENTAL SAR AUTOMATIC TARGET RECOGNITION

1 1ow error parameter space for (t-1)-th task === proposed method

[ 1ow error parameter space for t-th task conventional method

‘

AN

Dy

Fig.3. Geometric illustration of the model change of the proposed method and
conventional method in parameter space. ®;_1 is the model parameter trained
on the previous data. ®; is the model parameter trained on the current data. The
red arrow line indicates the proposed method. The blue arrow line indicates the
conventional method.

two parts, one is classification loss and the other is distillation
loss. The calculation of the classification loss is the same as that
in the first recognition task, and the distillation loss calculates the
error between predictions and soft targets. Then, the optimizer
updates the model parameters. The model and exemplars will be
stored like the first recognition task. Finally, the total number of
exemplars can not exceed a fixed parameter K. The subsequent
incremental recognition task will be processed by the above
workflow. The illustration of the model change in the parameter
space is shown in Fig. 3.

4) Other Details: In the feature extractor 6, biases are not for
conv layers. The parameters that should be initialized include the
weights of conv layers w¢ony, the weights of BN layers ~, and
the biases of BN layers 3. The parameters of BN layers are
initialized by constants, i.e., 7y is set to 1, and [ is set to 0. The
weights weony follow a normal distribution with a mean of 0 and
a standard deviation of std

Weonv

Weony ~ N (0, stdy,,,, )- 12)

The standard deviation std,,, is related to the selected activa-
tion function and fan mode. In our model, all activation functions
after conv layers are rectified linear units (ReLL.U). Therefore, the
formula of std,,_ is shown as follows:

2
tdyen = 1/ .
Sl0peny fan()u[

There are two fan modes, including fan-in and fan-out. Both
modes calculate the size of the receptive field by filter width W
and height H. The difference is that the fan-in mode multiplies
the number of input channels of the filter by the size of the
receptive field to calculate the value, and the fan-out mode uses
the number of output channels. The detailed formula is shown
as follows:

13)

fanin = Cin x W x H
fangy = Cou X W x H.

(14)
5)
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Fig. 4. Illustration for exemplar selection in feature space.

In the classifier o, the weights of linear layer wy., and the bi-
ases of linear layer b follow a uniform distribution. The boundary
value of wy. and the boundary value of b are both denoted by
bound. The formulas are shown as follows:

wye ~ U(—bound, bound) (16)
b ~ U(—bound, bound) (17)
1
bound = {/ — (18)
fan;,

B. Main Components

The key parts in the proposed method, i.e., exemplars man-
agement, knowledge inheritance, data distribution balance, and
pruning initialization, are detailed presented as following.

1) Exemplar Management: Catastrophic forgetting makes
the model unusable in continual growth data. To address this
problem, an intuitive method is selecting a few key samples
from each class as exemplars. In [41], each class of samples
is randomly selected with a fixed number to form an exemplar
set. iCaRL [21] exploits a prioritized exemplar selection based
on herding [42] and a hyperparameter for the total number of
exemplars is used to replace the fixed number per class. After
each training epoch, the mean of samples per class is calculated
as the center and the exemplar is selected by the distance from
the center as shown in Fig. 4. Exemplars that are further from
the center should be removed when the new class is added.

Most data replay-based incremental learning methods [22],
[43], [44] follow the iCaRL experiment benchmark protocol to
arrange classes and select exemplars. In ScalL [45], the exper-
imental results show that exemplar selection based on herding
can improve performance.

The exemplar management includes two steps, i.e., exemplar
selection and reduction. After the model parameter update is
completed, the algorithm selects a limited number of exemplars
from the training set. The total number of exemplars that can be
stored is set to K and C' classes have been observed, m = K/C
exemplars will be stored for each class. In order to keep exemplar
size constant, other exemplars will be removed.
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The exemplar management algorithm selects data that are
closer to the average value of feature vectors of a certain class in
Euclidean metric space as exemplars of the class. For example,
there is an image set XY = {x1,...,2,} of class y, and the
current feature extractor is 6 : y — R?. The mean value ;¥ of
features of class y is calculated as follows:

uy = % Z 0(x).

reXY

19)

If there are m exemplars that should be selected to construct
an exemplar set EY = {eq, ..., e, } of class y, the operation is
shown as follows:

