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Hyperspectral Detection and Unmixing of Subpixel
Target Using Iterative Constrained

Sparse Representation
Qiang Ling , Kun Li , Zhaoxu Li , Zaiping Lin, and Jiawen Wang

Abstract—With great significance in military and civilian ap-
plications, subpixel target detection is of great interest in hyper-
spectral remote sensing. The subpixel targets usually also need
to be unmixed to identify their components. Traditionally, these
subpixel targets are first detected and then unmixed to obtain
their corresponding abundances. Therefore, target detection and
target unmixing are independently performed. However, there are
potential relations between these two processes that need to be
investigated. In this article, we integrate these two processes using
iterative constrained sparse representation. The main idea of this
algorithm is that each pixel can be linearly and sparsely represented
by the prior target spectra and several background endmembers
extracted from its neighborhood. Moreover, the sum-to-one and
nonnegativity constraints are introduced to ensure the sparse rep-
resentation coefficients to have physical meaning. Specifically, the
background endmembers are automatically extracted from the
local background based on an iterative process. Then, the test pixel
is represented by these extracted endmembers. Finally, the detec-
tion output is determined by the total target abundance and the
residuals. The main innovation of this method is that it implements
detection and unmixing of subpixel target simultaneously, even if
the local background is contaminated by target signals. Experi-
ments conducted on both synthetic and real hyperspectral datasets
demonstrate that the proposed detector achieves an outstanding
performance on detection and unmixing.

Index Terms—Constrained sparse representation (CSR),
hyperspectral imagery (HSI), linear unmixing, target detection.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) provides rich spectral
information with hundreds of amplitude values corre-

sponding to their wavebands [1]. The continuous spectral sig-
nature for different materials is of great help in target detection
and component identification. The discriminative property leads
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to various applications in HSI remote sensing: denoising [2],
spectral superresolution [3], target detection [4], [5], spectral
unmixing [6]–[8], and dimensionality reduction [9]. Among
these applications, target detection and spectral unmixing are
two fundamental tasks in military and civilian fields. In the
application of target detection, due to the limitation of spatial
resolution, the target pixels are usually mixed by several spectra
corresponding to distinct materials. Target abundance is defined
as the area fraction of target material. In subpixel target de-
tection, the target size can be estimated by its abundance and
the spatial resolution. In practice, the edge of the pure pixel
target usually contains many subpixels with target materials. To
accurately know the size of the target, these subpixels need to be
unmixed to obtain their target abundance. Therefore, detection
and unmixing of subpixel target to obtain its abundance has
broad application prospects, especially in mineral exploration
and military target detection. Traditionally, the subpixel target
is first detected and then unmixed to obtain its target abundance.
However, these methods, which incorporate detection process
and unmixing process, are too complicated to be carried out
automatically.

With the prior target spectra, HSI target detection can be
regarded as a binary classifier that labels each pixel as target or
background. Based on statistical hypothesis testing techniques,
several classical target detection algorithms have been proposed.
A spectral matched filter (SMF) [10] detects the target with the
estimated background covariance and a single target spectrum.
However, if multiple types of target are present in the scene, the
SMF will suffer degeneration. Instead, subspace-based detec-
tors, such as adaptive subspace detector [11] and matched sub-
space detector (MSD) [12], are modeled in the target subspace
generated by all prior target spectra. These methods assume that
the background obeys a Gaussian distribution. However, consid-
ering the spectral variability of complicated background with
several materials and objects, truly Gaussian behavior rarely
occurs [13]. Therefore, many machine-learning-based nonpara-
metric methods, such as support vector machine (SVM) [14],
metric learning [15], and multitask learning [16], are applied to
HSI target detection.

Recently, sparse representation (SR)-based techniques have
been successfully applied to HSI target detection [5], [17]–[19].
The basic SR-based detector [17] represents each test pixel
as a sparse linear combination of atoms from the background
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dictionary or target dictionary and then detects the targets by
using representation residuals. The SR-based binary hypothesis
(SRBBH) detector [18] incorporates SR with binary hypothesis
and separately represents the test pixel by the prior target infor-
mation or local background information. The main advantage
of these methods is that there is no need to make explicit
assumption about the background statistical distribution [17].
However, these methods will degenerate if the background dic-
tionary is contaminated by target pixels. A locality-constrained
linear coding-based background dictionary learning (DM-BDL)
method [4] is proposed to obtain a complete and compact
background dictionary. Meanwhile, a total variation constraint
is imposed on the representation coefficient to exploit the spa-
tial homogeneity of the background. The hybrid sparsity and
statistics (HSS) detector [19] combines SR with statistical dis-
tribution theory and also applies a purification process to handle
target contamination in the background dictionary. The con-
strained sparse representation (CSR)-based binary hypothesis
detector [5] imposes an upper bound constraint to the abundance
vector. Then, these upper bounds are automatically estimated by
the background information and prior target information. This
algorithm also can suppress target signals that are present in
the background dictionary. However, all these sparsity-based
methods cannot unmix the subpixel target to obtain its target
abundance.

