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Medium- and Long-Term Precipitation Forecasting
Method Based on Data Augmentation and Machine

Learning Algorithms
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Abstract—Accurate medium and long-term precipitation fore-
casting plays a vital role in disaster prevention and mitigation
and rational allocation of water resources. In recent years, there
are various methods for medium- and long-term precipitation
forecasting based on machine learning algorithms. However, ma-
chine learning has a high demand for the size of sample data.
Therefore, this article proposes a data augmentation algorithm
based on the K-means clustering algorithm and synthetic minority
oversampling technique (SMOTE), which can effectively enhance
sample information. Besides, through constructing random forest
(RF), extreme gradient boosting (XGB), recurrent neural network
(RNN), and long short-term memory (LSTM) are, respectively,
constructed as the models to forecast monthly grid precipitation
of the Danjiangkou River Basin. This study aims to improve the
accuracy of medium- and long-term precipitation forecasting. The
main results are the following two aspects: 1) in most years, the
anomaly correlation coefficient and Pg score of SMOTE-km-XGB
and SMOTE-km-RF exceed that of XGB and RF; furthermore,
compared with the other three methods, SMOTE-km-XGB method
is more suitable for precipitation forecasting in the studied basin
in this article; and 2) the forecasting results of two deep learning
methods (RNN and LSTM) show that the sample data processed by
the K-means clustering algorithm and SMOTE data augmentation
algorithm have not achieved considerable results in deep learn-
ing. This study improves the accuracy of precipitation forecast by
expanding and balancing the information of sample data, and pro-
vides a new research idea for improving the accuracy of medium-
and long-term hydrological forecasting.

Index Terms—Extreme gradient boosting (XGB), K-means, long
short-term memory (LSTM), machine learning (ML), medium-
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and long-term precipitation forecasting, random forest (RF),
recurrent neural network (RNN), synthetic minority oversampling.

I. INTRODUCTION

M EDIUM- and long-term precipitation forecasting is an
important part of hydrological science, and always plays

a key role in flood control, disaster reduction, and the compre-
hensive utilization of water resources. However, with the growth
of the forecast period, the influencing factors of medium- and
long-term precipitation forecasting increasingly lead to more
uncertainties in forecasting and cause a decrease in the forecast-
ing accuracy. This has always been a difficult point in the field
of precipitation forecasting. Therefore, the in-depth study of the
medium- and long-term forecasting theory and methods not only
has important scientific value for enriching and developing the
precipitation forecasting theory but also has important practical
significance for disaster reduction and prevention and social and
economic sustainable development [1], [2].

However, medium- and long-term precipitation forecasting,
in terms of providing the total amount of precipitation in a certain
period of time in the future, is considered to be one of the most
difficult challenges in global climate models because its forecast
accuracy is influenced by many factors, such as precipitation
location, duration, frequency and intensity, orography, and land
use [3], [4]. Traditional medium- and long-term forecasts mainly
use statistical methods, dynamic methods, and a combination
of statistics and dynamics to produce forecasts. In recent years,
with the rapid development of the global satellite remote sensing,
cloud computing, and cloud storage technology, the possibility
and stability of the operation of the general circulation models
(GCMs) have been further improved, and the GCMs have grad-
ually replaced the classical statistical model and become the
main tool to release real-time monthly seasonal scale forecast
information for major meteorological–hydrological forecasting
centers around the world [5], [6]. At the same time, with the
rapid development of computer technology, the machine learn-
ing (ML) method based on Big Data mining technology has
been gradually applied to medium- and long-term precipitation
forecasts because of its high generalization ability and strong
robustness. The medium- and long-term precipitation forecast-
ing methods based on ML mainly build correlations between
precipitation and predictors. There are many factors affecting
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precipitation. In addition to the well-known meteorological-
climatic factors, predictor factors such as soundings [7], local-
scale effects, such as the mountain valley circulation effect [8],
atmospheric environment [9], and satellite imagery information
observed in the preconvective environment, vary greatly [10].

In recent years, with the continuous progress of science and
technology and the rapid development of information tech-
nology, the amount of data in human production and life has
increased geometrically, and gradually developed from bytes to
gigabytes, terabytes, petabytes, and even yottabytes. Big data
technology came into being and gradually became the focus of
scientific research. However, the diversity and mass of Big Data
is both a blessing and a challenge for the medium- and long-term
hydrological forecasting field. With the vigorous promotion of
water conservancy informatization, both the observation data of
surface meteorological stations and the observation data based
on satellite remote sensing have made great progress in recent
years in the “quality” and “quantity” of data with strong temporal
and spatial attributes and have gradually ushered in the “Big Data
era” of hydrology. These new information sources enrich our
understanding and enhance our modeling ability. However, in
the face of data information from various sources and structures,
how to use data mining technology to explore its intrinsic value
and connection from massive meteorological and hydrological
information is the frontier research field of developing hydro-
logical forecasting [11]. More importantly, without advanced
technology, we may not even realize what kind of hidden and
abstract information can be extracted or the limitation of the
accuracy of this extraction, which leads to the insufficient use
of available data [12].

