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Pseudo Quad-Pol Simulation From Compact
Polarimetric SAR Data via a Complex-Valued
Dual-Branch Convolutional Neural Network

Fan Zhang
Qiang Yin

Abstract—Compact polarimetry (CP) has attracted much at-
tention in recent years due to its hybrid dual-polarization imag-
ing mode. CP synthetic aperture radar has a larger swath and
can provide more polarimetric information compared with the
traditional dual-polarization imaging mode (HH/HV or VH/VYV).
Pseudo quad-polarimetric (quad-pol) data reconstruction is an
important technology in the application of CP data. The goal of
pseudo quad-pol data reconstruction from CP data is to change the
form of CP data to the form of quad-pol data without increasing
any new information. In this article, a new pseudo quad-pol data
reconstruction method from the CP data is proposed. This method
combines a complex-valued dual-branch convolutional neural net-
work (CV-DBCNN) to achieve the reconstruction of the pseudo
quad-pol data. It utilizes complex-valued convolutional layers and a
complex-valued activation function to fully extract the polarimetric
information embedded in the complex-valued CP data. For the
CV-DBCNN, the branch with 1x1 kernel size is used to nonlin-
early and self-adaptively combine the channel of input data, and
the branch with 33 Kkernel size is used to extract the discrimi-
native regional polarimetric features. Furthermore, polarimetric
decomposition is utilized to evaluate the scattering mechanisms
of the pseudo quad-pol data. Three state-of-the-art methods are
utilized for comparison. In comparison with other methods, our
proposed reconstruction method based on the CV-DBCNN shows
its superiority in terms of the pseudo quad-pol data reconstruction
and scattering mechanism preservation.

Index Terms—Compact polarimetry (CP), complex-valued
dual-branch convolutional neural network (CV-DBCNN),
deep learning, pseudo quad-polarization (quad-pol) data
reconstruction, synthetic aperture radar (SAR).

Manuscript received July 22, 2021; revised September 2, 2021 and November
27,2021; accepted December 17, 2021. Date of publication December 31, 2021;
date of current version January 13, 2022. This work was supported in part
by the National Natural Science Foundation of China under Grants 61871413,
61801015, and 41801236 and in part by the Fundamental Research Funds for
the Central Universities under Grant buctrc202121. (Corresponding author:
Deliang Xiang.)

Fan Zhang is with the College of Information Science and Technology
and the Interdisciplinary Research Center for Artificial Intelligence, Bei-
jing University of Chemical Technology, Beijing 100029, China (e-mail:
zhangf@mail.buct.edu.cn).

Zhuoyue Cao, Canbin Hu, Fei Ma, Qiang Yin, and Yongsheng Zhou
are with the College of Information Science and Technology, Bei-
jing University of Chemical Technology, Beijing 100029, China (e-
mail: 2019200797 @mail.buct.edu.cn; canbinhu@ 163.com; mafei @mail.buct.
edu.cn; ying@mail.buct.edu.cn; zhyosh@mail.buct.edu.cn).

Deliang Xiang is with the Beijing Advanced Innovation Center for Soft Matter
Science and Engineering and the Interdisciplinary Research Center for Artificial
Intelligence, Beijing University of Chemical Technology, Beijing 100029, China
(e-mail: xiangdeliang @ gmail.com).

Digital Object Identifier 10.1109/JSTARS.2021.3138781

, Senior Member, IEEE, Zhuoyue Cao, Deliang Xiang
, Member, IEEE, and Yongsheng Zhou

, Canbin Hu, Fei Ma ",
, Member, IEEE

1. INTRODUCTION

S ONE kind of imaging radar technology, synthetic

aperture radar (SAR) can obtain the land-cover images
under all-time and all-weather conditions. Among them,
quad-polarimetric (quad-pol) SAR provides multichannel
polarimetric information, which can extract the polarimetric
features of different land covers [1]. In 2005, a concept of
polarimetric imaging, commonly known as compact polarimetry
(CP), was proposed [2]. The quad-pol system needs to alternately
transmit horizontal (H) and vertical (V) linearly polarizations,
while CP only needs to transmit one polarization. Both systems
receive backscatter in two orthogonal polarizations.

Compared with the quad-pol system, the CP system has lower
system complexity, so that it has larger swath coverage with
fewer downloading data and lower budget requirements. Com-
pared with the traditional dual-polarization (dual-pol) system,
the CP system can store the phase of echo signal, leading to a
more flexible signal combination. Therefore, it can obtain more
comprehensive polarimetric information [3], [4]. In addition, the
CP system has the advantages of providing large imaging strip
compared with the dual-pol system, which has great potential in
large-scale region monitoring.