Aiming at estimating the abundance of endmembers, HSI
unmixing deals with the problem of identifying the components
of mixed spectra and estimating their weights [20]. According to
whether a spectral library is available or not, HSI unmixing can
be classified into unsupervised unmixing and semisupervised
unmixing [21]. Unsupervised unmixing [22]–[25] represents
mixed pixels by endmembers extracted from the HSI scene,
while semisupervised unmixing [26], [27] represents mixed
pixels by endmembers from a large spectral library. In this
article, we focus on the problem of detecting subpixel targets
and unmixing them to obtain their corresponding abundances.
Compared to traditional HSI unmixing, this problem combines
unsupervised unmixing and semisupervised unmixing, where
the prior target spectra are considered as target endmembers,
and background endmembers need to be extracted from the local
background in the scene. Note that the problem of HSI unmixing
in this article is solved locally, that is, it cannot be treated as a
traditional unmixing problem since, for each pixel, only a local
background and the prior target spectra are available. Compared
to the whole scene, the endmembers in a small region are
more similar. Therefore, our method can deal with the spectral
variability caused by large distance in the image plane, while
literature [7] uses the augmented linear mixing model (ALMM)
to deal with this problem in the whole scene.

In this article, we propose an iterative constrained sparse
representation (ICSR)-based algorithm to solve this problem.
According to the linear mixture model [28], the sum-to-one
and nonnegativity constraints are imposed on the representation
coefficients to ensure their physical meaning. First, an iterative
process is proposed to automatically extract only background
endmembers from the local background. It is not required to
estimate the number of endmembers in the local background,

which is a difficult problem for unsupervised unmixing. Then,
the test pixel is separately represented by different endmembers
under the binary hypotheses in [18]. Finally, the detection output
is determined by multiplying the total target abundance with the
residuals. The main contributions of this article are summarized
as follows.

1) On the whole: The proposed method incorporates target
detection and target unmixing into a united framework
such that it can detect targets and obtain the abundances
of the detected targets simultaneously, even if some target
pixels contaminate the background dictionary. In this way,
it obtains the area proportion of the targets and, thus, has
a broad application prospect.

2) Target detection: We propose a novel detector to exploit
both reconstruction residual information and abundance
information of each test sample to enhance the difference
between the target and the background and, thus, obtain
better detection performance.

3) Target unmixing: The proposed method extracts the back-
ground endmembers from a very small local background
centered at the target pixel when the target is unmixed.
Compared with the unmixing methods that extract the
endmembers on the whole HSI and then estimate the target
abundances, the proposed algorithm is more robust to the
spectral variability of the background and can extract more
accurate target abundance.

The rest of this article is organized as follows. Two previous
algorithms are introduced in Section II. The proposed ICSR
algorithm is described in Section III. Experiments are presented
in Section IV. Finally, Section V concludes this article.

II. PREVIOUS ALGORITHMS

In this section, we briefly review two previous algorithms
for hyperspectral target detection: the SVM and the SR-based
detector.

A. SVM for Target Detection

The SVM algorithm [29] can be used to solve a supervised
binary classification problem for target detection in HSI. Given
two classes of training samples ai(i = 1, . . . , N) and their
corresponding label vector l(li ∈ 1,−1), the SVM aims to find
the optimal hyperplane wTx+ b = 0 to separate the samples
with the largest margin by solving the following optimization
problem:

min
w,b,ξ

1

2
wTw + C

N∑
i=1

ξi

s.t. li(w
Tφ(ai) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , N (1)

where C is a regularization parameter, ξi are slack variables,
and φ is a nonlinear function, which maps the samples into
a higher dimensional feature space. Due to the possible high
dimensionality of w, the following Lagrange dual problem is
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solved:

min
α

1

2
αTQα− eTα

s.t. lTα = 0

0 ≤ αi ≤ C, i = 1, . . . , N (2)

where e is an N × 1 vector of all ones, Q is an N ×N positive-
semidefinite matrix with each entry Qij = liljk(ai,aj), and
k(ai,aj) = φ(ai)

Tφ(aj) is the kernel function. The com-
monly used Gaussian radial basis function kernel k(ai,aj) =
exp(−γ‖ai − aj‖22) is adopted as the kernel function in this
article. Then, the dual problem is solved by a fast sequential
minimal optimization (SMO) decomposition method [30].

After the dual problem being solved, the optimal solution α̂
can be obtained. Then, using the primal–dual relationship, the
detection value of a test sample y is calculated by

DSVM(y) = ŵTφ(y) + b̂ =

N∑
i=1

liα̂iK(ai,y) + b̂ (3)

where b̂ can be computed from α̂i, which satisfies 0 < α̂i < C;
detailed explanation can be found in [31].