To solve the aforementioned problems, some data-driven
methods, such as ML methods, have been proposed and widely
used in the face of complex and large variable relations to help
us extract useful information from the growing data [13]–[17].
Therefore, combining advanced ML methods with traditional
hydrological methods to realize medium- and long-term precip-
itation forecasting is not only an extension and improvement of
the traditional precipitation forecasting but also a great progress
in the interdisciplinary development of hydrological work. ML
methods can be divided into shallow ML and deep learning
according to the depth of the network. Shallow ML methods are
widely used in hydrology, such as random forest (RF) [18]–[20],
support vector machine (SVM) [21]–[23], extreme gradient
boosting (XGB) [24]–[26], light gradient boosting machine
(LGB) [27]–[29], etc. Deep learning methods such as recurrent
neural network (RNN) [30]–[32] and long short-term memory
(LSTM) [33] are not widely used in hydrology. In addition, in the
field of artificial intelligence, rather than whether the ML model
can show better performance, the ability to debug the model or
the model itself, the more important decisive factor is often the
data volume used to build the model. In the field of hydrology,
the length of hydrological series is limited, and sometimes it is
difficult to meet the number of samples needed by ML to build
a better model, which greatly affects the forecasting accuracy.
Therefore, it is critical to expand the hydrological series data
within a reasonable range to meet the basic requirements of the
ML model modeling to make the ML model play a better role

in medium- and long-term precipitation forecasting. Data aug-
mentation technology is a common technical method in the field
of ML, which is used to expand sample data information, and has
made outstanding achievements in the field of biomedical image
segmentation [34], environmental sound classification [35], text
recognition, and image recognition [36]–[38]. According to a
large number of studies, the commonly used data augmentation
methods include time stretching (TS) [39], synthetic minority
oversampling technique (SMOTE) [40], linear prediction cep-
stral coefficients (LPCC) [41], etc. However, data augmentation
is rarely used in hydrology.

Based on the aforementioned background, taking the Dan-
jiangkou River Basin as the study area, this article constructs a
data augmentation algorithm based on the K-means clustering
algorithm and SMOTE to expand the precipitation series. In the
meantime, taking the augmented sample data as input, two shal-
low ML models (RF, XGB) and two deep learning models (RNN,
LSTM) are constructed to compare the prediction results before
and after the expansion of precipitation data. In addition, the
differences, advantages, and disadvantages of prediction results
between shallow ML and deep learning models are discussed in
depth.

II. PROPOSED METHOD

A. Data Augmentation

ML can be roughly divided into supervised learning and
unsupervised learning according to the types of supervision.
Supervised learning requires that the training data be marked
and that the computer can identify the marked sample data
by using specific patterns. Supervised learning can be divided
into two categories: classification and regression. Classification
consists of training a machine to classify a set of data. For
example, in hydrological work, we divide floods into different
grades, which can be regarded as categories. By training a
computer with this marked (classified) flood data, we build an
ML model that can accurately judge which category (grade)
the flood belongs to for new flood sample data. Regression is
defined as training a machine to predict the future according to
the previously marked data. For example, when we perform pre-
cipitation forecasting, precipitation data are regarded as the label
of sample data, and atmospheric circulation factors and other
influencing factors are taken as characteristics. The machine
can learn potential laws from the sample data after the machine
learning model is trained. This model can forecast precipitation
according to the input of new atmospheric circulation factors.
Unsupervised learning [42] analyzes the inherent characteristics
and structure of data by learning a large number of unlabeled
data. The main methods of unsupervised learning are clustering
and dimension reduction. Clustering refers to grouping data
according to their characteristics. The grouping and classifi-
cation algorithms mentioned here are different. The groups of
classification algorithms are artificially defined, while the groups
in clustering algorithms are computer defined. For example, in
the aforementioned classification example, first, the floods are
artificially divided into several categories to classify the new
floods; in clustering, instead of artificially dividing the floods
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into several categories, the training samples are automatically
divided into different categories by machines. Dimension reduc-
tion finds the common points among data to reduce the variables
of datasets and reduce the occurrence of redundancy. Supervised
learning and unsupervised learning have their own advantages
and disadvantages. At present, supervised learning is the most
commonly used method for hydrological forecasting and has
achieved good results. Using an unsupervised learning method
to cluster sample data can avoid the influence of subjective
factors on hydrological events and make the machine run more
objectively, thus enhancing the credibility of forecast results.
Therefore, in this study, hydrological data are clustered first to
objectively classify them into different categories, and then, the
data expansion method is used to expand the few samples. The
expansion leads to a more balanced distribution and makes it
easier to achieve better results in model forecasting.

