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A Lightweight Complex-Valued DeeplLabv3+ for
Semantic Segmentation of POISAR Image

Lingjuan Yu
Feng Xu

Abstract—Semantic image segmentation is one kind of end-to-
end segmentation method which can classify the target region pixel
by pixel. As a classic semantic segmentation network in optical
images, DeepLabv3+ can achieve a good segmentation perfor-
mance. However, when this network is directly used in the semantic
segmentation of polarimetric synthetic aperture radar (PolSAR)
image, it is hard to obtain the ideal segmentation results. The
reason is that it is easy to yield overfitting due to the small PolISAR
dataset. In this article, a lightweight complex-valued DeepLabv3+
(L-CV-DeepLabv3+-) is proposed for semantic segmentation of
PoISAR data. It has two significant advantages when compared
with the original DeepLabv3+. First, the proposed network with
the simplified structure and parameters can be suitable for the
small PoISAR data, and thus, it can effectively avoid the overfitting.
Second, the proposed complex-valued (CV) network can make full
use of both amplitude and phase information of PoISAR data, which
brings better segmentation performance than the real-valued (RV)
network, and the related CV operations are strictly true in the
mathematical sense. Experimental results about two Flevoland
datasets and one San Francisco dataset show that the proposed
network can obtain better overall average, mean intersection over
union, and mean pixel accuracy than the original DeepLabv3+- and
some other RV semantic segmentation networks.

Index Terms—Lightweight complex-valued DeepLabv3+
(L-CV-DeepLabv3+), polarimteric synthetic aperture radar
(SAR), segmentation performance, semantic image segmentation.

I. INTRODUCTION

YNTHETIC aperture radar (SAR) has all-day and all-
weather imaging capability, which is very important in
military and civilian fields. As one of the research hotspots
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in the polarimetric synthetic aperture radar (PolISAR) field, the
classification of land cover is of great significance. In the early
days, the classification methods were mainly based on statistical
distribution and physical scattering mechanism, respectively. In
terms of statistical distribution, the single-look PoISAR data are
subject to complex Gaussian distribution [1], and the multilook
PolSAR data are subject to complex Wishart distribution [2].
In terms of physical scattering mechanism, the scattering types
of land cover constituted by odd scattering, even scattering,
and diffuse scatting [3] were used, and the scattering types
characterized by polarization entropy and scattering angle [4]
were also adopted. Moreover, hybrid algorithms, based on sta-
tistical distribution and physical scattering mechanism [5], and
the improved hybrid algorithms [6] were proposed. However,
the accuracy of these methods was not high enough because
only some shallow features about targets were exploited.

In order to improve the classification accuracy of land cover,
some methods based on machine learning were used in POISAR
image classification. In these methods, features were extracted,
and then classification was carried out based on these features.
The commonly used polarization features included polarimetric
decomposition features (H/A/a decomposition [4], Freeman
decomposition [7], etc.), and polarimetric parameters (the inten-
sities of the copolarized channel in linear and circular polariza-
tion, the span, the ration between different intensity channels in
linear and circular polarization bases, the modulus and phase of
polarimetric degree of coherence, the minimum and maximum
of the degree of polarization [8], etc.). The commonly used
classifiers were support vector machine [9]—-[12], neural network
[13]-[15], k-nearest neighbor [16], decision tree [17], boosting
[18], and so on.

In recent years, PoISAR image classification based on deep
learning has achieved remarkable results. The classic deep
stacked networks were multilayer perceptrons [19], convo-
lutional long short term memory [20], deep belief network
(DBN) [21], stacked autoencoder [22], [23], convolutional neu-
ral network (CNN) [24]-[29], and so on. The classification
processes of these deep learning networks also included the
feature extraction and classification. First, the Pol[SAR data
or polarimetric decomposed features were used as the in-
put of network. Then, the deep features were extracted from
the input data by layers in the front of the network. Finally,
the extracted features were classified by layers in the back
of the network. In addition, there were some other deep net-
works used in the classification of PolSAR image, such as
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3-D-CNN combined with the conditional random field [30],
CNN combined with graph [31], polarimatric convolutional net-
work [32], Wishart deep stacking network [33], Wishart autoen-
coder (Wishart-AE) [34], Wishart convolutional autoencoder
(Wishart-CAE) [34], and the improved deep stacked network
[35], [36]. Because some superpixel segmentation methods were
proved to be effective in preserving spatial structure informa-
tion of PolSAR images [37]-[39], the superpixel-based graph
convolutional network was also proposed for PoISAR image
classification [40].

Among the above classification methods based on deep learn-
ing, some of them were pixel-by-pixel classification methods.
In these methods, the sliding window was used in dividing the
whole PolSAR image into many overlapping patches, and then
the class of each pixel in the whole image was obtained by
classifying the patch centered on this pixel as an image. The dis-
advantages of these methods were that the classification results
were easily affected by the speckle noise, and the amount of com-
putation was large. Besides, there were also a few region-based
classification methods which could effectively retain the whole
region of the target. In these methods, regions were generated by
superpixel segmentation [23], [40] or other methods [12], and
then the obtained target regions were classified.