Until now, three CP modes have been proposed, namely the
/4 mode, the dual circular polarimetric (DCP) mode, and the
hybrid polarimetric (HP) mode. The 7/4 mode transmits 45°
linear polarization and receives H and V linear polarizations [2].
The DCP mode transmits left-handed or right-handed circu-
larly polarization and receives left-handed and right-handed
circularly polarizations [5]. The HP mode, which transmits
left-handed or right-handed circularly polarization and receives
H and V linear polarizations, is also called the circular transmit
and linear receive [3]. CP SAR has achieved remarkable achieve-
ments in some applications [6]—-[11]. Ohki and Shimada [12]
used quad-pol, CP, and dual-pol data for land-use and land-cover
classification. The results indicate that the CP SAR and the dual-
pol SAR have the advantages of large-scale coverage and com-
pactdata volume. Nevertheless, the classification performance is
slightly worse than that of the quad-pol SAR. Shirvany et al. [13]
proposed a classification technique based on a neural network
for CP data with the HP mode and explored the potential of real
CP data for the sea ice classification. Yang et al. [14] extracted
149-D features from time-series optical data, quad-pol data, and
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simulated CP data and then used a multiclass correlation vector
machine to implement the phenological phase classification of
the transplanted indica rice field and direct-sown japonica rice
field. Nunziata et al. [15] evaluated the ability of CP data with
the HP mode in distinguishing oil slicks from weak-damping
look-alikes and proved that CP SAR data with the HP mode
have remarkable performance in this task.

The processing method of CP data can be divided into two
categories. One is directly extracting the information of CP
data to describe the polarimetric scattering characteristics of
objects [16]-[19]. Charbonneau et al. [16] proposed a three-
component decomposition method for CP data, namely, m-0
decomposition, and further evaluated the potential of the CP
system for operational use. Raney et al. [17] proposed m-x
decomposition to describe the double-bounce scattering effect
of craters on the lunar surface. However, both m-0 decompo-
sition and m-y decomposition have the disadvantage on over-
estimation of volume scattering. Han et al. [18] applied the
Freeman—Durden decomposition method [19] to the CP data,
but the problem of volume scattering overestimation still exists.
Another one is to simulate the coherence matrix or the covariance
matrix of quad-pol data from the CP data, i.e., reconstruct the
pseudo quad-pol data with some assumptions. In this article,
we also regard the simulation as reconstruction. In this way, we
can directly apply the traditional quad-pol data processing and
application algorithms to the CP data. Therefore, quad-pol data
reconstruction from CP data is a prospective research direction.
However, there still exist some challenges in this research field.

In the quad-pol data reconstruction, the common difficulty
is that CP SAR only measures two channels of information,
whereas quad-pol SAR measures four channels of information.
Although we can turn the quad-pol data into three channels by
assuming scattering reciprocity, the expansion from the 2x2
CP covariance matrix to the 3x3 pseudo quad-pol covari-
ance matrix still requires extra assumptions. In 2005, Souyris
et al. [2] first proposed the CP concept of the 7/4 mode and
designed the reconstruction model with a constant N, which
means the relationship between the ratio of the cross-pol in-
tensity to the mean of the co-pol intensity and the copolarized
coherence. This method is suitable for the areas dominated by
volume scattering, but not suitable for regions dominated by
surface or double-bounce scattering. Nord et al. [20] found that
the Souyris’s method oversimplified the complexity of natural
media by simply setting the value of N as 4 and proposed a
reconstruction method, where the relationship between co-pol
coherence and the ratio of cross-pol intensity to the mean of the
co-pol intensity is corrected based on the statistics. However,
the relationship may not be fine in some areas, such as the
sea surface and sea ice areas [21]-[23]. The parameter N is
generated after several iterations, which will increase the com-
putational complexity. Therefore, many scholars have proposed
a series of pseudo quad-pol reconstruction methods for various
applications in different specific regions. Collins et al. [21]
improved the Nord’s method and proposed a reconstruction
method for ocean scenes, which can be used to detect ships and
icebergs in the ocean. Li et al. [22] proposed a reconstruction
method for oil spill detection on sea surface. Espeseth et al. [23]