1 .
e, = arg min ||p¥ — p 0(x) —&—ZQ(ep)] ,q=1,...,m,
p=1
(20)

where ¢, is the gth selected exemplar of class y, ;¥ is the mean
value of features of class y. 0 is the feature extractor and x is
a sample of class y. As the new data continuously emerge, m
becomes smaller. A few exemplars should be removed from the
exemplar set. In the exemplar set Y, the sequential position
of exemplars represents the approximation degree. Namely, the
earlier exemplars in EY are more approximate to the mean
value than the latter ones. The procedure for exemplar reduction
removes the latter exemplars to keep only m exemplars in the
exemplar set 1Y,

2) Knowledge Inheritance: In addition to retraining with the
exemplars, the old model implicitly involving the knowledge
acquired from old data can be used to guide the training of the
new models [46]-[48]. The knowledge distillation is originally
proposed for network compression. Hinton et al. [46] transfer
the dark knowledge in the cumbersome model to a tiny model by
using posterior probability produced by the cumbersome model
as soft targets. In [47], the inputs of the final softmax called
logits are used to train a student model to mimic the deep neural
networks via L2 regression. Compared with the hard targets, the
soft targets and logits have much of the information in nodes
with small value.

The soft targets blur the decision boundary and make training
easy with limited training data. Inspired by this work, some
incremental learning methods transfer knowledge from the old
model to the current model based on knowledge distillation. In
LwF [30], the soft targets generated by the old model and new
data implicitly contain the knowledge in the old model. The joint
loss function of LwF is composed of knowledge distillation loss
function and cross-entropy loss function.

The distillation loss L p is given by

. XMoo,
Lp = TN <O ZZ@Z;’ —955)%,

i=1j=1

21

where 7, ; is the soft target generated by the old model for the
sample 7 of class j and §; ; is the output of the current model
for the sample 7 of class j, IV is the number of samples, C'is the
number of classes, 7" is the temperature scaling parameter.

The experiment of the effect of distillation in IL2M [23] shows
that distillation loss is beneficial when no exemplar is supported.
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The use of distillation loss is detrimental if exemplars per old
class are allowed. A similar result is presented in ScalL [45], and
more experiments about the effect of distillation are analyzed.
The authors made a hypothesis that the detriment is caused
during the incremental learning process, and these errors are
caused by class imbalance. In the supplementary materials, the
hypothesis is verified.

Like some other incremental learning methods for neural
networks, our method also uses classification loss to learn knowl-
edge from newly added data and combines the distillation loss to
retain the knowledge from old classes. However, there are three
differences in our method: 1) using the sigmoid as activation
function instead of the softmax; 2) using mean square error
(MSE) as classification loss instead of cross-entropy loss; and 3)
using multiple old models instead of just the previous one. The
softmax makes the output nodes sum to be 1. Nevertheless, the
soft target is formed by concatenating the part of output nodes
of multiple old models. The outputs of each model are activated
by a softmax function, respectively. This operation results in
the soft target neither correctly representing the probabilities
nor correctly indicating the class of the sample. The other
reason is that the softmax makes the output nodes influence
each other, which is not conducive to knowledge preservation.
The sigmoid independently processes each node of the output.
The one-hot encoding makes the only nonzero contribution to
the cross-entropy loss come from the truth node, while this issue
does not happen in MSE loss. In [49], the MSE loss achieves
a better result in class-incremental recognition. The reason for
using multiple old models is that the classification accuracy of
the model is always the best when the data are the most. If
only the last model is used, the error will become larger as it
accumulates. The comparison of single-model distillation and
multimodel distillation is presented in Fig. 5. The combined
loss function is defined as follows:

M

L(®) = Lo(®) + 1Y Lp, (®) (22)
t=1

where L¢ () is the MSE loss for the stored exemplars from old

classes and samples from new classes, L p, () is the distillation

loss of the tth model ®;, M is the number of previous models

in M, and A is a weighted parameter for distillation loss.
The MSE loss L (®) is defined as

, N.c
Leo(®) = “NxC ZZ(yi,j — i)

i=1 j=1

(23)

where §); ; is the output of the current model for sample 7 of class
J» Yi,; is the ground truth for sample ¢ of class j, and IV and C
denote the number of samples and classes, respectively.