With the development of deep learning, semantic image seg-
mentation has also developed rapidly. It achieved not only pixel-
by-pixel classification but also region-level segmentation. So far,
this technology has also been applied in the single-polarization
SAR and PolSAR images. For the semantic segmentation of
single-polarization SAR image, it mainly focused on one kind
of specific target, such as road [41], oil spill [42], and building
[43]-[46]. Besides, the semantic segmentation of land cover is
also studied [47]. For the semantic segmentation of PolSAR
image, it mainly focused on the land cover [48]-[52]. Since
the original semantic segmentation networks were proposed for
optical images, the input data of these networks were real-valued
(RV). However, both single-polarization SAR and PoISAR data
are complex valued (CV). In order to make full use of both
the amplitude and phase information of SAR data, some CV
semantic segmentation networks were also proposed [53], [54].
Although these CV networks achieved good segmentation re-
sults, some mathematical operations involved in these networks
were not strictly true in the mathematical sense. In this article,
we propose a lightweight complex-valued DeepLabv3+ (L-CV-
DeepLabv3+) for semantic segmentation of PolISAR image in
order to obtain better segmentation performance than classic RV
segmentation networks based on deep learning. The structure
and parameters of the proposed network are simplified based on
the original DeepLabv3+ [55], and all the CV operations in-
volved in this network are mathematically strict. Two Flevoland
datasets and one San Francisco dataset are used in verifying the
effectiveness of the proposed network.

The rest of this article is organized as follows. Section II
presents the detailed structure, parameters, and the related CV
operations of L-CV-DeepLabv3+. Section III introduces three
PolSAR datasets and the corresponding preprocessing. The ex-
perimental results are shown in Section IV. Finally, Section V
concludes this article.

II. THEORY FOR L-CV-DEEPLABV3-+

The architecture of L-CV-DeepLabv3+ is shown in Fig. 1.
It includes two modules: 1) encoder and 2) decoder. In the
encoder, there are backbone network, complex-valued atrous
spatial pyramid pooling (CV-ASPP), and CV convolution (CV-
Conv) operation with size 1 x 1. In the decoder, there are
CV-Conv operations with size 1 x 1 and 3 x 3, and two
upsampling operations with ratio 4. At the end of the decoder,
there is a magnitude operation which converts the CV output to
RV before the final softmax operation. Itis worth noting that each
convolution operation in the proposed network is followed by
a CV activation function and CV batch normalization, although
they are not shown in Fig. 1.

In order to furtherly analyze the proposed network, both the
structures of backbone network, CV-ASPP, decoder, and the
involved mathematical operations in these subnetworks are pre-
sented in this section. In addition, the loss function is also given,
and the CV batch normalization and CV weight initialization
are simply introduced.

A. Backbone Network

In the original DeepLabv3+ [55], ResNet, Xception, Mo-
bileNet are always selected as the backbone network in semantic
segmentation of optical images. However, when these deep
structures are directly used in the semantic segmentation of
PoISAR images, it is hard to obtain good segmentation results.
The reason is that it is easy to yield overfitting due to the
small PolSAR dataset. To solve this problem, we propose a
lightweight complex-valued Xception (L-CV-Xception) as the
backbone network. It also contains three parts: 1) entry flow, 2)
middle flow, and 3) exit flow, which are shown in Fig. 2(a)—(c),
respectively. As shown in Fig. 2(a), the entry flow includes
CV-Conv operations, shortcut connections, and complex-valued
separation convolution (CV-SepConv) operations, which is simi-
lar to the original entry flow. However, the number of convolution
kernels in each layer is reduced to be about 1/2 or 1/4 of the
original. In Fig. 2(b), the structure of middle flow is similar
to the original. But the number of convolution kernels in each
layer is reduced to be 1/4 of the original, and the number of
repeat times of the structure is reduced to be 10, which is
obtained by experiments in Section IV. In Fig. 2(c), the structure
of exit flow is also similar to the original, but the number of
convolution kernels in each layer is reduced to be 1/4 of the
original. Overall, the proposed L-CV-Xception is lighter than the
original RV Xception. The segmentation performance of L-CV-
Xception obtained by experiments in Section IV is better than the
original.

All the convolution operations involved in L-CV-Xception
are CV. As shown in Fig. 2, it mainly includes CV-Conv op-
eration with stride s (s > 1) and CV-SepConv operation. For
the latter, it can also be divided into two steps just like the
SepConv operation in the original Xception. The first step is
complex-valued depthwise convolution (CV-DWConv) opera-
tion, and the second step is complex-valued pointwise convolu-
tion (CV-PWConv) operation. The schematic diagrams of these
two steps are shown in Fig. 3(a)—(b), respectively. In Fig. 3(a),
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Architecture of L-CV-DeepLabv3+-. It includes two modules: Encoder and decoder. All the convolution operations in two modules are complex-valued

(CV). Lightweight complex-valued Xception (L-CV-Xception) is used as the backbone network of the encoder.
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Fig. 2. Architecture of L-CV-Xception. (a) Entry flow. (b) Middle flow. (c)

Exit flow.

one convolution kernel is convoluted with one input channel,
and the number of output channels is the same as that of input
channels. In Fig. 3(b), each input feature map is convoluted

Convolution kernels W Output feature maps F”
1 channels I channels

Input feature maps F
I channels

(a)
Input feature maps F~ Convolution kernels Output feature maps O
I channels J channels J channels

Fig.3. Schematic diagram of CV-SepConv operation. (a) CV-DWConv oper-
ation. (b) CV-PWConv operation.