B. K-Means Clustering Algorithm

The K-means algorithm is a typical unsupervised ML algo-
rithm that is used to solve clustering problems. Because of its
simple and rapid implementation, it has become one of the top
ten classical data mining algorithms. The basic ideas and steps
of the K-means algorithm include the following.

1) Step 1: Sample data without labels constitute a sample
set D = {x(1), x(2), . . . , x(n)}. First, the sample set is divided
into K classes, randomly select cluster centers to form U =
{u1, u2, . . . , uk}.

2) Step 2: Traverse the sample set to calculate the distance
fromx(i) (i = 1, 2, . . . , n) tou1, u2, . . . , uk, andx(i) divide into
this category when the cluster center point uj (1 ≤ j ≤ k) with
the shortest distance appears.

3) Step 3: Traverse u1, u2, . . . , uk and move the new loca-
tion of the cluster center to the mean value of this category.
That is u′

j = (1/c)
∑c

d=1 x
(d), where j = 1, 2, . . . , k, where

x(d) represents the samples belonging to u′
j category, and c is

the number of training sample points in this category.
4) Step 4: Repeat Step 2 until the cluster center is no longer

changed.
5) Step 5: Finally, the distance between the samples in the

same class and the center of the samples is the closest, which is,
the samples in the same class have high similarity, that is, the
sum of squares between the samples in the same class and the
center of the cluster is the smallest

min

n∑
i=1

k∑
j=1

‖x(i) − uc(i)‖2. (1)

C. Proposed SMOTE Algorithm

The SMOTE algorithm was proposed by Chawla et al. in
2002. By artificially synthesizing sample data, the problem
of unbalanced data and too few samples can be solved. The
main principle of SMOTE is to linearly interpolate the training
samples, generate an appropriate number of samples according
to the oversampling rate, expand and augment the datasets of
fewer samples, and then, train the learner with the new training
sample set, thus improving the accuracy of the ML model.

The SMOTE data augmentation algorithm, as an oversampling
method that can effectively deal with unbalanced data, has been
widely and maturely applied in fraud detection and risk control
identification fields [43], [44], but has rarely been applied in
hydrology. Therefore, this article takes this data augmentation
algorithm as an exploratory preliminary attempt to broaden new
development methods and ideas for improving hydrological
forecasting accuracy. The principle of the SMOTE algorithm
is as follows.

1) Step 1: The number of multiclass samples in the sample
set is N+, and the number of small-class samples is N−. Cal-
culate the imbalance degree IR and oversampling rate K of the
original dataset, which are expressed, respectively, as

IR =
N+

N−
(2)

K = �IR�. (3)

2) Step 2: For each minority sample xi, calculate the Eu-
clidean distance with other minority samples, and find k nearest
neighbors (the Euclidean distance is the smallest), where k is
generally 5.

3) Step 3: According to the oversampling rate k, randomly
select k samples with returns from K nearest neighbors, record
them as x̄i (i = 1, 2, . . . ,K), and calculate (xi − x̄i).

4) Step 4: Use the following formula to synthesize new
sample xi

new:

xi
new = x+ rand(0, 1)(xi − x̄i), ˜I = 1, 2, . . . ,K. (4)

Circulate the aforementioned steps to synthesize new samples
artificially. The diagram of the proposed SMOTE algorithm is
shown in Fig. 1.

D. Data Augmentation Algorithm Based on Combination of
K-Means and SMOTE

In this article, first, the original sample datasets are clustered
into three categories by using the K-means algorithm so that
they can be objectively classified into different categories. Then,
the SMOTE data augmentation algorithm is used to balance
the unbalanced data among sample categories to achieve data
balance and augmentation. Fig. 2 shows the process of the data
augmentation algorithm.

III. ML METHODS

The hierarchical structure of ML algorithms can be divided
into shallow ML and deep learning. Shallow ML develops
rapidly and maturely, which successfully solves the problems of
low artificial efficiency and strong subjectivity. Deep learning is
a new technology. It has a deep network structure and can realize
multilayer and step-by-step extraction. Because of its powerful
network performance, it is widely used in many fields. Through
the development of the ML theory in medium- and long-term
hydrological forecasting, shallow ML is mainly based on the
application of decision tree models, while the application of
deep learning is limited, and the forecasting accuracy of the two
is indistinguishable. Therefore, this article considers applying
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Fig. 1. Diagram of the proposed SMOTE algorithm. (a) k-nearest neighbor
sample calculation. (b) New sample synthesis.