The distillation loss Lp, (®) is given by

Niew C,
1 new new 7i Ai
Lp,(®) = ———F—— > > @ —95)° 24
Nl’lCW X CHCW i=1 j:1

where 7, ; is the soft target generated by the ¢th model for the
sample 7 of class j and §j; ; is the output of the current model for
the sample 7 of class j. Chew and Npey are the number of newly
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Fig. 5.
and multimodel distillation.

added classes and the sample number of newly added classes in
the tth task, respectively. 7' is the temperature scaling parameter.
T can adjust the influence of the smaller values in soft targets on
the model update. In the high temperature, the distillation pays
more attention to matching soft targets, and the smaller values
in soft targets have greater influence. Like [21], [30], 7" is set to
2 in our experiments.

3) Data Distribution Balance: The sample amount of newly
added classes is much greater than the amount of the stored
exemplars of old classes. The newly added data are selected
more frequently to form batches for the model training. This
phenomenon is often referred to as the class imbalance problem.
Since the model training uses the backpropagation algorithm,
the data class imbalance will cause the model to be biased. Ulti-
mately, the model can only discriminate the newly added classes
very well, but the performance of the old classes degrades.

To cope with the problem, the sampling probabilities for each
class data before incremental training will be weighted by the
data amount. The probability of one class being selected is
proportional to the data amount of that class in the case of random
sampling. There are a set of sampling probability weights to
ensure that the sampling probabilities for each class are the same.
The class y sampling probability weight o, is defined as

o, = i (25)
Y CxN,

where C'is the number of known classes, /N; and NV, are the

sample number of the class j and class y respectively.

The random sampling probabilities are multiplied by the
weights to obtain class-balanced sampling probabilities. After
the weight operation, although the data diversity of old classes
cannot be changed, the classes in each batch are balanced. The
data distribution balance suppresses the model parameter bias
caused by the class imbalance when the model is updated.

4) Pruning Initialization: The conventional method initial-
izes the current model parameters by the last model parameters
directly. However, the model parameters are usually redun-
dancy. The overfull parameters make the model perform well
on the training dataset, but when the data distribution changes,
the model performance drops sharply. In the incremental recog-
nition scenario, it is common that the data distribution changes

0.6 0.8 1.0 0.0 0.2 0.4 06 08 1.0

Visualize the features of the MSTAR dataset using different incremental training. From left to right are results of fine tuning, single-model distillation,
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Fig. 6. Difference between pruning
initialization.

initialization and non-pruning

from old classes to new classes. To fit newly added data distri-
bution efficiently, unstructured pruning initialization is used to
initialize the current model

The data distribution balance component smoothens the data
distribution change, the newly added data only account for a
small part of the training batches. As shown in Fig. 6, the model
is completely updated in the (¢ — 1)th recognition task. Both
the classification loss and distillation loss are tiny. If the (¢ —
1) — th model is used to initialize the ¢th model directly, the old
data make almost no contributions to the model update. Pruning
initialization could give a momentum boost to the model update.
It means that the initialization without pruning makes the model
plasticity worse and the initialization with pruning improves the
update effectiveness of the model. Both old data and newly added
data act on the model update to improve efficiency. Thus, model
pruning is adopted to improve the model plasticity.

Before the current model is initialized, the importance of
the model parameters is evaluated. Neurons with large absolute
values play a major role in model prediction. Using unstructured
pruning can remove neurons with small absolute values and
preserve the model structure. The pruning operation is shown
as follows:

w; = {’LU[ ‘wl| 2 711 (26)

0 |lwl|<T
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Fig. 7.
ZSU23/4.

where |w;| is the absolute value of each neuron in layer [, T} is
the pruning threshold of layer [. The neurons in each layer are
sorted by the absolute value. Then, the threshold 7; of layer [ is
calculated by the pruning ratio. The pruning ratio is set to 20%,
that is, neurons with the smaller 20% absolute values will be
removed.

IV. EXPERIMENTAL EVALUATION

In this section, the experiments are carried out to evaluate
the effectiveness of the proposed method. The datasets moving
and stationary target acquisition and recognition (MSTAR) and
OpenSARShip [50] are used for experimental evaluation.