proposed two reconstruction methods for sea ice with C'- and
L-band SAR, respectively. However, for the reason that some
assumptions are only approximately effective in some specific
cases, these methods can only achieve ideal results in some
specific areas. Yue et al. [24] developed a Wishart—Bayesian
optimization model based on the complex Wishart distribution
of the quad-pol covariance matrix. However, the reconstruction
effect heavily depends on the prior knowledge obtained by
averaging the quad-pol images of the target region, which is
difficult to achieve in practical applications. Yin et al. [25]
proposed a reconstruction method based on the three-component
decomposition [19], [26]. The cross-polarization term is solved
by an iterative method. Based on the reconstruction method
of [25], Yin et al. [27] further proposed the least-squares (LS)
estimator to more accurate reconstruct quad-pol data from CP
data, but it requires a local minimum for each pixel, resulting in
more computation cost than the iterative algorithm. Besides, the
LS estimator reduces the resolution of CP data due to the local
window averaging, and the high cost of time and computing
also limit the application of the LS estimator. In recent years,
deep learning algorithms represented by the convolution neural
networks (CNNs) have achieved great success in the field of
SAR image processing, such as image classification [28]-[30],
target detection [31]-[34], and image segmentation [35]-[37].
Research on the application of deep learning algorithms in quad-
pol data reconstruction is ongoing. Song et al. [38] proposed
a quad-pol data reconstruction method based on a pretrained
neural network from single-pol images. Gu et al. [39] proposed
afully convolutional network named the quad-pol reconstruction
fully convolutional network (QPRFCN) to reconstruct quad-pol
data from CP data and improved the reconstruction effect com-
pared with other traditional methods. The biggest advantage of
using the deep neural network for the pseudo quad-pol data
reconstruction is that the pseudo quad-pol data can be directly
reconstructed from CP data with the neural network without
introducing any artificial assumptions [2], [25], [27]. However,
the polarimetric features embedded in the CP data could not be
fully extracted, and the accuracy and generalization ability of
QPREFCN in pseudo quad-pol data reconstruction needs to be
further improved.

The phase information of SAR data is very important. For
quad-pol data, the phase information of the off-diagonal terms
of the covariance or coherence matrix is useful in distinguishing
different types of scatterers. Therefore, it is necessary to de-
velop a complex version of the convolutional neural network to
fully extract the polarimetric information of the complex-valued
quad-pol data. Hirose [40] first applied the complex-valued
convolutional neural network (CV-CNN) to the land-surface
classification [40]. Zhang et al. [41] applied the CV-CNN to
the quad-pol SAR image classification task.

Similar to the quad-pol data, the CP data also have phase infor-
mation. For the traditional CP data reconstruction methods [2],
[25], [27], the phase information of the off-diagonal term of the
CP covariance matrix is indispensable. However, the CV-CNN
has not been used to reconstruct pseudo quad-pol data from
CP data. Therefore, in this study, we propose a complex-valued
dual-branch convolutional neural network (CV-DBCNN) for
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pseudo quad-pol data reconstruction from CP data. In particular,
we use a branch with 1x 1 kernel size to nonlinearly combine
the channels from the input data, resulting in nonlinear com-
bination relationships of the channels from the input CP data.
Furthermore, we use a branch with 3x3 kernel size to extract
the discriminative regional polarimetric features. With the com-
bination of the branch with 1x1 kernel size and the branch
with 3x3 kernel size, we can find the mapping relationship
between the CP data and the pseudo quad-pol data. Moreover, we
verify the functions of the two branches of the CV-DBCNN by
comparing the reconstruction effect of a single-branch network
with the 3 x 3 kernel size convolutional network and the proposed
CV-DBCNN. Note that during the reconstruction process, we
only change the form of the CP data to the form of quad-pol
data without increasing any new polarimetric information, which
can make the CP data be directly processed with the existing
approaches designed for the quad-pol data. Three state-of-the-art
methods are utilized for comparison. The QPRFCN and the LS
estimator are two selected methods. In addition, the degree of
polarization (DoP) method proposed by Espeseth et al. [23]
is also utilized in the experiment. Experiments on three CP
datasets with different sensors demonstrate the effectiveness of
the proposed method. The main contributions of this article are
shown as follows.

1) Anovel pseudo quad-pol simulation method from CP data
based on a CV-DBCNN is proposed.

2) The complex-valued convolution and the complex-valued
activation function are used to fully extract the polari-
metric features for the first time. Three state-of-the-art
methods are conducted for comparison on three quad-pol
images acquired by different sensors.

The rest of this article is organized as follows. Section II
introduces the network structure of our proposed method. The
descriptions of the datasets are given in Section III. Section IV
shows experimental results and comparisons. Finally, Section V
concludes this article.