with one convolution kernel with size 1 x 1, and then all the
convolutional results of input feature maps are summed together
to obtain one final feature map. In order to clearly illustrate all
these convolution operations, their mathematical formulas are

considered.
At first, some common symbols are defined. The ith

t=1,2,...... , I) input feature map is denoted as F;, where
I is the number of CV input feature channels, and the jth
G=12,...... , J) output feature map is denoted as O, where

J is the number of CV convolution kernels. The pixel co-
ordinates in each input feature map are denoted as (x,y),
and the pixel coordinates in each convolution kernel are de-
noted as (u, v). Then, the mathematical formulas of CV-Conv,
CV-DWConv, and CV-PWConv operations are presented as
follows.
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1) CV-Conv operation with any stride: Suppose the size of
any one convolution kernel W;; isK; x Ko, then the CV-Conv
operation with stride s (s > 1) can be written as follows [56]:

I Ki—1Ky—1
O (z,y) = Z Z Z Wii(u,v)F; (s +u,ys +v) (1)
i=1 u=0 v=0
2) CV-DWConv operation: As shown in Fig. 3(a), the number
of CV output feature channels is the same as that of input feature
channels, which is equal to /. Denote the ith output feature maps
as F;', and suppose the size of any one convolution kernel W is
also K1 x Ko, then the CV-DWConv operation can be written
by
Ki—1Ky—1
Fi/(xay): Z Z Wi(uav)Fi (m—i—u,y—i—v). 2)
u=0 v=0
3) CV-PWConv Operation: As shown in Fig. 3(b), the input
feature maps are also the output results of CV-DWConv opera-
tion. The number of input feature maps is /, and the number of
output feature maps is J. Suppose the size of any one convolution
kernel Wj; is 1 x 1, then the CV-PWConv operation can be
written by

I

O (z,y) = > WiiF/ (z,y). 3)

i=1

B. Complex-Valued Atrous Spatial Pyramid Pooling

The structure of CV-ASPP is shown in Fig. 1. It includes one
CV-Conv operation with size 1 x 1, and three complex-valued
dilated convolution (CV-DConv) operations with size 3 x 3
whose rates are 6, 12, and 18, respectively. The former is used in
compressing the channels, while the latter is used in obtaining
multiscale features. Obviously, there are two main differences
between CV-ASPP and the original ASPP. The first one is that all
the operations in CV-ASPP are CV, while they are RV operations
in the original ASPP. The second one is that the global pooling
in the original ASPP is removed in CV-ASPP. There are two
reasons for the second difference. One reason is that the output
feature size of the backbone network is too small to be used in
obtaining the global feature by the pooling layer, and the other
reason is that the CV pooling operation which is complicated in
the mathematical sense can be avoided.

If the symbols defined in the CV-Conv operation with stride
s are also used in CV-ASPP, then the CV-DConv operation can
be written by

I Ki-1K>-1

O; (z,y) :Z Z Z Wi (u,v) F; (x + ru,y + rv)

i=1 u=0 v=0
(4)

where r is the dilated ratio.

C. Decoder

As shown in Fig. 1, both feature maps obtained from L-CV-
Xception and CV-ASPP are used in the decoder. The feature
maps from L-CV-Xception represent low-level features, while
the feature maps from CV-ASPP represents high-level features.

At the beginning of the decoder, the low-level features are
convoluted by 1 x 1 convolution kernels in order to reduce the
proportion of low-level features, and the high-level features are
upsampled to be with the same size as the low-level features.
Considering that CV nearest neighbor interpolation is easier
than CV bilinear interpolation, the former is used in the CV
upsampling operation. Then, the concatenation is performed to
obtain rich feature maps containing both low-level and high-
level features. After that, CV-Conv operation with size 3 x 3 is
used to refine feature maps, and then the refined feature maps
are upsampled four times again. Specifically, all the above op-
erations are CV. Since the CV softmax operation is complicated
in the mathematical sense [57], a magnitude operation is used in
converting the extracted feature maps from CV into RV, which
will not lead to information loss in the backward propagation of
the whole network [56]. At the end of the decoder, the softmax
classifier is used in obtaining the final semantic segmentation
results.

If the symbols defined in the backbone network are also
used in the decoder, then the mathematical formulas of CV
upsampling, magnitude, and the softmax operations involved
in the decoder can be given as follows.

1) CV Upsampling Operation: Since the CV upsampling
operation is only used in enlarging the input feature maps, the
number of output feature channels is the same as that of the input
feature channels. Suppose each pixel in one input feature map
is upsampled into a block with size K x K, then the ith output
feature map can be calculated by

O; (zK 4+ k,yK +m) = F; (z,vy) 5)

where k € [0, K — 1] and m € [0, K — 1].

2) Magnitude Operation: According to the framework of L-
CV-DeepLabv3+, the number of the input channels of softmax
operation is the same as that of the output channels, which is
also equal to the number of target classes. Suppose the number
of target classes is N, then the nth (n = 1,2,...... , ) output
of magnitude operation can be calculated by

O (2,9) = /R (F (2.9))) + (3 (Fu (.1))°  (6)

where R(e) and (e)denote real and imaginary parts of a
complex number, respectively.