B. SR for Target Detection

In the sparsity-based model for HSI target detection [17],
each test pixel is assumed to lie in a low-dimensional subspace
spanned by background and target spectra. Therefore, it can be
approximately represented as a sparse linear combination of the
background and target dictionaries

y ≈ Abαb +Atαt = [Ab At]

[
αb

αt

]
= Aα (4)

where y is the test pixel and A∈RM×N is the union dictionary
combined by the background dictionaryAb and target dictionary
At. Ab is usually constructed by the pixels between the inner
window region and the out window region of a sliding dual
window centered at each test pixel [17]. At is constructed by
the prior target spectra. M is the number of spectral bands, and
N = Nb +Nt is the number of atoms in A. Nb and Nt are the
number of atoms in Ab and At, respectively. αb and αt are the
weight vectors corresponding to Ab and At, respectively. α is
a sparse vector that is constructed by concatenating αb and αt.

The sparse vector α can be obtained by solving the following
optimization problem:

min
α

‖y − Aα‖22 s.t. ‖α‖0 ≤ K (5)

where ‖ · ‖0 is the l0 norm andK is the given upper bound of the
sparsity level. The orthogonal matching pursuit algorithm [32]
can be used to solve this problem.

This reconstruction process can lead to a competition between
the background dictionary and the target dictionary. Once the
optimal solution α̂ is obtained, the reconstruction residuals via
these two dictionaries are

rb(y) = ‖y −Abα̂b‖2
rt(y) = ‖y −Atα̂t‖2 .

(6)

Then, the output of this method is computed by

DSR(y) = rb(y)− rt(y). (7)

In practice, we usually need to unmix the subpixel target to
obtain its abundance. However, the weights recovered by this
sparsity model can be larger than 1 or smaller than 0, which is
not physically meaningful. Meanwhile, when targets are densely
distributed, some target pixels inevitably fall into the background
dictionary during the sliding process of the dual window [19].
In this case, the target atoms in Ab can be used to represent the
test target pixel, resulting in missing detection.

III. ICSR FOR TARGET DETECTION AND UNMIXING

In this section, we extend the basic SR-based target detection
algorithm into ICSR for detecting and unmixing subpixel targets
simultaneously. According to a linear mixing model [28], each
test pixel can be represented as a linear combination of sev-
eral endmembers weighted by their corresponding abundances.
These endmembers are usually present in the local background
of the test pixel or are provided by prior target spectra. The
purpose of our ICSR model is to extract these endmembers
and obtain their corresponding abundances. Similar to CSR for
anomaly detection [33], both the sum-to-one and nonnegativity
constraints are imposed on the representation coefficient α in
the ICSR model. Moreover, according to the Karush–Kuhn–
Tucker conditions [34] for the nonnegativity constraint, the
sparsity-level constraint ‖α‖0 ≤ K is removed, where detailed
explanation can refer to [33]. Then, the SR-based model defined
in (5) is modified as follows:

min
α

‖y − Aα‖22
s.t. eTα = 1

αi ≥ 0, i = 1, . . . , N

(8)

where e = [1, . . . , 1]T is an N × 1 vector of all ones. Equa-
tion (8) defines a quadratic programming problem and can be
effectively solved by the SMO algorithm.

However, after solving (8), the selected atoms (the atoms
with nonzero weights) can be mixed pixels or may contain target
signals. In this case, the weights corresponding to these selected
atoms are physically meaningless. To obtain more accurate
target abundances, we propose an iterative strategy. Actually,
the solution of (8) by SMO is not the most sparse solution; the
selected atoms usually contain many background atoms from
one class with small weights.

In HSI, a pure pixel from one class cannot be linearly rep-
resented by mixed pixels or pure pixels from other classes
with the sum-to-one constraint and the nonnegative constraint.
Therefore, for each selected atom inAb, if it is a pure-pixel target
or a subpixel target, it can be represented by the combination
of the target dictionary and other selected atoms. If it is a
background pixel and it cannot be effectively represented, it is
a new background endmember that does not appear in the com-
bination dictionary. Based on this property, an iterative process
is designed to extract background endmembers and eliminate
target signals from the background dictionary. The main idea is
to remove all mixed pixels and redundant pure background pixels
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from the background dictionary, leaving only one background
endmember. By using the iterative strategy, pure background
endmembers can be obtained, and mixed pixels in the local
background can be eliminated. Meanwhile, target signals in the
local background can be eliminated to obtain a pure background
dictionary. Therefore, each center test pixel can be unmixed to
obtain accurate target abundance and background abundance
by combining the pure background dictionary with prior target
dictionary.

In this iterative process, the extracted endmembers are saved
in an endmember matrix E, which is initialized as At. After
solving (8), the set of indices corresponding to the selected atoms
in Ab is defined as Ω. For each atom d in AΩ, if it cannot be
represented by the combination of the rest of the atoms in AΩ

and E, d is considered as a new background endmember and
appended to E. Meanwhile, d is removed from AΩ. Otherwise,
E remains unchanged, and d is removed from AΩ.