II. METHODOLOGY

This section gives the information of the inputs for the re-
construction of pseudo quad-pol data. Then, the structure of our
proposed CV-DBCNN is discussed, followed by the analysis of
its advantages.

A. Preparation of the Input Data

The goal of pseudo quad-pol data reconstruction from CP data
is to estimate a pseudo quad-pol covariance matrix Cpgeugo from
a CP covariance matrix with the 7/4 mode C'p. Until now, the
ALOS-2, Canadian RCM [42], RISAT-1, and SAOCOM SAR
satellites have been equipped with CP SAR imaging systems. In
specific, the ALOS-2 satellite is equipped with several acquisi-
tion modes, such as dual-pol, quad-pol, and CP, for experimental
purpose, and the data of the RCM satellite are not open source.
In addition, no satellite system operates in the 7/4 mode for earth
observation purpose. Therefore, the 7/4 mode CP data used in
this article can only be simulated from the quad-pol data.

The polarimetric covariance matrices for the real quad-pol
data and the 7/4 mode CP data are given by (1) and (2),
respectively:

<|Shh‘2> \/§<Shhsﬁv> <ShhS¢V>
qu-real = \/§<Shvsﬁh> 2 <|Shv|2> \@<Sh\,5$v> ()
(Swia)  V2{SwSiy)  (ISwl*)
Jir Ji2
Cc - *
P {le J2J
1 1Sun|®) (SunSiy) 11
(1) A | (ISl [1 1]
2| | (SwSin) (19
+{ 2Re (SunSh,) <Shh5ﬁv>+<5hv53v>]} @)
<ShVS}*1h> + <SVVS}*1V> 2R€ <SVVSI*IV>

where S is the complex backscattering element. The subscript hv
demotes the horizontal polarization & in reception and vertical
polarization v in transmission. The variables .J are the elements
of the 2 x 2 CP covariance matrix with the 7/4 mode. (< ) >
denotes the ensemble averaging and superscript * denotes com-
plex conjugation. The real and imaginary parts of a complex
number z are denoted by Re(z) and Im(z), respectively.

Chseudo =
20 = (ISwl®) 0 20h) = (ISwl?)
0 ‘ 2<\Shv|2>, 0

200 = (ISwl), 0 20— (ISul?),

C

3)
According to (1) and (2), we can simulate CP data from
the real quad-pol data [2], [24], [39]. Note that the window
size used here is set as 3 x 3, which is commonly used as
the calculation of the sample polarimetric covariance/coherency
matrix. A larger window size would decrease the simulated CP
data resolution. In this article, we focus on the pseudo quad-pol
data reconstruction from the simulated CP data and then evaluate
the performance in comparison with the real quad-pol data. It
should be noted that during the reconstruction, we only change
the form of the CP data to the form of quad-pol data, which is
beneficial to the CP data interpretation with the existing algo-
rithms designed for quad-pol data. However, it is impossible to
reconstruct the complete quad-pol information from the CP data
without introducing any new polarimetric information. From (1)
and (2), it can be seen that the cross-polarized term (|Spv|?)
is the most important and difficult part to be reconstructed
because of the weaker intensity of the return signal and the lower
signal-to-noise ratio of the cross-polarized term than the other
terms [39]. After reconstructing the cross-polarization channel,
we still cannot reconstruct the full quad-pol covariance matrix
because the knowns are fewer than the unknowns. Therefore, we
introduce a constraint to reduce the difficulty of reconstruction
and the uncertainty in the reconstruction process.
The reflection symmetry is generally used in the equation
solution of polarimetric decomposition, which can simplify the
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polarimetric covariance matrix [2], [39]. The reflection symme-
try is shown as

<Shhsﬁv> ~ <SVVS£§V> ~ 0. (4)

With the reflection symmetry, we can simplify the real quad-
pol covariance matrix and then derive the polarimetric covari-
ance matrix of pseudo quad-pol data as (3), where <|SHV|2>C
represents the reconstructed cross-polarized term. It can be
seen that after the reconstruction of the cross-polarized term,
we can simply reconstruct the pseudo quad-pol polarimetric
covariance matrix by some linear additions, which is consistent
with the previously proposed methods [2], [25], [27], [39]. As
the quad-pol data has more polarimetric information than the
CP data, new information must be introduced to achieve the
reconstruction from CP data to quad-pol data. However, our
object is to change the form of CP data to the form of quad-pol
data without increasing any new information; therefore, we must
introduce reflection symmetry to achieve our goal, for which
the reflection symmetry will be the key to complement the
information. Thus, the method proposed in this article is suitable
for the areas satisfying reflection symmetry.