Fig. 2. Diagram of the data augmentation algorithm process.

two shallow ML models (RF, XGB) and two deep learning
models (RNN, LSTM) to medium- and long-term precipitation
forecasting for depth discussion and comparative analysis. The
principles of various models are as follows.

A. Random Forest (RF)

Random Forests (RF) is an ML algorithm combining the
Bagging ensemble learning theory [45] and random subspace
method [46]. It uses boostrap technology to sample the original
samples and generate multiple training samples. Each subset of
training samples is randomly selected by the random subspace
method to construct a decision tree, and finally, the optimal result
is selected by voting or averaging. A large number of studies
show that RF can effectively overcome the problems of noise
and overfitting, and has higher accuracy in forecasting (O’Neil).

Fig. 3. Main structure of RF.

The main steps of applying the stochastic forest method in
forecasting are as follows.

1) Step 1: It is assumed that M predictors are obtained
through screening, which together with hydrological series con-
stitute training sample set D = {(xi, yi), xi ∈ X, yi ∈ Y, i =
1, 2, . . . , N}, in which X is the explanatory variable of M-
dimensional vector composed of predictors, Y is the objective
variable of predicants (precipitation or runoff), and the sample
capacity is N .

2) Step 2: k training sample subsetsdk are randomly selected
from the training sample set D by the boostrap resampling
technique, and the capacity of the training sample subsets is
N .

3) Step 3: k CART decision trees are constructed for k
subsets of training samples. According to the random subspace
theory, m indicators (usually m =

√
M ) are randomly selected

from M indicators as node attribute values of the decision tree.
4) Step 4: Each decision tree grows recursively from top to

bottom to finally get a predicted value. Vote (mean) the results
of k CART decision trees as the final classification (regression)
result, which is the final predicted value. The main structure
diagram of the RF model is shown in Fig. 3.

B. Extreme Gradient Boosting (XGB)

Extreme gradient boosting (XGB) is a serial boosting algo-
rithm in ensemble learning proposed by C. Tianqi in 2014. It
is essentially a CART decision tree ensemble model, which
uses the prediction results of K trees as the final result. XGB
is a model integrating K CART decision trees. For sample
set D = {(xi, yi)} (|D| = N , xi ∈ Rm, yi ∈ R), XGB linearly
combines K learners as

ŷi = φ(xi) =

K∑
k=1

fk(x
i). (5)

The loss function in XGB is defined as

Lt =

K∑
k=1

L
(
yi, ft−1(x

i) + ht(x
i)
)
+Ω(ht) (6)
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Fig. 4. Structure of the RNN.

where ft−1(x
i) is a single learner in the previous round, and

a tree ht(x
i) can be found in the iteration of the round to

minimize L(yi, ft−1(x
i) + ht(x

i)). Ω(ht) is a regularization
term to prevent the model from overfitting

Ω(ht) = γJ + λ/2
J∑

j=1

ω2
tj (7)

where J is the number of leaf nodes in the decision tree, and
ωtj is the optimal value of the j leaf node in the jth iteration.
γ and λ are coefficients, which need to be adjusted in practical
application. Our goal is to get the corresponding model when
the loss function is minimized.

C. Recurrent Neural Network (RNN)

The recurrent neural network (RNN) originated from the
Hopfield network proposed by Hopfield in 1982. It is a special
neural network structure that was proposed according to the
viewpoint that human cognition is based on past experience and
memory. With the development of deep learning and Big Data,
researchers have found that the RNN has strong data mining
ability; thus, it has gradually become widely used.

The neural network includes an input layer, a hidden layer,
and an output layer. The layers are connected by weights, and the
value of the output layer is calculated by the activation function.
Neurons in each layer are not connected with each other. The
biggest difference between the RNN and the feed forward neural
network is that the weights are connected between neurons in
layers, which is very important in time series prediction. The
current output is also related to the previous output. Each neuron
in each layer is not independent from the others but has a
directional cycle. Therefore, the RNN will memorize previous
information and apply it to the calculation of the current output.
On the basis of the feed forward neural network diagram, the
structure of the RNN is shown in Fig. 4.

Fig. 5. Expanded structure of the RNN.

Fig. 6. Structure of the LSTM.

D. Long Short-Term Memory (LSTM)

To solve various problems caused by gradient disappearance
in the RNN [47], Hochreiter proposed an improved model
based on the RNN-long-term and short-term memory model
(LSTM) [48] in 1997, which was further improved by Grave [49]
in 2008. We expand the standard RNN in the previous section
(taking the activation function as tanh function as an example)
as shown in Fig. 5. The difference between the LSTM and
traditional RNN is that there is only one network layer in the unit
of the traditional RNN network, while there are four network
layers in the LSTM. The structure of the LSTM is shown in
Fig. 6.