This process is applied to all atoms in AΩ. Therefore, if pure-
pixel targets or subpixel targets are present in AΩ, it can be
effectively represented and removed fromAΩ. The optimization
problem for the kth iteration can be described as

min
β

‖d − Bβ‖22
s.t. eTβ = 1

βi ≥ 0

(9)

where B = [AΩ{k+1,...,L} ,E] denotes the combination of the
rest of the atoms in AΩ and E, d = AΩk

denotes the kth atom
in AΩ, L denotes the number of atoms in AΩ, and β is a sparse
vector.

To evaluate whether d is well recovered by B or not, the
root-mean-square error (RMSE) is used

erms =

√
‖d−Bβ∗‖22

M
=

r√
M

(10)

whereβ∗ is the optimal solution of (9), r is the recovery residual,
andM is the number of spectral bands. When erms is smaller than
a given threshold δ, d is considered to be well recovered and not
appended to E. δ denotes the threshold of the RMSE to add a
new background endmember.

Then, the binary hypothesis in [18] is used. It assumes that
the endmember matrix E can linearly and sparsely represent
a pure target or a subpixel target, while the single background
endmember matrix Eb (Eb = E −At) cannot. The test pixel
y is separately represented by Eb and E

min
ϕb

‖y −Ebϕb‖22
s.t. eT

bϕb = 1
+ ϕi

b ≥ 0

(11)

min
ϕ

‖y − Eϕ‖22
s.t. eTϕ = 1

ϕi ≥ 0

(12)

where ϕb denotes the abundance vector corresponding to Eb

and ϕ denotes the abundance vector corresponding to E.

Algorithm 1: ICSR Algorithm for Detection and Unmixing
of the Subpixel Target.

Input:Hyperspectral image (HSI), target dictionary At,
dual window size (ωin, ωout), parameter δ.

foreach test pixel y in HSI do
1) Collect Ab based on (ωin, ωout), A = [Ab,At], E = At;
2) Solve (8) and obtain the indices Ω{1,...,L} corresponding

to the atoms with nonzero weights in Ab;
3) for k = 1, . . . , L do

a) d = AΩk
, B = [AΩ{k+1,...,L} ,E];

b) Solve (9) and obtain the recovery residual r;
c) if r/

√
M > δ, E = [d,E];

end for
4) Solve (11) and (12), then obtain the optimal solutions

ϕ∗
b and ϕ∗;

5) Calculate the output of the detector via (14).
end for
Output: Detection map, target abundance maps.

Similarly, once the optimal solutions ϕ∗
b and ϕ∗ are obtained,

the reconstruction residuals can be calculated as follows:

r1(y) = ‖y −Ebϕ
∗
b‖2

r2(y) = ‖y −Eϕ∗‖2 .
(13)

Finally, the detection value of the proposed method is calcu-
lated by multiplying the total target abundance with the residuals

DICSR(y) = St(r1(y)− r2(y)) (14)

St =
N ′∑

i=N ′
b+1

ϕ∗
i (15)

where St is the total abundance of target components, N ′ is the
number of atoms in E, and N ′

b is the number of atoms in Eb.
Given a threshold, if the detection value DICSR(y) of a test pixel
y is larger than the threshold, y is identified as a target pixel.

If the test pixel y is a pure background pixel, r1(y)− r2(y)
is small, St is close to 0, and thus, the detection value DICSR(y)
is also close to 0. If y is a target pixel or a mixed target pixel,
r1(y)− r2(y) is large, St is larger than 0, and thus, DICSR(y)
is larger than 0. The higher the total target abundance St is, the
largerDICSR(y) is. Consequently, the detection value differences
can be amplified by multiplying the total target abundance with
the residuals.

As aforementioned, parameter δ denotes the threshold of the
RMSE to add a new background endmember. That means, if the
RMSE between two background pixels is larger than δ, they are
regarded as two endmembers. In a sense, δ is the RMSE lower
bound of the two endmembers. Affected by spectral variability,
nonlinear mixing effects, and noise in datasets obtained by
different sensors, δ should be set to different values for different
datasets. In practice, we select a small homogeneous region from
the scene and calculate the RMSEs between all pixels in this
region; δ is set to the maximum value of the RMSEs. Therefore,
our ICSR method can only extract one endmember from this
homogeneous region.
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Fig. 1. Relationship between target detection and target unmixing.

In summary, the implementation details of the proposed ICSR
algorithm are illustrated in Algorithm 1. The relationship be-
tween target detection and target unmixing of our ICSR method
is illustrated in Fig. 1. In general, target detection is based
on the results of target unmixing. In our ICSR method, tar-
get unmixing includes rough unmixing and refined unmixing.
Rough unmixing provides background endmembers for refined
unmixing by the ICSR process. Refined unmixing provides the
target abundances and residuals for target detection. The target
detection output is computed by multiplying the total target
abundance with the residuals. As analyzed above, this can in-
crease the differences between the target pixels and background
pixels, resulting in better detection performance. Note that the
representation coefficients of each subpixel target can also rep-
resent its area fractions due to the sum-to-one and nonnegativity
constraints. Therefore, the proposed algorithm can detect and
unmix the subpixel targets simultaneously. Moreover, it can pu-
rify the complicated background contaminated by target pixels
and, thus, enhance the SR capability. SMO has a computational
complexity ranging from O(N) to O(N2.2) for different prac-
tical problems [35]. Therefore, the computational complexity
of the proposed method is about O(N +Nt + L(L+Nt)) to
O(N2.2 +N2.2

t + L(L+Nt)
2.2) for each pixel.