1) Dataset: The MSTAR dataset, that supported by the de-
fense advanced research project agency (DARPA) and the
air force research laboratory (AFRL), collects high-resolution
spotlight-SAR imaging of ten classes of military vehicles, i.e.,
tank: T-72 and T-62; armored personal carrier: BMP-2, BRDM-
2, BTR-60, and BTR-70; rocket launcher: 2S1; air defense
unit: ZSU-234; truck: ZIL-131; bulldozer: D7. SAR images and
optical images of 10 class vehicles in the MSTAR dataset are
shown in Fig. 7. Most works for ATR use the MSTAR dataset to
develop and evaluate their methods. The images in the MSTAR
dataset are obtained by X-band SAR radar with HH polarization.
The spatial resolution of these images is 1 ft x 1 ft. The dataset
captures images continuously from 0° to 360° in azimuth with
an interval of 5° or 6 ° at two depression angles 15° and 17°.
In the experiments, images with the depression angle of 17°
and images with the depression angle of 15° are used as the
training set and the test set, respectively, whose configuration of
the dataset is shown in Table I. The original image size ranges
from 128 to 193. The larger size image contains more scenes of
background clutter, and the target size is almost the same. Thus,
the images are cropped to 88 x 88 to unify the size.

The OpenSARShip dataset comes from the Sentinel-1 satel-
lite, which contains many medium-resolution ship chips under
VV and VH polarization modes. Although the number of ship
categories is large, the data are extremely unbalanced. As shown
in Fig. 8, three types of ships under the VV polarization mode
are selected to evaluate the proposed method. Each type has 300
samples. After dividing the data into 80% training and 20% test
data, the final split results are shown in Table II. The images use
the same preprocessing method as the MSTAR dataset.

The dataset is manually divided into multiple tasks for testing
the incremental recognition capability of the proposed method

Optical images (Top) and SAR images (Bottom) of MSTAR dataset. The class order is: ZIL131, D7, BTR70, T72, BMP2, BRDM2, T62, BTR60, 2S1,

TABLE I
CONFIGURATION OF MSTAR DATASET

Number Number

Target Class of Images (17°)  of Images (15°) Labels

ZIL131 299 274 0
D7 299 274 1
BTR70 233 196 2
T72 232 196 3
BMP2 233 195 4
BRDM2 298 274 5
T62 299 273 6
BTR60 256 195 7
2S1 299 274 8
ZSU23/4 299 274 9

Fig. 8.  Optical images (Top) and SAR images (Bottom) of selected data from
OpenSARShip dataset. The class order is: Container Ship, Bulk Carrier, Tanker.

TABLE I
CONFIGURATION OF OPENSARSHIP DATASET

Number Number

Target Class of training data  of test data Labels
Container Ship 240 60 10
Bulk Carrier 240 60 11
Tanker 240 60 12

and other compared methods. The incremental recognition sce-
nario setup is similar to [17] and is shown in Table III. Three
incremental recognition scenarios are designed, respectively, for
which the training set is split into tasks with different increment
numbers of classes. Each task does not include classes observed
in other tasks.
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TABLE III
INCREMENTAL RECOGNITION SCENARIOS

Class
N ZIL131 D7  BTR70 T72 BMP2 BRDM2 T62 BTR60 281 ZSU23/4  Container Ship ~ Bulk Carrier Tanker
cenario

Scenario 1 TASK 1 TASK 2 | TASK 3 | TASK 4 | TASK 5
Scenario 2 TASK 1 TASK 2 TASK 3
Scenario 3 TASK 1 |

TASK 6

TASK 7 | TASK 8 TASK 9 TASK 10 TASK 11 TASK 12
TASK 4 TASK 5 TASK 6 TASK 7
TASK 2 TASK 3

B. Experimental Setup

1) Evaluation Metrics: Each method evaluated in this article
is trained in the incremental recognition scenario. The average
value of all class accuracies per incremental recognition, called
average incremental accuracy, can be one of the evaluation
metrics. This metric reflects the overall accuracy of newly added
classes and old classes.

As known that the average incremental accuracy can only
represent the overall accuracy of each task, but the changes
in the accuracy of each class are also essential for evaluating
the stability and plasticity of these methods. The stability and
plasticity of these methods can be compared by observing the
accuracy of old classes and newly added classes, respectively.
Therefore, the accuracy of each class per incremental batch can
be one of the metrics.