IV. STUDY AREA AND DATASET

A. Study Area

Danjiangkou River Basin is located between 31◦ ∼ 34◦ N lat-
itude and 106◦ ∼ 112◦ E longitude, with a drainage area of about
95 217 km2, accounting for 60% of the total area of Hanjiang
River Basin (see Fig. 7). In the basin, mountains account for
79%, hills account for 18%, and only 3% are plains. The south
side is bounded by Micang Mountain and Daba Mountain, and
the north side is bounded by Qinling Mountains. In the basin,
there are dense rivers, developed water systems, and abundant
water resources. The water systems are distributed on both sides
of the Han River in pulse shape, and the tributaries are generally
short. There are many water conservancy projects in the basin,
among which Danjiangkou Reservoir is the water source of the
Middle Route Project of South-to-North Water Transfer, which
plays a key role in national water resources dispatching. The
annual average temperature in the basin is about 15∼17 ◦C,
and the average evaporation in the basin is 900∼1500 mm.
The precipitation and water vapor are abundant, but they are
unevenly distributed during the year. The rainy season is mostly
concentrated in May to October, and the precipitation accounts
for more than 80% of the whole year. The average annual
precipitation is about 700∼1100 mm.
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Fig. 7. Map of the Danjiangkou river basin.

B. Dataset

This article adopts two kinds of datasets. The predictands
dataset is precipitation dataset, while the predictors used are
remote-related climate indexes.

1) Predictands Data: The measured data used in this article
are the gridded dataset CN05.1, which was established by W.
Jia [50] in 2012 on the basis of the method adopted by dataset
CN05 [51], with a spatial resolution of 0.25 × 0.25. CN05.1
based on the daily data of more than 2400 meteorological ob-
servation stations (including national reference climate stations,
national basic meteorological stations, and national general me-
teorological stations) distributed all over Chinese, the interpo-
lation calculation is carried out by anomalous approach [52],
and the time used in this article is the monthly precipitation data
from 1982 to 2015. Fig. 7 shows the distribution of CN05.1 grid
in Danjiangkou river basin.

2) Predictors Data: The predictors are based on 130 remote-
related climate indexes provided by the National Climate Center
in China.1 Climate indexes contain three parts: 88 atmospheric
circulation indexes, 26 sea surface temperature indexes, and 16
other indexes.

V. RESULTS AND DISCUSSIONS

In this article, the K-means clustering algorithm and SMOTE
algorithm are combined to augment the sample data to improve
the forecasting accuracy. Then, four precipitation forecasting
models are constructed, specifically, two shallow ML models
(RF, XGB) and two deep learning models (RNN, LSTM), to
analyze and observe the stability and universality of the data aug-
mentation algorithm. To verify the practical applicability in the
data augmentation algorithm and the difference of forecasting
accuracy before and after augmentation, the anomaly correlation

1[Online]. Available: https://cmdp.ncc-cma.net/Monitoring/cn_index_130.
php

coefficient (ACC) and Pg score are used to test and evaluate,
respectively, the forecasting accuracy of the precipitation model.
The two scores are introduced as follows.

1) Anomaly correlation coefficient (ACC): Anomaly corre-
lation coefficient (ACC), also known as spatial similarity
coefficient, is an evaluation index determined and recom-
mended by the 11th working conference of the World Me-
teorological Organization (WMO) held in Italy in 1996,
which reflects the spatial similarity between predicted and
measured values. The range of ACC is [−1, 1], and the
closer it is to 1, the higher the prediction accuracy. The
ACC calculation formula is

ACCn

=

∑M
m=1(Δom,n −Δon)× (Δfm,n −Δfn)√∑M

m=1(Δom,n −Δon)2 ×
∑M

m=1(Δfm,n −Δfn)2

(8)

where m = 1, 2, . . . ,M is the number of grid points in
the region. n = 1, 2, . . . , N is the sample capacity of time
series. om,n is the observed precipitation. fm,n is the
forecasted precipitation. om is the average of observed pre-
cipitation at the grid m, where om = (1/N)

∑N
n=1 om,n.

Δom,n is the differential value between the observed
precipitation and multiyear average precipitation at time
n and Δom,n = om,n − om. Δom is average value of
observed precipitation and multiyear average precipita-
tion at time n at all grid points in the region, and on =
(1/M)

∑M
m=1 om,n. fm is the average of forecasted pre-

cipitation at the grid m, and fm = (1/N)
∑N

n=1 fm,n.
Δfm,n is the differential value between forecasted pre-
cipitation and multiyear average precipitation at time n
and Δfm,n = fm,n − fm. Δfm is the average value of
forecasted precipitation and multiyear average precipi-
tation at time n at all grid points in the region, and
Δfm,n = fm,n − fm.