IV. EXPERIMENTAL RESULTS

A. Dataset Description

The first dataset was captured by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS). It covers a part of the Salinas
Valley in California, USA. This dataset has 224 spectral bands
ranging from 370 to 2510 nm, with a spectral resolution of
10 nm and a spatial resolution of 3.7 m/pixel. 204 bands were
retained by eliminating 20 noisy bands. The whole dataset has a
size of 512×217. In this article, a subimage with a spacial size
of 200×200 was selected, as shown in Fig. 2(a). This scene
contains more than six different background materials: Soil-
vinyard-develop, Vinyard-vertical-trellis, Corn-senesced-green-
weeds, Lettuce-romaine-7wk, Lettuce-romaine-6wk, Lettuce-
romaine-5wk, and so on. Twenty-five subpixel targets were
planted into the real HSI. The five targets in each row have
the same target material. The target materials in each column
from top to bottom are Brocoli-green-weeds, Vinyard-untrained,
Fallow-smooth, Stubble, and Celery, which are extracted from

the area outside the selected scene. The synthetic mixed target
pixels are generated based on the linear mixing model [28]. Each
target has a size of 11×11 pixels, and the target abundance varies
among 0.1, 0.2, 0.4, 0.6, 0.8, and 1; the abundance map of each
target is shown in Fig. 2(b). There are 3025 target pixels that need
to be detected and unmixed on the dataset. The target dictionary
At is built by these five target spectra, as shown in Fig. 2(c).

The second dataset was obtained by the ProSpecTIR-VS sen-
sor in 2012 [36]. From the geo-corrected 0920-1654 reflectance
data, a subimage with a spacial size of 160×160 is selected in
our experiments, as shown in Fig. 3(a). It has 360 spectral bands
ranging from 400 to 2450 nm, with a spectral resolution of 5 nm
and a spatial resolution of 1 m/pixel. There are two especially
designed targets for unmixing in the scene. The yellow unmixing
target in the upper left is generated by a 2×2 repeating pattern
comprised of three yellow felt squares and one yellow cotton
square, thus achieving 75% of yellow felt and 25% of yellow
cotton per pixel. The blue unmixing target in the upper right
alternatively consists of blue cotton squares and blue felt squares
in a checkerboard fashion and, thus, achieves 50% of blue cotton
and 50% of blue felt per pixel. The six fabric panels (including
pink felt, yellow cotton, yellow felt, blue cotton, gold felt,
and blue felt) are deployed below the unmixing targets. These
eight targets with 116 pixels are used for detection performance
evaluation, as shown in Fig. 3(b). The two unmixing targets are
used for unmixing performance evaluation. We have extracted
six endmembers from these six fabric panels in the scene as
the prior target spectra, which are used to construct the target
dictionary, as shown in Fig. 3(c).

The third dataset was collected by the AVIRIS sensor. It covers
a naval air station in San Diego, CA, USA. This dataset has 224
spectral bands ranging from 370 to 2510 nm; 189 bands were
retained by eliminating 35 noisy bands. The whole dataset has a
size of 400×400. In this article a region with a size of 150×150
was selected, as shown in Fig. 4(a). There are three airplanes
with 76 target pixels to be detected in the scene, as shown in
Fig. 4(b). For this dataset, we extracted 3 pixels from different
targets in the scene to construct the target dictionary, as shown
in Fig. 4(c).

B. Robustness to Noises and Target Contamination

To quantitatively validate the robustness of our ICSR method,
we investigate the detection performance and unmixing perfor-
mance by adding Gaussian white noises with different signal-
to-noise ratios (SNRs). The Salinas dataset and the Avon dataset
are selected in this experiment. δ is set to the maximum value of
the RMSEs between all pixels in a small homogeneous region.
Specifically, δ is set to 0.01 and 0.017 for the Salinas dataset
and the Avon dataset, respectively. For the Salinas dataset, each
target has a size of 11×11 pixels, and thus, the inner window
size should be set at least 23×23 to exclude target pixels from
the local background during the sliding process [37]. Therefore,
the dual window size is set to (15, 25), (19, 25), and (23, 25),
generating a highly contaminated, a slightly contaminated, and
a pure background dictionary, respectively. The maximum size
of targets in the Avon dataset is known as 8×8 pixels. However,
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Fig. 2. Simulated Salinas dataset. (a) False color image. (b) Abundance map of each target. (c) Prior target dictionary.