For the evaluation of incremental recognition methods, only
accuracy metrics are not enough. One advantage of incremental
learning is that there is no need to reuse old training data.
Such that, the time consumption of the training phase should
be considered an essential metric.

2) Implementation Details: The PyTorch deep learning
framework is used to implement the experiments, which use
a personal computer with Intel Core 17-8§700 CPU of 3.2 GHz
and NVIDIA RTX 2070 on Windows 10 system. The maximal
number of exemplars K is 200. Each training phase consists
of 50 epochs. In our method, the stochastic gradient descent
is applied as an optimizer, where the learning rate is 0.01,
the momentum factor is 0.9, and the weight decay = 0.0001.
The training batch size is 32, and the distillation loss weighted
parameter A = 0.2.

C. Incremental Recognition Performance

The experiment mainly studies the classification accuracy
and time consumption of different methods under the class-
incremental condition. The proposed HPecIL. and comparison
methods are described as following.

1) Joint training repeatedly uses all training datasets in each
training phase. It can be regarded as the upper boundary
of the average accuracy of all incremental recognition
methods, and the time consumption in the training phase
is also the longest.

2) iCaRL [21] is a classical incremental recognition method
based on data replay, which uses distillation loss to transfer
old knowledge to the current model.

3) CBesIL [17] saves the previous recognition capabilities in
the form of the class boundary exemplars. It uses 1NN as
the classifier.

4) ECIL is an incomplete version of the proposed method
that only uses exemplar management and knowledge in-
heritance. Compared with iCaRL, the big difference is
the use of multimodel distillation instead of single-model
distillation.

5) ECIL+ adds data distribution balance part on the basis of
ECIL.

6) HPecIL is the complete proposed method, including ex-
emplar management, knowledge inheritance, data distri-
bution balance, and pruning initialization parts.

According to the experiment results, the effectiveness of each
part in the proposed method can be proved and analyzed.

The above methods were evaluated on three incremental
recognition scenarios, respectively, and the average incremental
accuracies of these methods are shown in Fig. 9. It can be seen
from Fig. 9 that in different incremental recognition scenarios,
the performances of all methods degrade with the emergence of
new tasks. Due to the sufficient training data, the recognition
accuracy of joint learning decreases the least. After completing
the training of the last task data, the accuracy of HPecIL is second
only to the joint learning. Because the feature representation
capacity of NMF is lower than that of CNN, the recognition
performance of CBesIL declined sharply. The final performance
of HPecIL in the three scenarios exceeds CBesIL by 4.19%,
4.30%, and 3.54%, respectively. Especially for the last three
types of ship data from OpenSARShip, the complexity and
diversity of the data make identification much more difficult than
the MSTAR dataset. In all three scenarios, a total of 13 types
of targets were identified. However, the greater the number of
tasks, the lower the final accuracy.

Tables IV-VII give the detailed change of accuracy per class
of iCaRL, ECIL, ECIL+, and HPecIL in incremental recognition
scenario 2. According to the analysis of these results, the effect
of parts in the proposed method can be verified.

As shown in Table IV, the highest recognition accuracy of
a category is when it first appears, that is, when the data of
that category are the most. However, with the addition of new
data, the accuracy of old data is gradually lower than that of
first recognition. In addition, the earlier the category is trained,
the more the accuracy drops. After the final incremental train-
ing, the recognition accuracy of ZIL131 and BMP2 compared
to those of the first training drop 12.04% and 12.8%. ECIL
adds the knowledge inheritance part to iCaRL. It can be seen
from Table V, the decline in the accuracy of ZIL131 and T72
is significantly alleviated, which proves the effectiveness of
the knowledge inheritance part. Using multiple models instead
of just the former one effectively avoids the accumulation of
misclassification. Nevertheless, the accuracy of container ships
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Incremental recognition accuracies of scenario 1 (Left), 2 (Middle), and 3 (Right).