3) Softmax Operation: After the magnitude operation, the
softmax operation can be directly used in the final semantic
segmentation of images. The probability of the pixel located at
(z,y) in the feature map belonging to the nth class can be written
by

exp (On (2,9))

P (On (2,9))

P (2,y) = (N

M=

/

n

D. Loss Function

The cross-entropy [58] is chosen as the loss function of
the proposed L-CV-DeepLabv3+-, which is the same as the
original DeepLabv34-. Taking one sample as an example, the
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Fig. 4.

Flevoland dataset 1. (a) Pauli RGB. (b) Ground truth and the legend of
ground truth.

loss function can be expressed by

N
Loss = — Z Z qn (a:,y) In p,, (xay) ®)

(z,y) n=1

where ¢, (z,y) represents the true classification result of one
pixel located at (x,y) in the final segmentation image. If the
label of this pixel is n, then ¢, (z,y) is equal to 1; otherwise,
qn(x,y)is equal to O.

E. CV Batch Normalization and Weight Initialization

Batch normalization is very important in the training of the
deep network. It can not only accelerate the convergence speed
of the network model but also alleviate the gradient dispersion
problem in deep network to a certain extent. In the framework of
L-CV-DeepLabv3+, the CV batch normalization in [59] is used.
The CV convolution results are standardized to obey standard
complex distribution with mean 0 and covariance 1.

Weight initialization also has a crucial impact on the con-
vergence speed and performance of the network model. It can
reduce the risk of gradient explosion and gradient dispersion.
The CV weight initialization in [59] is also used in the pro-
posed L-CV-DeepLabv3+. The magnitude of a CV weight
obeys Rayleigh distribution, and the phase obeys the Uniform
distribution between —7 and 7.

III. DATASETS AND DATA PREPROCESSING

In this section, three fully PolSAR datasets (i.e., two
Flevoland datasets and one San Francisco dataset) used in veri-
fying the effectiveness of the proposed L-CV-DeepLabv3+- are
introduced. Then, the data preprocessing of these datasets is
presented. Finally, the mathematical formulas of four metrics for
evaluating segmentation performance of the proposed network
are given.

A. Datasets

The first L-band full polarimetric Flevoland dataset is ac-
quired by AIRSAR airborne platform in August 1989. There are
15 types of land covers, namely, stem beans, peas, forest, lucerne,
three types of wheat, beet, potatoes, bare soil, grass, rapeseed,
barley, water, and a small amount of buildings. The RGB image
with size 1024 x 750 obtained by Pauli decomposition is shown
in Fig. 4(a). The ground truth and the legend of ground truth

[ B:ckzround
1 Potatocs
[ 2 Fruit
. Outs
4 Bect
5 Barley
(I 6 Onions
17 Wheat
S Beans
9 Pess
10 Maize
11 Flax
(12 Rapeseed
113 Grass
-4 Luceme

@ (b)

Fig. 5. Flevoland dataset 2. (a) Pauli RGB. (b) Ground truth and the legend of
ground truth.

Fig. 6. San Francisco dataset. (a) Pauli RGB. (b) Ground truth and the legend
of ground truth.

which are generated by LabelMe toolkit are shown in Fig. 4(b),
where the white regions are regarded as the background.

The second L-band full polarimetric Flevoland dataset is
acquired by AIRSAR airborne platform in 1991. There are 14
types of land covers, namely, potatoes, fruit, oats, beet, barley,
onions, wheat, beans, peas, maize, flax, rapeseed, grass, and
lucerne. The RGB image with size 1024 x 1020 obtained by
Pauli decomposition is shown in Fig. 5(a), and the ground truth
and the legend of ground truth are shown in Fig. 5(b), where the
black regions are regarded as the background.

The third L-band full polarimetric San Francisco dataset is
acquired by AIRSAR airborne platform in 2008. There are
five types of land covers, namely, high-density urban, water,
vegetation, developed urban, and low-density urban. The RGB
image with size 1024 x 900 obtained by Pauli decomposition
is shown in Fig. 6(a), and the ground truth and the legend of
ground truth are shown in Fig. 6(b), where the black regions are
regarded as the background.

B. Data Preprocessing

The proposed L-CV-DeepLabv3+ allows its input to be CV,
so the CV input data is considered. For PoISAR datasets, in
monostatic mode, the backscattering coefficient Sy is equal
to Sy g according to the reciprocity theorem, where the sub-
scripts H and V represent the horizontal and vertical polarization
bases, respectively. Thus, the scattering vector obtained by Pauli
decomposition can be simplified, and then coherency matrix
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TABLE I
TRAIN AND TEST SET

Dataset Train Test
Flevoland dataset 1 1836 75
Flevoland dataset 2 2160 85

San Francisco dataset 3456 144

obtained from multilook data processing can be expressed by

Ty Tip T3
151 Tho Thg 9)
T31 T3 T33

where Tlly TQQ, T33 are RV, and T12, T13, ng are CV.

Because the coherency matrix T is a Hermitian
symmetric matrix, we choose the wupper triangular
{T11,T22,T33,T12,T13,To3} as the 6-channel input of
L-CV-DeepLabv3+.

In Section IV, five RV semantic segmentation networks are
used for comparisons. For these RV networks, the input data
must be RV. Thus, another 6-channel RV input data is calculated
as follows [24]:

T =

A = 10log;, (SPAN)
B = Ty, /SPAN

C = T33/SPAN

D = |Ti2| /V/Ti1 - Tao
E =Tl /v 153
F = |Ty3| //Tao - T33.

where SPAN = T11 + T22 + T33.