Fig. 3. Real Avon dataset. (a) False color image. (b) Ground truth map. (c) Prior target dictionary.

Fig. 4. Real SanDiego dataset. (a) False color image. (b) Ground truth map. (c) Prior target dictionary.

since the targets in this dataset are densely distributed, it is
difficult to set a proper inner window size to exclude target pixels
from the local background. Consequently, the dual window size
is set to (9, 19), (11, 19), and (13, 19), generating a background
dictionary with different target contamination levels. The SNR
varies from 10 to 40 dB.

First, we investigate the robustness of detection performance
to noises and target contamination. The commonly used receiver

operating characteristic (ROC) curve [38] and the area under the
ROC curve (AUC) are used for detection performance evalua-
tion. The AUC values achieved by our ICSR method on the
Salinas and Avon datasets with different SNRs are shown in
Fig. 5(a) and (b), respectively. It can be clearly observed that
if the SNR is smaller than 25 dB, the AUC values improve
rapidly. That is because if the SNR is too small, the spectral
variabilities between pixels are very large. Thus, the target
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Fig. 5. AUC values achieved on the two datasets with different values of parameter δ. (a) Salinas dataset. (b) Avon dataset.

TABLE I
TARGET ABUNDANCES RECOVERED BY ICSR ON THE SALINAS DATASET WITH DIFFERENT SNRS

pixels are not effectively unmixed, especially for the subpixel
targets with small abundances, resulting in missing alarms. If
the SNR is larger than 25 dB, the AUC values remain largely
the same. It shows the detection robustness of our ICSR method
to small noises. When the SNR is larger than 25 dB, the AUC
value differences between these three window sizes are very
small. It demonstrates that our ICSR method is robust to target
contamination. Note that the AUC value achieved on the Avon
dataset with window size (13, 19) is smaller than that of window
size (9, 19) and window size (11, 19). That is because the
background endmember of the subpixel target is more similar
to the pixel in its neighborhood. Therefore, the larger the inner
window size is, the more inaccurate the extracted background
endmember is, resulting in a degenerated detection performance.
In summary, our ICSR method exhibits a relatively stronger
detection robustness to noises and target contamination.

Second, we investigate the robustness of unmixing per-
formance to noises and target contamination. The mean and
standard deviation (STD) of the recovered target abundances
(with the same true abundance) are adopted for unmixing
performance evaluation. Meanwhile, the relative error (RE) of

target abundance is also adopted; it is defined as

RE = |T − μ|/T × 100% (16)

where T denotes the true target abundance and μ denotes the
mean of the recovered target abundances.

To avoid edge effects, for the real Avon dataset, the mean,
STD, and RE are calculated based on a smaller subset using
pixels with two guard pixels on all sides of the target. These
three evaluation indexes achieved on the Salinas dataset with
different SNRs and on the Avon dataset with different window
sizes are reported in Tables I and II, respectively. From Table I,
it can be clearly observed that the mean of the recovered target
abundances is very close to the ground truth with a low STD.
The mean, STD, and RE results achieved with the SNR equal
to 20, 30, and 40 dB are very similar. When the SNR is equal
to 10 dB, the unmixing errors are enlarged especially for the
subpixel targets with small abundances. It demonstrates the
unmixing robustness of our ICSR method to small noises. From
Table II, comparing these three evaluation indexes with differ-
ent window sizes, we can see that the unmixing performance
does not degenerate. This clearly demonstrates that ICSR can
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TABLE II
TARGET ABUNDANCES RECOVERED BY ICSR ON THE AVON DATASET WITH DIFFERENT WINDOW SIZES

Fig. 6. Detection maps achieved on the Salinas dataset with window size (15, 25). (a) SMF. (b) MSD. (c) SVM. (d) SR. (e) SRBBH. (f) HSS. (g) DM-BDL. (h)
ICSR.

accurately recover target abundance even if the target signals
are blended into the local background. In summary, our ICSR
method exhibits a relatively stronger unmixing robustness to
noises and target contamination.

C. Detection Performance Evaluation

The proposed ICSR algorithm is compared to several afore-
mentioned detectors, including SMF [10], MSD [12], SVM
(described in Section II-A), SR (described in Section II-B),
SRBBH [18], HSS [19], and DM-BDL [4]. Among them, DM-
BDL is a global method, and there is no need to set window sizes.
The prior target spectrum for SMF is the mean of the target atoms

inAt.At andAb are used to generate the target and background
subspaces for MSD [39], respectively. All parameters of these
detectors are empirically tuned to their optimum. For the Salinas
dataset, the dual window size is set to (15, 25), (19, 25) and
(23, 25), resulting in 400, 264, and 96 training samples in the
background dictionary. For the Avon dataset, the dual window
size is set to (9, 19), (11, 19), and (13, 19), resulting in 280,
240, and 192 training samples in the background dictionary.
Therefore, the local background dictionary is contaminated by
target pixels with different levels as mentioned above.