TABLE IV
DETAILED RECOGNITION ACCURACY OF ICARL IN INCREMENTAL RECOGNITION SCENARIO 2(%)

Training Set ~ ZIL131 D7 BTR70 T72 BMP2 BRDM2 T62 BTR60 2SI  ZSU23/4 Container Ship  Bulk Carrier ~ Tanker
Task 1 100.00  98.54 - - - - - - - - - - -
Task 2 98.91 98.91  100.00  99.49 - - - - - - - - -
Task 3 9526 9927  100.00 82.14  89.74 91.61 - - - - - - -
Task 4 91.24  99.27 9745 8520 85.13 95.26 91.21  90.77 - - - - -
Task 5 94.53 98.54 95.41 89.29 88.21 96.72 84.25 89.23 97.81 94.53 - - -
Task 6 87.59 98.18 97.45 88.78 80.51 96.35 91.21 85.13 98.18 89.42 76.27 61.02 -
Task 7 87.96  98.18  96.43 8929  76.92 94.89 9121  89.74  97.81 91.97 64.40 52.54 67.80

TABLE V
DETAILED RECOGNITION ACCURACY OF ECIL IN INCREMENTAL RECOGNITION SCENARIO 2(%)

Training Set ~ ZIL131 D7 BTR70 T72 BMP2 BRDM2 T62 BTR60 2SI  ZSU23/4 Container Ship  Bulk Carrier — Tanker
Task 1 100.00  98.91 - - - - - - - - - - -
Task 2 97.81 98.54 100.00  99.49 - - - - - - - - -
Task 3 99.64  98.18 9847 9847  96.41 98.91 - - - - - - -
Task 4 99.64  99.27  90.82 9133  82.05 99.64 97.80  95.90 - - - - -
Task 5 91.61 98.18 9694 9490  85.13 98.91 79.85  88.72  99.64 100.00 - - -
Task 6 97.45 98.52 94.39 98.98 91.79 96.72 90.84 89.23 98.18 94.16 81.36 66.10 -
Task 7 95.62 97.81 95.92 94.90 85.13 99.27 91.58 89.74 98.91 96.35 11.86 1.69 100.00

TABLE VI
DETAILED RECOGNITION ACCURACY OF ECIL+ IN INCREMENTAL RECOGNITION SCENARIO 2(%)

Training Set  ZIL131 D7 BTR70 T72 BMP2 BRDM2 T62  BTR60 251 7ZSU23/4  Container Ship  Bulk Carrier  Tanker
Task 1 100.00  99.27 - - - - - - - - - - -
Task 2 98.54 9672 100.00  99.49 - - - - - - - - -
Task 3 99.64  97.81  100.00 9490  95.90 99.27 - - - - - - -
Task 4 99.64 9672 9898 9643  93.85 99.27 97.44  88.72 - - - - -
Task 5 95.62 9745 9745 9541  92.82 98.91 95.60  91.28 100.00 97.08 - - -
Task 6 94.53  98.18 9898  93.88  94.87 97.81 94.87  90.26 99.27 92.34 72.88 67.80 -
Task 7 96.35 98.91 97.45 96.43 92.82 98.91 95.24 89.74 98.91 95.99 55.93 77.97 28.81

TABLE VII
DETAILED RECOGNITION ACCURACY OF HPECIL IN INCREMENTAL RECOGNITION SCENARIO 2(%)

Training Set ~ ZIL131 D7 BTR70 T72 BMP2 BRDM2 T62 BTR60 2S1 ZSU23/4  Container Ship  Bulk Carrier  Tanker
Task 1 100.00  98.91 - - - - - - - - - - -
Task 2 99.64  98.18  100.00  97.45 - - - - - - - - -
Task 3 99.64 98.54 99.49 98.98 98.98 97.45 - - - - - - -
Task 4 99.64 98.54 100.00 9490  94.87 100.00 95.97 86.67 - - - - -
Task 5 96.72  98.18  99.49  97.96 97.44 98.18 89.74  90.77  98.54 94.89 - - -
Task 6 97.81 98.91 9847 9847 9538 97.45 96.33  91.28 9891 96.35 84.75 59.32 -
Task 7 97.08  99.27  98.47  98.47  93.33 98.91 94.87  91.79  99.27 94.16 64.41 55.93 55.93
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and bulk carriers drops abruptly. This is most likely caused by
data imbalance. The MSTAR data is not significantly affected
due to the high resolution and little change in the depression
angles. Even with the same class in the OpenSARShip, the
targets are diverse. Furthermore, the size of targets in MSTAR
data is similar, but that in the OpenSARShip differs greatly.
sharply data distribution shift makes multiple models contradict
each other, which harms the recognition accuracy. Table VI lists
the detailed change of accuracy per class of ECIL+. Compared
with ECIL, ECIL+ uses the class-balanced training batches. In
Tables IV and V, the recognition accuracy of some categories
(e.g., ZIL131, T72, and BMP2) fluctuates greatly during the
incremental training phase. The recognition accuracy suddenly
drops when it is high and then slowly rises back. After adding the
data distribution balance part, the recognition accuracy of these
categories keeps a smoothy change. Moreover, the unsatisfactory
performance on the OpenSARShip data in Table V has been also
improved.