2) Graded test Pg score: The graded test Pg score is mainly
used to assess the magnitude proximity between fore-
casted and observed precipitation anomaly percentage,
and it is a qualitative grade evaluation standard for op-
erational forecast by China Meteorological Administra-
tion since January 1, 2010. Precipitation trend forecast
is judged according to the six-grade scoring system. See
Table I for detailed classification standards.

See Table II for specific inspection criteria of the Pg score,
with the lowest score of 0 and the highest score of 100. When
the sign and magnitude of the forecasted and observed anomaly
percentage are the same, the score is 100 points. When the
difference between the forecasted and observed magnitude is
one level, 20 points will be deducted. If there is a difference
of two levels, 40 points will be reduced, and so on, until it is
reduced to 0 points. When the forecasted and observed anomaly
symbols are inconsistent, 20 points will be deducted on the
basis of magnitude reduction until it is reduced to 0 points. The
Pg score encourages abnormal prediction. When the prediction
is abnormal and the difference between prediction and actual

https://cmdp.ncc-cma.net/Monitoring/cn_index_130.php
https://cmdp.ncc-cma.net/Monitoring/cn_index_130.php
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TABLE I
GRADING STANDARD OF PG SCORE

TABLE II
SCORING SYSTEM OF PG SCORE

Fig. 8. ACC score of SMOTE-km-XGB and XGB.

measurement is one order of magnitude, ten points can be added
to the aforementioned score.

A. Results of the Shallow ML Forecasting Model

To verify the rationality and effectiveness of the SMOTE data
augmentation algorithm and K-means clustering algorithm in
improving precipitation forecasting accuracy, four ML predic-
tion models are used to verify and compare the results. This
section introduces two shallow ML models. The SMOTE data
augmentation algorithm and the K-means clustering algorithm
use the XGB model to forecast precipitation, which is abbrevi-
ated as SMOTE-km-XGB for convenience. The SMOTE data
augmentation algorithm and the K-means clustering algorithm
are used to forecast precipitation with the RF model, which is
abbreviated as SMOTE-km-RF for convenience. Figs. 8 and 9
show the ACC score comparison between the aforementioned
two methods and the original method without SMOTE-km.

The ACC score in Fig. 8 shows that the prediction perfor-
mance of the SMOTE-km-XGB method is superior to that of
the XGB method in January, February, April, June, July, and
September. In most years, the ACC value exceeds that of the
XGB method, even more than double in some months, and there

Fig. 9. ACC score of SMOTE-km-RF and RF.

is a clear trend of improving accuracy in other months. The
fluctuation range of the ACC value is smaller than that of the
SMOTE-km-XGB, and the model shows higher stability and
robustness, which shows that the coupling of the SMOTE data
augmentation algorithm and K-means clustering is beneficial
for expanding the sample datasets and improving the forecasting
accuracy when the XGB model is used for precipitation forecast-
ing. At the same time, the ACC scores of both the SMOTE-km-
XGB and XGB methods are higher in June and July than those of
other months, while the ACC scores in December are generally
lower. A possible reason is that the precipitation level is larger in
June and July during the flood season, and the ACC value does
not fluctuate as much as when the precipitation level is small
through calculation. The ACC score is more sensitive when the
precipitation level is small. Generally, the SMOTE-km-XGB
method has achieved reasonable application results in the study
of precipitation forecasts in river basins. The ACC score in Fig. 9
shows that the gap of the SMOTE-km coupling algorithm in
the RF precipitation prediction model is not significant, and
SMOTE-km-RF only shows a weak advantage. Searching for
the reason for the depth may have a great relationship with the
principle of the RF model itself. As seen from the introduction
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of RF, when using sample datasets to construct decision trees,
RF uses bootstrap resampling technology to randomly sample
the sample datasets to obtain sample data subsets, which is also
a way of virtually increasing the number of samples. Therefore,
the SMOTE-km algorithm did not greatly improve the fore-
casting accuracy. However, judging from the fluctuation range
of the ACC value, the SMOTE-km-RF method has a smaller
fluctuation range and is more stable, which means that if the
forecasting accuracy of the RF model is not good in some special
years, using the SMOTE-km method to expand the sample data
has advantages and changes that cannot be underestimated. From
the perspective of monthly changes, the ACC scores in July and
August are more stable; their values basically fluctuate within
the range of [0.1,0.6], which may be due to the stable changes of
the forecast model in ACC scores when the precipitation level
is large. Different from the quantitative calculation of the ACC
index, the Pg score mainly focuses on the forecasting accuracy
of the model prediction value in order of magnitude, which is
a qualitative index. The closer its value is to 100, the better the
forecasting accuracy is. The deeper blue is in the figure, the
better the forecasting accuracy is; the deeper red is, the worse
the forecasting accuracy is. To simplify the layout, the values of
the Pg score of the SMOTE-km-XGB, XGB, SMOTE-km-RF,
and RF precipitation forecasting models are drawn in the same
picture, but they are still separately compared and analyzed, as
shown in Fig. 10. The left half of the Pg score shows that the
forecast accuracy of the SMOTE-km-XGB method in January,
February, May, June, and July is much higher than that of
XGB. In January, among 167 grid points in the whole basin,
approximately 80% of the grid points scored above 80, only
six grid points scored below 70, and no grid points scored
below 60. However, because the XGB score has two grid points
whose scores are lower than 50, the prediction results are almost
difficult to adopt, only three grid points exceed 80, and most
other grid points are between [60,70]. In June, more than half
of the grid points had a Pg score above 90, and the Pg score
of the whole basin was not less than 70. When only the XGB
method is used for forecasting, the Pg score is between 70 and
80 at most grid points, and few grid points exceed 80. Among
statistical data of 167 grids, only one grid has a Pg score above
90. It is fully explained that the precision of the SMOTE-km
data expansion algorithm is improved when it is applied to the
XGB model to forecast precipitation. It can be seen from the
right half of the Pg score chart that the SMOTE-km-RF method
is slightly better than the RF method in February, April, July,
and October. In February, more than 70% of the grid score in
the SMOTE-km-RF model scored above 80, a few grid points
scored above 80 in the RF model, but most grid points scored
lower than those in the SMOTE-km-RF model. There is a large
difference between the two methods in April. Only one lattice of
SMOTE-km-RF has a Pg score lower than 70, and approximately
half of the lattice scores are higher than 80, while the scores of
nearly half of the grids of the RF method are lower than 70, and
the scores of three grids are lower than 60. However, the Pg score
shows that the SMOTE-km-RF method is slightly inferior to the
RF method in May and December, which is consistent with the
ACC score.