The detection maps achieved on the Salinas dataset with
window size (15, 25) are shown in Fig. 6, achieved on the
Avon dataset with window size (9, 19) are shown in Fig. 7, and
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Fig. 7. Detection maps achieved on the Avon dataset with window size (9, 19). (a) SMF. (b) MSD. (c) SVM. (d) SR. (e) SRBBH. (f) HSS. (g) DM-BDL.
(h) ICSR.

Fig. 8. Detection maps achieved on the SanDiego dataset with window size (9, 19) (a) SMF. (b) MSD. (c) SVM. (d) SR. (e) SRBBH. (f) HSS. (g) DM-BDL.
(h) ICSR.

achieved on the SanDiego dataset with window size (9, 19) are
shown in Fig. 8. It can be seen that there exists more noisy pixels
in the detection map of SMF than other algorithms, resulting
in a lower detection probabilities. Although MSD achieves
a promising background suppression performance, most target
pixels are darker than other methods. The SVM achieves a
promising target enhancement results when the target abundance

is large. However, when the target abundance is small, the
detection values of these target pixels are very small. DM-BDL,
as a global method, remains more edge textures. As compared to
SR, the background pixels of our ICSR method are more dark,
which indicates that the ICSR method achieves a better back-
ground suppression. Compared with SRBBH and HSS, the target
pixels of our ICSR method are more obvious, especially when
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Fig. 9. ROC curves achieved on the Salinas dataset with different dual window sizes. (a) Dual window size (15, 25). (b) Dual window size (19, 25).
(c) Dual window size (23, 25).

Fig. 10. ROC curves achieved on the Avon dataset with different dual window sizes. (a) Dual window size (9, 19). (b) Dual window size (11, 19).
(c) Dual window size (13, 19).

Fig. 11. ROC curves achieved on the SanDiego dataset with different dual window sizes. (a) Dual window size (9, 19). (b) Dual window size (13, 19).
(c) Dual window size (17, 19).

the target abundance is small. This indicates that the proposed
ICSR method achieves a better target enhancement. In summary,
the proposed ICSR method has achieved the best performance
when both background suppression and target enhancement are
considered.

The ROC curves achieved on these three datasets with differ-
ent dual window sizes are shown in Figs. 9–11, and the AUC

values are reported in Tables III –V. We describe the superiority
of our ICSR algorithm on the Avon dataset for simplification.
As shown in Fig. 10(a), if the window size is set to (9, 19), ICSR
achieves the highest detection probability at all false alarm rates.
Moreover, the AUC performance achieved by ICSR outperforms
other detectors by a large margin. As shown in Fig. 10(b), if
the window size is set to (11, 19), SR achieves the best ROC
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TABLE III
AUC (IN PERCENT) VALUES ACHIEVED ON THE SALINAS DATASET

TABLE IV
AUC (IN PERCENT) VALUES ACHIEVED ON THE AVON DATASET

TABLE V
AUC (IN PERCENT) VALUES ACHIEVED ON THE SANDIEGO DATASET

performance when the false alarm rate is lower than 10−4.
In contrast, ICSR achieves the highest detection probability
when the false alarm rate is higher than 10−4. With respect to
the whole range of false alarm rate, the AUC value achieved by
ICSR is 5.31% higher than that of SR. Similarly, as shown in
Fig. 10(c), if the window size is set to (13, 19), ICSR achieves the
best ROC performance if the false alarm rate is higher than 10−3

and achieves the highest AUC values. Note that the proposed
method significantly improves the detection performance on
these two datasets. Specifically, the AUC value achieved by
ICSR can reach 99.88%, which is 4.21% higher than SR and
5.56% higher than SRBBH, respectively. Comparing the ROC
curves and AUC values obtained with different window sizes,
it can be observed that all local methods except ICSR and SMF
degenerate rapidly when the inner window size is decreased.
This clearly validates the effectiveness of ICSR in suppressing
target signals in the local background. Similar conclusions can
be drawn on the Salinas dataset and the SanDiego dataset. Note
that the detection performance of SMF is improved when the
inner window size is decreased. That is because the accuracy
of the estimated background covariance matrix increases with
the number of background training samples. In summary, the
proposed ICSR method achieves the best detection performance
as compared to other traditional detectors.

D. Unmixing Performance Evaluation

In the previous experiment for detection performance eval-
uation, the subpixel targets are unmixed simultaneously by
our ICSR algorithm. The abundance maps of different targets
obtained by ICSR on the Salinas dataset are presented in Fig. 12,
where the window size is set to (15, 25). The abundance maps
of different targets obtained by ICSR on the Avon dataset are
presented in Fig. 13, where the window size is set to (9, 19).