From (9) and (10), both the CV and RV inputs of the network
are derived from the matrixT. As a result, the following data
preprocessing is for the matrixT'. At first, two Flevoland datasets
and one San Francisco dataset are expanded in mirror mode
to be with size 1024 x 832, 1024 x 1024, and 1024 x 960,
respectively. Then three datasets are cut into many nonover-
lapping blocks with size 64 x 64 through the sliding window,
respectively. Subsequently, for each dataset, 40% of blocks are
randomly chosen as the training samples, and the remaining
60% are chosen as the testing samples. Finally, each dataset
is expanded by scaling and rotation. The numbers of training
and testing samples of three datasets are shown in Table I,
respectively. It is obvious that the number of training samples is
greatly increased after the data expansion.

(10)

C. Metrics

Four metrics are used in evaluating the segmentation per-
formance of the proposed network. They are intersection over
union (IOU), mean intersection over union (MIOU), overall
accuracy (OA), and mean pixel accuracy (MPA) [60]. IOU is
used to evaluate the segmentation performance of each class,
while other three metrics are used to evaluate the average
segmentation performance of all classes. Suppose there are N
classes in total. Denote P;;(z = 1,2,...... , N) as the number
of pixels of class i predicted to belong to class i, and denote
P (G=12 , IN) as the number of pixels predicted to
belong to class j. Then mathematical formulas of four metrics

.......

can be respectively written by

_ Pii
10U = ~ ~ (11)
> Pij + 2 Pji — Dii
j=0 j=0

MIOU = Ni - b (12)
=0 pr + Zpﬂ Pii
5
Pii
=0
0A = =% (13)
2 2 Dij
1=0 j5=0
N
B Dii
MPA = N+ : Z (14)

IV. EXPERIMENTAL RESULTS

In this section, the selection of structure and parameters
of the backbone network is analyzed at first. Then, semantic
segmentation experiments on three PolSAR datasets are im-
plemented. In order to verify the segmentation performance of
L-CV-DeepLabv3+, five classic RV networks (i.e., FCN [60],
U-Net [61], SegNet [62], PSPNet [63], and DeepLabv3+ [55])
are used for comparisons. Among these five networks, FCN-8s is
selected; softmax classifier is used in the multiclassification for
U-Net; ResNet50 is used as the backbone network of PSPNet;
and Xception is used as the backbone network of DeepLabv3+-.
The purpose of these options is to obtain good segmentation
results as much as possible.

A. Selection of Structure and Parameters of the
Backbone Network

The backbone network of the proposed L-CV-DeepLabv3-+
is shown in Fig. 2. It is obvious that the number of convolution
kernel channels in each layer of entry flow, middle flow and
exit flow is reduced to be about 1/2 or 1/4 of the original
DeepLabv3+. In order to clearly explain the influence of struc-
ture and parameters of the backbone network on segmentation
performance, experiments on the number of repetitions of the
middle flow structure are implemented firstly.

When the number of repetitions of the middle flow given in
Fig. 2(b) is changed from 2 to 16, and the other structure and
parameters shown in Fig. 2 are unchanged, the OA, MPA, and
MIOU obtained by L-CV-DeepLabv3+ for three datasets are
shownin Fig. 7(a)—(c), respectively. In Fig. 7(a), the OA is almost
unchanged with the number of repetitions, while the MPA and
MIOU are changed with the number of repetitions. When the
number of repetitions is 10, two metrics get the maximum. In
Fig. 7(b) and (c), the same conclusions as Fig. 7(a) can also be
obtained. As a result, we choose 10 as the number of repetitions
of the middle flow structure for three datasets. In addition, we
can also find that the OA is higher than the MPA and MIOU for
each dataset.
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TABLE II
COMPARISON OF SEGMENTATION PERFORMANCE (%)

Backbone networks Flevoland dataset 1 Flevoland dataset 2 San Francisco dataset
MIOU OA MPA MIOU OA MPA MIOU OA MPA
RV Xception 67.16 94.32 80.22 74.09 97.47 91.02 77.07 89.89 85.45
CV Xception 93.08 98.84 94.48 91.75 99.49 94.06 94.98 97.67 97.26
L-CV- Xception 95.52 99.05 97.74 96.31 99.7 98.07 97.07 98.66 98.38
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Then ablation experiments are also implemented on three
datasets to analyze the influence of structure and parameters of
the backbone network on segmentation performance. The orig-
inal RV Xception is chosen as the baseline. The CV Xception is
an extension of the original RV Xception in the complex domain.
Although its structure and parameters of CV Xception are the
same as the original RV Xcetption, they are CV. The proposed
L-CV-Xception is a lightweight CV Xception. The comparison
of segmentation performance obtained by these three networks
for three datasets is shown in Table II. It is obvious that the
MIOU, OA, and MPA obtained by CV Xception are higher than
those obtained by the original RV Xception. The MIOU, OA,

Segmentation results of Flevoland dataset 1. (a) FCN. (b) U-Net. (c) SegNet. (d) PSPNet. (e) DeepLabv3+. (f) L-CV-DeepLabv3+-.

and MPA obtained by L-CV-Xception are the highest among the
three networks.