The polarimetric covariance matrix elements of CP data are
utilized to generate the input to our proposed reconstruction
network. We expand the covariance matrix of each pixel of the
input CP data to a 4-D input vector, which can be defined as

Ty p = [Ji1, Jog, Mod (J12) , Ji2] " . ®)

On the basis of (2), the 4-D input vector can also be rewritten
as

[(19l”) + (1ol ) + 2Re (SunSf,)
(IS0al*) + (ISnol*) +2Re (S1055,)

Mod ((Shhsf,v> + <|Shv|2> +> . (6)
<ShhS;1)> + <Sh’USz'U>

<ShhSz'U> + <|Shv|2> +
<Shhs;;v> + <Sh?)S;j1)>

It can be observed that the elements of the input vector and the
elements in the CP covariance matrix are one-to-one mappings.
Considering that the module of Ji5 is often used to generate
intermediate features in experience-based reconstruction meth-
ods, the module of J;2 is put in the input vector as an isolated
channel. Fig. 1 shows the generation of the input vector for the
pseudo quad-pol data construction.

1
Typ=35

B. Complex-Valued Dual-Branch Convolutional
Neural Network

To reconstruct the pseudo quad-pol data from CP data, we
propose a CV-DBCNN in this article. Since J;5 is complex, we
use the complex convolutional layers and the complex activation
function to make the neural network extract the amplitude and
phase information of J12. The complex convolutional is calcu-
lated as [41]

O§z+1) —f (% (Vi(lﬂ))) Yif (S (V}(Hl))) 7

Re(42)

Fig. 1. 4-D input data for the pseudo quad-pol data construction.

v D

wgiﬂ) . O;(cl) n bgzﬂ)

F30 (R (ul) -3 (o)

+5 (wl ) - (0)) + oY ®)

where character * represents the convolution operation, and
and S represent the real part and the imaginary part of a complex

number, respectively. O,(cl) means the kth output feature map of

the [th layer. Vi(lﬂ) represents the ¢th output feature map of the
(I + )th convolutional layer. f(-) means the activation function.
The complex-valued activation function used in this article is
defined as

f(z) = LeakyReLU(®(z)) + i LeakyReLU(SJ(2)).  (9)

When performing complex-valued convolution, both the real
and imaginary parts of the complex data are input into one
complex-valued convolutional layer together. In order to keep
the form of the elements in the 4-D input vector consistent, we
change the real number elements to a complex number form, by
keeping the real part unchanged and setting the imaginary part
to zero. With the complex value convolutional layers and the
complex value activation function, the CV-DBCNN can extract
complex polarimetric information. In contrast, the QPRFCN
proposed by Gu et al. [39] utilized real-valued convolutional
layers and the activation function, which cannot maintain the
phase information of the CP complex data.

Fig. 2 gives the architecture of our proposed network. Specif-
ically, the CV-DBCNN contains eight 3 x3 convolutional layers
and three 1x1 convolutional layers with the activation func-
tion and the last one convolutional layer without the activation
function. There are two branches within the network. The first
branch with 33 kernel size, namely, the regional polarimetric
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feature extraction branch, is composed of cascaded four 3x3
convolutional layers, which are used to extract discriminative
regional polarimetric features. The other branch with 1 x 1 kernel
size, namely, the self-adaptive channel combination branch, is
used to nonlinearly and self-adaptively combine the channels of
the input data. Thanks to the utilization of 1 x 1 convolutional
branch, the CV-DBCNN is more lightweight than the QPRFCN.
A lightweight network is easier to converge and can effectively
prevent overfitting with limited training data [43].

Because the QPRFCN [39] does not consider the retention of
phase information and the adaptive combination between chan-
nels of the input data, its network generalization performance is
limited. The QPRFCN directly stacks and shortcuts multiple
3 X 3 convolution layers, which leads to a larger receptive
field. Thus, it will make one pixel in the reconstructed data to
be influenced by its surrounding area, resulting in the recon-
struction result deviating from the real quad-pol data seriously.
Experimental results in Sections IV and V confirm that the
reconstruction effect of the QPRFCN seriously deviates from
the real quad-pol data, and the Pauli-basis images reconstructed
by the QPRFCN shows discontinuities between adjacent blocks.
Due to the limited video memory size of the equipment we use,
we have to split the original image into multiple small patches
(512x512) for reconstruction and then stitch them into a whole
image. When the block size is small, the reconstruction results
of the QPRFCN have serious discontinuities between adjacent
blocks, indicating that the reconstruction results of the QPRFCN
are very unstable.