From Fig. 13(a) and (e), it can be seen that the abundance maps of
pink felt and gold felt only have high values in their correspond-
ing target panels. From Fig. 12(a)–(e), it can be seen that the
five target materials have achieved accurate abundances, and the
background regions have low abundances. From Fig. 13(b)–(d)
and (f), it can be seen that the four target materials (i.e., yellow
cotton, yellow felt, blue cotton, and blue felt) have achieved
accurate abundances. It should be noticed that the abundance
map of blue felt has some noisy pixels in the edges. That is
because the spectrum of the edge between grass and asphalt is
similar to the spectrum of blue felt. To sum up, the proposed
ICSR method provides satisfactory unmixing results in terms
of the accurate abundance estimation for the target pixels that
exist in the image. This accurate target abundance estimation
also improves the detection performance.

Furthermore, the proposed ICSR algorithm is compared to
several classical unmixing methods, including FCLSU [40],
CLSU [40], SUnSAL [41], NCM [42], and ALMM [7]. First, the
vertex component analysis [43] method was applied to extracting
8 and 12 background endmembers for the Salinas dataset and the
Avon dataset, respectively. Second, the endmember dictionary
for these unmixing methods is combined by the background
endmembers and prior target dictionary. Finally, these unmixing
methods are applied with this endmember dictionary. Note that
our ICSR method only uses the prior target dictionary as the end-
member dictionary. These three evaluation indexes achieved on
the Salinas dataset and the Avon dataset are reported in Tables VI
and VII, respectively. It can be clearly observed that the mean of
the recovered target abundances achieved by our ICSR method
is very close to the ground truth with a low STD. For the Salinas
dataset, the RE achieved by ICSR is lower than 2% in most
situations, especially for the pixels with large target abundances.
For the Avon dataset, the RE achieved by ICSR is lower than 5%.
Compared to FCLSU, CLSU, SUnSAL, NCM, and ALMM, our
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Fig. 12. Abundance maps of different targets achieved by ICSR on the Salinas dataset with window size (15, 19). (a) Brocoli-green-weeds. (b) Vinyard-untrained.
(c) Fallow-smooth. (d) Stubble. (e) Celery.

Fig. 13. Abundance maps of different targets achieved by ICSR on the Avon dataset with window size (9, 19). (a) Pink felt. (b) Yellow cotton. (c) Yellow felt.
(d) Blue cotton. (e) Gold felt. (f) Blue felt.



LING et al.: HYPERSPECTRAL DETECTION AND UNMIXING OF SUBPIXEL TARGET USING ICSR 1061

TABLE VI
TARGET ABUNDANCES RECOVERED BY DIFFERENT METHODS ON THE SALINAS DATASET

TABLE VII
TARGET ABUNDANCES RECOVERED BY DIFFERENT METHODS ON THE AVON DATASET

ICSR method achieves more accurate abundances, especially for
targets with small abundances. Meanwhile, ICSR has a lower
STD and a lower RE. Comparing these three evaluation indexes
achieved on the two datasets, it can be seen that our ICSR method
achieves the best unmixing performance. In summary, the pro-
posed ICSR algorithm has achieved a promising performance
in terms of target abundance recovery. This promising target
abundance recovery is the guarantee of excellent target detection
performance.

E. Running Time

In this section, we investigate the running time of the afore-
mentioned algorithms. The running time consumed by differ-
ent algorithms on the two datasets is reported in Table VIII.
All algorithms were implemented in Python 3.5 on a desk-
top computer equipped with an Intel Core i7-3770 CPU (at
3.4 GHz) and a 8 GB of RAM memory. Moreover, the SMO
method is implemented in C++ and encapsulated into a pyd
extension module that can be called by python interpreter.
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TABLE VIII
RUNNING TIMES (IN SECONDS) ACHIEVED ON THE TWO DATASETS

The inverse operation and eigenvalue decomposition used in the
aforementioned methods are calculated by the high-performance
LAPACK-library-based scipy functions. Therefore, the running
time of these methods is relatively fast. It can be seen that the
global method DM-BDL runs fastest, and its running time is
not related to the window sizes. Our ICSR method is slightly
slower than SVM and SR and comparable to SRBBH and HSS.
However, the proposed ICSR method is faster than SMF and
MSD by a large margin. Specifically, the running time of our
ICSR is about 1/7 of that of SMF and MSD. In summary, the
proposed ICSR method has a relatively lower running time.

V. CONCLUSION

In this article, we propose a novel algorithm named ICSR
to detect and unmix subpixel target simultaneously. In the pro-
posed model, the prior target spectra are considered as target
endmembers, while the background endmembers are extracted
from the local background by an iterative process. With the
sum-to-one and nonnegativity constraints on representation co-
efficients, each test pixel is separately represented by the back-
ground endmembers and the union of background and target
endmembers. Note that this algorithm can detect subpixel target
and obtain its target abundance, even if the local background
is contaminated by target signals. Experimental results on both
synthetic and real HSI datasets demonstrate the superiority of the
proposed algorithm in both detection performance and unmixing
performance. Meanwhile, the proposed algorithm also has a
relatively lower running time. Most importantly, this method
has a great potential in practical applications of hyperspectral
remote sensing.
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