B. Experiment on Flevoland Dataset 1

For Flevoland dataset 1, the semantic segmentation results
using five classical RV networks and the proposed CV network
are shown in Fig. 8(a)—(f), respectively. In these figures, there
are some regions in black circles or ellipses. For these regions,
segmentation results obtained by the proposed CV network are
better than those obtained by the other five RV networks. In
the region marked with number 1, grass is partially lost by



YU et al.: LIGHTWEIGHT COMPLEX-VALUED DEEPLABV3+ FOR SEMANTIC SEGMENTATION OF PolSAR IMAGE

937

TABLE III
SEGMENTATION PERFORMANCE OF FLEVOLAND DATASET 1 (%)

Networks FCN U-Net SegNet PSPNet DeepLabv3+ L-CV-DeepLabv3+
Stem beans 85.84 63.18 94.15 87.69 83.23 96.72
Peas 73.45 6.42 93.80 74.95 59.72 93.87
Forest 75.22 87.78 95.60 76.40 71.28 94.82
Lucerne 75.10 54.24 91.89 71.68 77.82 98.86
Wheatl 77.85 50.52 78.66 76.86 79.31 95.03
Beet 76.58 54.59 91.84 47.51 49.24 98.24
Potatoes 67.02 80.96 95.85 68.67 66.28 96.20
Bare soil 43.70 4.81 95.03 39.87 73.11 99.41
Grass 57.91 6.41 0.81 47.48 26.02 97.23
Rapeseed 43.15 40.02 58.03 38.52 44.46 91.40
Barley 97.44 39.19 80.93 91.26 83.90 99.98
Wheat2 46.85 22.03 51.82 35.06 51.80 89.80
Wheat3 86.40 59.36 84.64 70.58 71.50 97.62
Water 91.94 83.42 98.10 88.06 93.57 94.19
Building 55.19 78.22 67.32 63.00 47.16 85.65
MIOU 71.80 51.95 79.90 67.21 67.16 95.52
OA 93.36 93.31 97.76 94.85 94.32 99.05
MPA 82.12 63.76 85.37 76.74 80.22 97.74

FCN; misclassified as barley and wheat 3 by U-Net and SegNet;
partially misclassified as wheat 3 and beet by PSPNet; partially
misclassified as barley and wheat 3 by DeepLabv3+-. The seg-
mentation boundaries of grass obtained by five RV networks are
not clear enough. In the regions marked with number 2, rapeseed
is misclassified as beet, wheat 1, and wheat 2 by FCN and
PSPNet; misclassified as beet, wheat 1, and wheat 3 by U-Net;
partially misclassified as wheat 3 by SegNet; misclassified as
beet, wheat 1, wheat 2, and peas by DeepLabv3+. In the regions
marked with number 3, building is partially misclassified as for-
est by SegNet; partially lost by FCN, PSPNet, and DeepLabv3+-.
However, these regions are correctly classified by the proposed
L-CV-DeepLabv3+. There are two reasons. One reason is that
when the amplitude information of one class is similar to others,
these classes are difficult to be distinguished by their amplitude
information, but they can be distinguished by phase information.
The other reason is that the regions of some land covers in the
blocks are so small that it is difficult to extract their features by
using RV networks and RV input data without the help of phase
information.

Furthermore, the IOU of each class, MIOU, OA, and MPA
are, respectively, shown in Table III. It is obvious that the IOU
of grass is very low by using five RV networks. Except that the
10U of grass obtained by FCN is 57.91%, the IOU obtained by
any of the other four RV networks is less than 50%. However, the
IOU of grass obtained by the proposed L-CV-DeepLabv3+- can
achieve 97.23%. Besides, the IOU of rapeseed is also very low by
using five RV networks. Except for SegNet, the IOU of rapeseed
obtained by any of the other four RV networks is also less than
50%. But the IOU of rapeseed obtained by the proposed network
canreach 91.4%. Because the number of building samples is very
small and the structure of DeepLabv3+ is very deep, the IOU
of building obtained by DeepLabv3+ is less than 50%, while
the IOU of building obtained by the other four RV networks can
be in the range of 50% to 80%. Although the IOU of building
obtained by the proposed network can achieve 85.65%, it is
lower than that of any other land cover obtained by the same

2
3
T

Performance (%)
2

U-Net SegNet PSPNet DeepLabv3+ L-CV-DeepLabv3+

(IO I OA I MPA

Fig. 9. Segmentation performance of Flevoland dataset 1.

network because of the very small number of samples. All these
results are consistent with those shown in the black circles or
ellipses in Fig. 8. In addition, the MIOU, OA, and MPA obtained
by the proposed L-CV-DeepLabv3+ are more than 95%, and
they are much higher than those obtained by the other five RV
networks.