Fig. 10. Pg score of SMOTE-km-XGB, XGB, SMOTE-km-RF, and RF.

B. Results of Deep Learning Forecasting Model

This section introduces the prediction results of two deep
learning models, which are abbreviated as SMOTE-km-RNN
and SMOTE-km-LSTM. Figs. 11 and 12 show the ACC score
comparison between the aforementioned two methods and the
original method without SMOTE-km.

The ACC score in Fig. 11 shows that the SMOTE-km method
has no obvious contribution to the improvement of accuracy
in the RNN precipitation forecasting model. Even in May and
August, the ACC score of the SMOTE-km-RNN precipitation
forecasting model is lower than that of the RNN. The reason
may be that although the sample capacity is increased when ex-
panding the sample data by the SMOTE-km data augmentation
algorithm, the noise data of the sample data are also invisibly in-
creased. When the deep learning model connects the multilayer
neurons to the sample data, it constantly calculates through the
activation function. In other words, the existence of noise data
additionally increases the calculation error of the model. For
deep learning, the monthly series data in hydrology still cannot
meet the requirements in terms of data quantity. Therefore, it
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Fig. 11. ACC score of SMOTE-km-RNN and RNN.

Fig. 12. ACC score of SMOTE-km-LSTM and LSTM.

may not be helpful for the deep learning model to increase a
small part of the sample data by the data amplification method as
it also virtually increases the loss of the model, which wastes the
sample data preprocessing time and increases the model error.
Coincidentally, in Fig. 12, when the SMOTE-km method is
applied to the LSTM precipitation forecasting model, the ACC
value is almost the same as that forecasted by directly using
LSTM. Different from the RNN model, the SMOTE-km-LSTM
precipitation forecasting model does not show worse results
than the LSTM precipitation forecasting model in individual
months. This may be related to the difference in structure
between the LSTM and RNN models. Compared with the RNN
model, the LSTM model has a layer of memory units, which
makes the LSTM model have a memory function. Therefore,
the forecasting model has strong stability and is weak under the
influence of redundant data and noise data. The left half of Fig. 13
shows the Pg score of the RNN precipitation forecasting model,

Fig. 13. Pg score of SMOTE-km-RNN, RNN, SMOTE-km-LSTM, and
LSTM.