The CV-DBCNN uses a 1x1 branch, which increases the
number of learnable parameters in the network without in-
creasing the receptive field. Obviously, this strategy helps to

64 4 257
concat

Network structure for pseudo quad-pol data reconstruction from CP data.

channels adaptive combination branch

obtain more accurate reconstruction results. By combining the
branch with 3x3 kernel size and the branch with 1x1 kernel
size together, the dual-branch convolutional network will learn
the regional polarimetric features of the training data. In the
meantime, the nonlinear combination relationships between the
channels of the input CP data will be generated. To make a
further evaluation, we remove the branch with 1x1 Kkernel size
in the CV-DBCNN and compare the reconstruction effect of this
single-branch convolutional network with that of the original
CV-DBCNN. This is to verify whether combining the branch
with 3x3 kernel size and the branch with 1x1 kernel size
together could achieve better reconstruction results than the
network with only a branch with 3x3 kernel size. The training
data and the training strategies of the two networks are the same.
The detailed comparisons are shown in Section IV.

C. Loss Function

Because the pseudo quad-pol data reconstruction from CP
data is a regression problem, the mean absolute error (MSE)
between the real quad-pol data and the output of the network
can be used as the loss function.

The loss function is given by

L =MSE(f) = —— (Ty(I) = Y)? (10)

where 6 represents the weights of the proposed neuron network.
Y is the real quad-pol covariance matrix term. Ty([) is the
output of the reconstructed network and [ is the input data
of the network. W and H denote the 2-D spatial index. The
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Algorithm 1: Quad-Pol Data Reconstruction Algorithm of
the CV-DBCNN.
Input‘ J11 J12 .]22
Output: Reconstructed quad-pol data Cpseudo
1: Calculate the Mod(Jy2) and generate the 4-D input
vector.
2:  Change the Jq1Joo and Mod(J12) into the plural form.
3:  Feed the input data into the CV-DBCNN.
4: Obtain the reconstructed cross-polarized term
{|Suv|? ), with the proposed network.
5:  According to (3), reconstruct the pseudo covariance
matrix Cpseudo-
6: return the Cpgeudo

TABLE I
INFORMATION OF THE QUAD-POL DATASETS

Sensor Region Resolution  Size Band

GF-3 Hulunbeier  3m 3267x3580 C
Grassland

ESAR Munich 3m 1295x 1896 L

UAVSAR  Kumamoto 5m 1297 %2478 L

Adam optimization algorithm is used to update the weights of
the network.

It is worth pointing out that the CV-DBCNN learns the
reconstruction process from the CP data to pseudo quad-pol data
without increasing any new polarimetric information. Therefore,
it is impossible to reconstruct the complete full polarization
information from the CP data for the reason that it does not
conform to the principle of energy conservation. As we stated
before, the main work of our proposed method is how to
convert the CP data form into the quad-pol data form with
some certain assumptions. Since the reconstructing of quad-pol
data from CP data is essentially an ill-posed problem, there
is no definite and unique solution for the pseudo quad-pol
reconstruction. However, in comparison with the state-of-the-art
methods, our proposed method can achieve the best results
in all indicators, which is closer to the real quad-pol data.
Algorithm 1 gives the brief pseudo quad-pol data reconstruction
procedure.

III. DESCRIPTION OF THE EXPERIMENTAL DATASETS

All the data used in this article are the simulated CP data with
the 7/4 mode from quad-pol data. We choose three quad-pol
datasets, and the corresponding information is listed in Table I.
The dataset from the Hulunbeier Grassland region is acquired
by the GF-3 C-band sensor. The size is 3267x3580 and the
resolution is about 3 m. This image consists of three land-cover
types, namely, mountains, forests, and agriculture areas. The
dataset from Munich region (ESAR) is an L-band dataset, for
which the size is 1295x1896 and the resolution is about 3 m.
These data consist of two land-cover types, including agriculture
and urban areas. The dataset from the Kumamoto region is the
L-band UAVSAR dataset. The image size is 1325 %2478 and the

Azimuth ——

ground range ———

Fig.3. Pauli-basisimage of GF-3 quad-pol data, Hulunbeier Grassland region.
Area A belongs to the agriculture area. The red, green, and blue channels of the
Pauli-basis image represent the double-bounce scattering, volume scattering,
and single-bounce scattering of quad-pol data, respectively.