It is easy for a bar chart to display the differences of metrics
obtained by different networks. Therefore, the MIOU, OA, and
MPA listed in Table III are shown in Fig. 9. Obviously, for the
proposed L-CV-DeepLabv3+, the MIOU, OA, and MPA are
very high, and the difference between any two metrics is small.
However, for five RV networks, the OA is higher than 90%, the
MPA is in the range of 60-85%, and the MIOU is in the range of
50-80%. The MIOU and MPA are much smaller than the OA.
Furtherly, for each RV network, we can obtain the difference
between the OA and MIOU, and the difference between the OA
and MPA from Table III. These two differences obtained by
FCN are 21.56% and 11.24%, respectively. It means that two
differences are greater than 10%. The similar results can also be
obtained by other four RV networks. It can be explained by the
formulas of three metrics. According to (16) and (18), MIOU
and MPA are obtained by averaging the IOU and accuracy of all
classes, respectively. According to (17), OA is the ratio of the
total number of correctly classified pixels to the total number
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TABLE IV
COMPARISON OF CLASSIFICATION ACCURACY (%)

Networks | W-DBN[21] WCAE[34]  CV-CNNJ|25]

DMCNN [36]  3DDW-CNN[28] L-CV-Deeplabv3+

OA 97.57 9331 97.7

98.77 97.74 99.05

Fig. 10.

of pixels for all classes. Suppose there is such a class of land
cover, its total number of pixels is very small, and the number
of correctly classified pixels is much less than its total number
of pixels. Then, the IOU and accuracy of this class will be very
small, which leads to the small MIOU and MPA. But the small
number of pixels of this class has little impact on the OA. Take
the segmentation results obtained by SegNet for example. The
IOU of grass is only 0.81%. After the averaging operation of
all classes, the MIOU is 79.9%. However, the OA can reach
97.76%.

In addition, the OA obtained by the proposed network is also
compared with those obtained by some deep learning networks
used in the classification of land cover. The results obtained
by Wishart DBN (W-DBN) and local spatial information [21],
Wishart CAE (WCAE) [34], complex-valued CNN (CV-CNN)
[25], depthwise separable convolution based multitask CNN
(DMCNN) [36], and 3-D depthwise separable convolution based
CNN (3BDDW-CNN) [28] are shown in Table IV. It is obvious
that the proposed network can achieve the higher OA than other
networks.

C. Experiment on Flevoland Dataset 2

For Flevoland dataset 2, the semantic segmentation results
using five RV networks and the proposed CV network are shown
in Fig. 10(a)—(f), respectively. In these figures, for regions in
white circles or ellipses, segmentation results obtained by the
proposed CV network are better than those obtained by the other
five RV networks. In the region marked with number 1, beans

Segmentation results of Flevoland dataset 2. (a) FCN. (b) U-Net. (c) SegNet. (d) PSPNet. (e) DeepLabv3+-. (f) L-CV-DeepLabv3+.

are partially or completely misclassified by five RV networks.
In the region marked with number 2, onions are misclassified as
beet or beans by five RV networks. In the region marked with
number 3, maize is misclassified as beans, onions, or beet by five
RV networks. However, these regions are correctly classified by
the proposed L-CV-DeepLabv3+. The reason is the same as that
obtained from Flevoland dataset 1.

The IOU of each class, MIOU, OA, and MPA are, respectively,
shown in Table V. It is obvious that the IOU of onions obtained
by any of the five networks is much lower than that obtained
by the proposed network. A similar case holds for most of the
other land covers. Although the IOU of beans obtained by the
proposed network is larger than that obtained by the other five
RV networks, it is lower than the IOU of any other land cover
obtained by the same proposed network. The reason is also that
the sample number of beans is smaller than that of the other
land covers. All these results are consistent with those shown in
the white circles or ellipses in Fig. 10. In addition, the MIOU,
OA, and MPA obtained by the proposed L-CV-DeepLabv3+ are
more than 96%, which are much higher than those obtained by
the other five RV networks.

A bar chart is also used in representing the MIOU, OA,
and MPA listed in Table V, which is shown in Fig. 11. It is
easy to find that the proposed L-CV-DeepLabv3+ obtains the
highest MIOU, OA, and MPA among all these networks, and the
difference between any two metrics for this network is small.
However, for any of the other five RV networks, the MIOU and
MPA are much smaller than the OA. The difference between the
OA and MIOU, and the difference between the OA and MPA
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TABLE V
SEGMENTATION PERFORMANCE OF FLEVOLAND DATASET 2 (%)
Networks FCN U-Net SegNet PSPNet DeepLabv3+ L-CV-DeepLabv3+
Potatoes 79.69 86.73 96.47 76.66 80.83 98.35
Fruit 80.63 99.69 99.84 80.49 80.92 97.47
Oats 54.80 62.12 87.10 0.13 72.29 95.48
Beet 68.21 45.57 67.81 58.49 68.40 98.33
Barley 53.20 34.99 65.82 49.65 83.02 99.31
Onions 3542 34.42 5.47 22.45 35.69 90.26
Wheat 63.53 40.08 74.65 58.93 80.65 98.47
Beans 50.52 0.45 15.86 17.88 58.49 87.77
Peas 88.09 22.90 97.28 72.61 82.01 94.83
Maize 40.83 73.55 43.43 26.57 50.28 95.44
Flax 87.95 78.03 98.96 78.52 86.82 98.81
Rapeseed 85.59 87.50 96.47 83.07 87.31 99.28
Grass 60.62 69.21 58.56 53.65 71.00 96.27
Lucerne 73.64 78.21 88.74 67.79 75.76 94.97
MIOU 68.07 60.90 73.10 56.37 74.09 96.31
OA 96.92 96.59 97.83 96.55 97.47 99.70
MPA 80.47 71.44 80.28 65.40 91.02 98.07
TABLE VI
SEGMENTATION PERFORMANCE OF SAN FRANCISCO DATASET (%)
Networks FCN U-Net SegNet PSPNet DeepLabv3+ L-CV-DeepLabv3+
High-density urban | 80.82 73.83 66.72 82.76 73.26 96.00
Vegetation 82.16 74.21 80.37 84.24 80.39 94.91
Sea 96.86 90.12 96.28 97.80 97.86 99.10
Developed urban 63.99 70.24 66.49 78.21 68.09 96.53
Low-density urban 71.97 52.85 52.90 61.34 77.97 97.92
MIOU 7539 76.69 76.93 81.18 77.07 97.07
OA 89.57 90.15 91.23 93.57 89.89 98.66
MPA 84.24 86.64 88.07 87.85 85.45 98.38
oo =0 The reason is the same as that obtained from the previous two
9 1
“ datasets.
. The IOU of each class, MIOU, OA, and MPA are respectively
g® shown in Table VI. Unlike the results obtained from the previous
£ g . .
fa two datasets, the IOU of each class obtained from this dataset
= w0 by five RV networks is higher than 50%. The reason is that the
» number of training samples for each class is larger than those
10 .
0 = of the previous two datasets. Among all the land covers, the
FCN U-Net SegNet PSPNet DeepLabv3+  L-CV-DeepLabv3+