The complete proposed method (i.e., HPecIL) adds the prun-
ing initialization part to ECIL+, and the recognition accuracy
of HPecIL is listed in Table VII. Compared with the recog-
nition accuracy of ECIL+ in Table VI, the overall accuracy
is slightly improved and the accuracy changes more smoothly
during incremental training. The pruning initialization part gives
a momentum boost to the optimizer when the model is trained
on the mixed data. The efficient use of old data accelerates the
convergence of model parameters, which improves the plasticity
of the model.

Fig. 10 illustrates the time consumption of the different meth-
ods. As new data emerge, the training data will accumulate. If
the network structure is the same, the time consumption in the
training phase is positively correlated with the amount of training
data. Joint training applies all training data in the training phase,
so it consumes the most time. CBesIL consumes the least time
in the beginning because its computational complexity is lower
compared with deep learning methods. However, due to the need
to synthesize old data, the time consumption of CBesIL will
exceed that of iCaRL as recognition categories increases. As
shown in Fig. 10, the time consumption of CBesIL in task 7 of
scenario 2 even exceeds ECIL, ECIL+, and HPecIL. The same
result also occurs in tasks 2 and 3 in scenario 3. After much incre-
mental training, iCaRL is the shortest time-consuming. ECIL,
ECIL+, and HPecIL always have similar time consumption.
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An interesting issue is that the amount of data of task 12 in
scenario 1 and task 7 in scenario 2 is the same (i.e., 200 exemplars
and 240 newly added samples), but the time consumption of the
former is about 60 s and that of the latter is about 40 s. The
reason is that the former requires five more models to generate
soft targets than the latter. In general, the incremental learning
method takes much less time than joint training.

V. CONCLUSION

In this article, we present a novel approach based on neural
networks for class-incremental SAR ATR. The proposed method
maintains outstanding recognition accuracy and efficient train-
ing in incremental recognition tasks. This work can be extended
to be a scheme for other remote sensing class-incremental ATR
problems. The improvements in the proposed method are given
as follows:

1) The CNNs-based recognition framework incrementally
learn to recognize target without reusing all old data in the
training phase. Therefore, the training time consumption
is reduced and storage pressure is alleviated.

2) The knowledge inheritance can exploit all old models. The
soft targets of old classes are generated by local optimal
models, i.e., the model obtained when the training data of
the classes is the most.

3) Data distribution balance and pruning initialization can
suppress the model bias to old or new classes due to
data distribution changes and model initialization. The
experimental results demonstrate that the data distribution
balance and pruning initialization improve the stability
and plasticity of the method, respectively.

The experiments compare the proposed method with joint
training, CBesIL, and iCaRL. On the one hand, the results show
that the incremental recognition methods that do not use all the
training data of the old classes have excellent performance on the
training time consumption. On the other hand, the accuracy of
the incremental recognition methods can approach joint training
by increasing the stability and plasticity of the model.

Note that the plasticity and stability of the method are usually
in conflict. While strengthening one, it usually weakens the
other. Therefore, a tradeoff should be made to achieve the best
overall performance.

The future works of this article are listed as follows:
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The exemplar management part is a lossy sampling of old
training data. The unselected samples are not useless for
recognition. In the proposed method, the original images
are directly selected as exemplars, and the information
contained in those unselected samples is lost. Therefore,
how to use the least amount of data to retain the most
information should be researched.

As mentioned earlier, the existing incremental recognition
methods have to compromise accuracy, time consumption,
and memory storage. The proposed method needs extra
memory to store the old models. The relationship between
old models should be drilled deep to compress and refine
them.
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