which uses the SMOTE-km algorithm to expand sample data and
does not use the data expansion algorithm, which is similar to the
ACC score. In May and August, the forecasting accuracy of the
SMOTE-km-RNN model is lower than that of the RNN model,
and there is little difference in the ACC value between the two
models in other months. In May, more than half of the grids in the
RNN model scored more than 80, while only a few grid points
scored more than 80 in the SMOTE-km-RNN model, and one
grid even scored less than 50. Therefore, its accuracy was poor. In
the right half of Fig. 13, the Pg scores of the LSTM precipitation
forecasting model are expanded with the SMOTE-km algorithm
and without the data expansion algorithm. In February, the Pg
scores of the SMOTE-km-LSTM are quite different from those
of LSTM, and the Pg scores of almost all grid points are lower
than LSTM. It can be roughly observed from Fig. 13 that the
forecasting accuracy of the LSTM precipitation forecasting
model in the Danjiangkou Basin is slightly better than that of
the RNN precipitation forecasting model, which is worthy of
attention and development in future research. Generally, the
SMOTE-km data augmentation algorithm has not achieved
considerable results in deep learning. From the ACC score
and Pg score, the prediction accuracy does not show obvious
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Fig. 14. ACC score of SMOTE-km-XGB, SMOTE-km-RF, SMOTE-km-
RNN, and SMOTE-km-LSTM.

differences between months, which is somewhat different from
the results of shallow ML precipitation forecasting.

C. Results of Shallow and Deep Learning Forecasting Model

To compare and analyze the accuracy of four precipita-
tion forecasting models: SMOTE-km-XGB, SMOTE-km-RF,
SMOTE-km-RNN, and SMOTE-km-LSTM, the ACC scores
and Pg scores of the four models were compared (see Figs. 14
and 15). It is easy to see that SMOTE-km-XGB outperforms
the other three models in more months, and the forecasting
accuracy of the two shallow ML models is better than that of
the two deep learning models, especially in January, June, July,
and August. In February, when the Pg scores of most grids of
the two shallow ML models exceeded 80, the Pg scores of the
two deep learning models were generally low, especially for
the RNN model, where the Pg scores of most grid points were
lower than 70 and three grid points were lower than 50. In
June, the ACC score and Pg score of SMOTE-km-XGB were
significantly higher than those of the other three models. In
July, the Pg scores of the two shallow ML models exceeded
80 in most grids, while the Pg scores of the two deep learning
models were lower than 70 in most grids. At the same time, the
forecasting accuracy of the shallow ML model is similar in 167
grids in the whole basin, while the two deep learning models
are different. The differential value of the Pg score in the same
month can even reach more than 50, which is not very accurate
for the forecasting of grid precipitation data. The aforementioned
results show that when the amount of sample data is very small,
the deep learning model does not show the advantages of deep
mining, and the forecasting accuracy cannot reach the accuracy
of the shallow ML model. The aforementioned results show that
the SMOTE-km-XGB method is more suitable than the other
three methods for precipitation prediction in the basin studied
in this article.

Fig. 15. Pg score of SMOTE-km-XGB, SMOTE-km-RF, SMOTE-km-RNN,
and SMOTE-km-LSTM.

VI. CONCLUSION

In view of the characteristics of the ML model, the amount
of data used in the model construction directly affects the
accuracy of ML modeling. Therefore, this article constructs a
data augmentation algorithm based on the K-means clustering
algorithm and SMOTE to expand the precipitation series to
expand the data within a reasonable range to meet the basic needs
of the ML model and improve the performance of medium- and
long-term precipitation forecasting. First, the sample datasets are
clustered by the K-means clustering algorithm, and the sample
data are grouped into three categories. Then, the SMOTE data
augmentation algorithm is used to expand the categories with
a small number of samples in the class according to the over-
sampling rate of the original datasets, and the final augmented
samples make the sample data more balanced when the sample
data amount increases. Taking the augmented sample data as
input, four ML models (XGB, RF, RNN, and LSTM) are used to
compare the forecasting results before and after the augmented
precipitation data. The differences between shallow ML and
deep learning are compared, and the differences, advantages, and
disadvantages between shallow ML and deep learning models
are discussed in depth. The results of the case study of the
Danjiangkou River basin are summarized as follows.
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1) The forecasting results of two shallow ML methods (RF
and XGB) show that the forecasting accuracy is improved
after the sample data are processed by the K-means cluster-
ing algorithm and SMOTE data augmentation algorithm.
In most years, the ACC and Pg scores of SMOTE-km-
XGB and SMOTE-km-RF exceed those of XGB and RF.
Furthermore, compared with the other three methods,
SMOTE-km-XGB method is more suitable for precipi-
tation forecasting in the basin studied in this article.

2) The forecasting results of the two deep learning methods
(RNN and LSTM) show that the sample data processed
by the K-means clustering algorithm and SMOTE data
augmentation algorithm have not achieved considerable
results in deep learning. The possible reason is that when
the sample data are very small, the requirements of the
deep network cannot be met.

3) This study improves the accuracy of precipitation fore-
casting by expanding and balancing the information of
sample data, and provides a new research idea for improv-
ing the accuracy of medium- and long-term hydrological
forecasting.
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