I MIOU [ 0A [TIMPA

Fig. 11.  Segmentation performance of Flevoland dataset 2.

are very large. The reason is the same as that obtained from
Flevoland dataset 1.

D. Experimental Results on San Francisco Dataset

For San Francisco dataset, the semantic segmentation results
using five RV networks and the proposed CV network are shown
in Fig. 12(a)—(f) respectively. There are some regions in white
circles in these figures. In the region marked with number 1,
low-density urban is partially or completely misclassified as
vegetation or high-density urban by five RV networks. In the
region marked with number 2, high-density urban is partially
misclassified as vegetation, and developed urban is partially
misclassified as high-density urban. However, these regions
are correctly classified by the proposed L-CV-DeepLabv3+-.

low-density urban is with poor segmentation performance by
using five RV networks, which is consistent with those shown in
white circles in Fig. 12. In addition, the MIOU, OA, and MPA
obtained by the proposed network are more than 97%, which are
much higher than those obtained by the other five RV networks.

A bar chart is also used in representing the MIOU, OA, and
MPA listed in Table VI, which is shown in Fig. 13. The same
conclusions as those obtained from the previous two datasets are
still valid.

E. Discussion on Three Datasets

In the above experiments, the test loss curves obtained by the
proposed L-CV-DeepLabv3+ for three datasets are shown in
Fig. 14. They are all convergent, which verifies the effectiveness
of the proposed network.

From the above experimental results about three datasets,
we can find some similarities among them. The similarities
include that the proposed L-CV-DeepLabv3+ can obtain the
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Fig. 13.  Segmentation performance of San Francisco dataset.
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Fig. 14.  Test loss curves obtained by L-CV-DeepLabv3+ for three datasets.

best segmentation performance among all the networks, and the
OA is larger than the MIOU and MPA for each network. At the
same time, there is one difference between the results of San
Francisco dataset and two Flevoland datasets. The MIOU and
MPA obtained by five RV networks from San Francisco dataset
are higher than those from two Flevoland datasets in general.
Besides, among all the RV networks, the network which can
obtain the best segmentation performance is also different for
three datasets. Based on these similarities and differences, we
can draw some conclusions as follows.

Segmentation results of San Francisco dataset. (a) FCN. (b) U-Net. (c) SegNet. (d) PSPNet. (e) DeepLabv3+-. (f) L-CV-DeepLabv3+-.

1) The phase information of input data plays a very important
role in the semantic segmentation of PolSAR images,
which can greatly improve the segmentation performance.

2) The design of the structure and parameters of networks
should be combined with the size of datasets. For some
small datasets, deep networks may not achieve good seg-
mentation results.

3) Generally, the more samples the dataset has, the better the
segmentation performance is.

4) Ifthereis one class with a small number of samples and the
segmentation performance is poor by using one network,
then the OA obtained by this network is always higher
than the MIOU and MPA.

V. CONCLUSION

Alightweight L-CV-DeepLabv3+- was proposed for semantic
segmentation of POISAR image in this article. The structures of
backbone network, CV-ASPP, and decoder were presented in
detail. They were simplified based on the original DeepLabv3+-,
and all the operations involved in L-CV-DeepLabv3+ were
mathematically strict. Since the proposed network was CV,
the CV input data was also introduced. In addition, consider-
ing that three PolSAR datasets are very small, the data pre-
processing including data expansion was also given. Finally,
semantic segmentation experiments were implemented on three
PolSAR datasets. Experimental results about the selection of
structure and parameters of the backbone network show that the
appropriate structure and parameters can effectively improve
the segmentation performance. Experimental results about the
semantic segmentation of three datasets show that the proposed
lightweight network can avoid overfitting, and the phase infor-
mation of PolSAR data can be very helpful in improving the
segmentation performance. Because the structure and parame-
ters of the proposed network are obtained by some experiments,
it takes much time and may not achieve the best segmentation
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performance. In future, we will use the searching strategy to
obtain the optimal structure and parameters of the CV network.
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