Azimuth ——

o3uel punoid

Fig. 4. Pauli-basis image of ESAR data, Munich region. Area A belongs to
forest area. The red, green, and blue channels of the Pauli-basis image represent
the double-bounce scattering, volume scattering, and single-bounce scattering
of quad-pol data, respectively.

resolution is about 5 m. The UAVSAR data consist of three land-
cover types, namely, water bodies, agriculture, and urban areas.
Details of the training and testing datasets are listed in Table IT. It
can be seen that we use 2.13% of the UAVSAR data for network
training; 97.87% of the image is used for testing. The size of
the testing UAVSAR image is 1297 x2478. To demonstrate the
generality of the proposed method, the whole GF-3 and ESAR
datasets are used for testing.

Figs. 3— 5 depict the Pauli-basis images of three real quad-pol
datasets. We select three different regions from the testing data,
which belong to three different terrain types, namely, the water
body, the forest, and the farm land, to analyze the reconstruction
results. The Pauli-basis image of the original quad-pol GF-3
data is shown in Fig. 3. Area A belongs to agriculture area.
The Pauli-basis image of the original quad-pol ESAR testing
data is shown in Fig. 4, in which area A belongs to forest area.
The Pauli-basis image of the original real quad-pol UAVSAR
data is shown in Fig. 5, in which area A belongs to water
area.



ZHANG et al.: PSEUDO QUAD-POL SIMULATION FROM COMPACT POLARIMETRIC SAR DATA VIA A CV-DBCNN 907

TABLE II
PROPORTIONS OF DATASETS USED FOR TRAINING AND TESTING

Data Traing Testing Traing Testing
(number of pixels) (number of pixels) (propotion) (propotion)
UAVSAR (Kumamoto) 69968 3213966 2.13% 97.87%
ESAR (Munich) 0.00 2455320 0.00% 100%
GF-3 (Hulunbeier Grassland) 0.00 11695860 0.00% 100%

Azimuth

ground range

Fig.5. Pauli-basis image of UAVSAR quad-pol data, Kumamoto region. Area
A belongs to the water area. The red, green, and blue channels of the Pauli-basis
image represent the double-bounce scattering, volume scattering, and single-
bounce scattering of quad-pol data, respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Parameter Settings

In the CV-DBCNN, the weights of the convolutional filters are
initialized by the Kaiming initialization. The proposed network
uses a 12-layer convolutional structure, in which the previous 11
layers are the convolutional layers with the activation function
and the last layer is a convolutional layer. The learning rate is
initialized to 0.001 for the whole network, which is fixed. In the
network training stage, the maximum number of iterations is set
to 1000. The Adam algorithm is used for weight optimization
of the network. We use the PyTorch framework to train the
proposed method with the Windows 10 environment, 16-GB
RAM, a NVIDIA GeForce RTX 2070 GPU, and Intel CORE
i5-8500 CPU.

B. Quantitative Error Indicators

In order to quantitatively compare the reconstruction per-
formance of the LS estimator [27], the QPRFCN [39], and
our proposed CV-DBCNN, we introduce a series of evaluation
indicators.

The MAE is introduced as a quantitative evaluation indicator,
which is used to measure the absolute error between the recon-
structed cross-polarized term and the real cross-polarized term
of the quad-pol polarimetric covariance matrix. The smaller the
MAE, the better the reconstruction performance. Because the
values of the MAE are related to the numerical range of the
cross-polarized term, we normalize the cross-polarized term to
[0-1] for error analysis. In addition, we introduce the coherence
index (COI) as a quantitative indicator to measure the similarity
between the reconstructed cross-polarized term and the real

cross-polarized term, as follows:

COI(A, B) = iz (aib)

Vi (@iag) - 307 (bibs)
where A = [ay, as, . .., a;,] represents the results of real cross-
polarized term, B = [a1, asg, . .., ay,] represents the results of
reconstructed cross-polarized term, and m is the total number
of pixels. The value range of the COI is [0, 1]. The larger the
COl, the better the reconstruction performance.

(11)

C. Comparison Between the Single-Branch Network and the
CV-DBCNN

The advantage of combining the branch with 3 x3 kernel size
and the branch with 1x1 kernel size together is fully discussed
in Section II-B. To demonstrate this issue, we conduct an exper-
iment to compare the reconstruction results of the CV-DBCNN
and a single-branch with 3 x 3 kernel size convolutional network.
Fig. 6 gives the reconstructed Pauli-basis images of the ESAR
data with the single-branch network and CV-DBCNN approach.
As shown in Fig. 6(b) and (c), the reconstruction result of the
single-branch with the 3 x3 kernel size convolutional network
shows an obvious overestimation of the volume scattering, as
well as a lot of noise generated in the forest area. In contrast, the
result of the CV-DBCNN is more closer to the original quad-pol
data. The reason is that the CV-DBCNN can extract the regional
polarimetric features and the nonlinear combination relation-
ships between the channels of the input CP data, whereas the
single-branch network can only extract the regional polarimetric
features. Therefore, the CV-DBCNN can preserve more precise
polarimetric information than the single-branch network.

D. Comparison Results on Different Terrain Types With
Different Methods

In this subsection, three state-of-the-art methods are intro-
duced for comparison, which are the QPRFCN proposed in [39],
the LS estimator proposed in [27], and the DoP method proposed
by Espeseth er al. [23]. We compare the reconstruction perfor-
mance of CV-DBCNN, QPRFCN, LS, and DoP-based estimator
on the GF-3 data, UAVSAR data, and ESAR data, respectively.
We introduce scatter spots to evaluate the reconstruction per-
formance of the cross-polarized term (i.e., <|Shv|2>), which are
presented in the logarithm domain.

First of all, we compare the pseudo quad-pol data reconstruc-
tion results of the LS estimator, the QPRFCN, the DoP-based
method, and the CV-DBCNN on UAVSAR data (Kumamoto
region). As shown in Fig. 7(a) and (b), for the water area
of UAVSAR data, the LS estimator and the QPRFCN both
show obvious overestimation error of the cross-polarized term.
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Fig. 6. Pauli-basis images of the real quad-pol data and the reconstructed
pseudo quad-pol data (ESAR). (a) Real quad-pol data. (b) Result of the
single-branch network. (c) Result of the CV-DBCNN. The red, green, and
blue channels of the Pauli-basis image represent the double-bounce scattering,
volume scattering, and single-bounce scattering, respectively.

The scatter spot distribution of the LS estimator is obviously
discontinuous, especially for the pixels with lower backscatter-
ing intensities. This is because the LS estimator estimates the
cross-polarized term of each pixel in a set interval. However,
the scatter spot distribution of the CV-DBCNN is continuous. In
Fig. 8(b) and (c), we can see that the LS estimator overestimates
the double-bounce scattering, which makes the water area look
red. The QPRFCN overestimates the volume scattering, which
makes the water area looks green. The DoP-based method is
designed based on an assumption that the cross-polarized scat-
tering is fully contributed by the depolarized wave, making the
DoP-based method suitable for the area such as sea ice [23].
Since the scattering features of water area are similar to those
of the sea ice, the result of the DoP-based method is closer to
the real quad-pol data than that of the LS estimator and the

QPRFCN. Fig. 8(e) shows that the Pauli-basis simulation result
of the DoP-based method is close to the real data, whereas the
cross-polarized term is seriously overestimated, as shown in
Fig. 7(c). As shown in Figs. 7(d) and 8(e), the CV-DBCNN can
achieve satisfactory reconstruction performance for the water
area, which indicates that the CV-DBCNN has better general-
ization performance than other methods.

Second, we compare the pseudo quad-pol data reconstruc-
tion effect of the LS estimator, the QPRFCN, the DoP-based
method, and the CV-DBCNN on forest area (area A) in ESAR
data (Munich region). For the forest area, the LS estimator,
the QPRFCN, and the DoP-based method underestimate the
cross-polarized term, as shown in Fig. 9. We can obviously see
that in Fig. 10(b), the LS estimator overestimates the single-
bounce scattering of the forest area. In Fig. 10(c), the QPRFCN
overestimates the single-bounce scattering. The QPRFCN con-
sists of 11 cascaded 3x3 convolutional layers. The deeper the
layer, the larger the networks perception field. However, in the
reconstruction of pseudo quad-pol data, a too large receptive
field will lead to inaccurate predictions, for the reason that
the reconstruction result of a small region will be affected by
its surrounding area in the receptive field. In Fig. 10(d), the
DoP-based method overestimates the volume scattering. As we
stated before, the DoP-based method is based on the assumption
that the cross-polarized scattering is fully contributed by the
depolarized wave. Depolarized power mainly originates from
two scattering mechanisms: volume and surface scattering, and
the volume scattering is usually estimated directly from the
cross-pol scattering. Thus, if the depolarized power is directly
assigned to the cross-polarized scattering, the surface scattering
will also be assigned, making the cross-polarized scattering
term overestimated, so as the volume scattering. The color of
some pixels is blue in Fig. 10(a), which means that the surface
scattering is dominant in the back scattering of the area cor-
responding to these pixels. However, the main backscattering
in the forest area is volume scattering, as shown in Fig. 10(a).
The QPRFCN assigns the scattering mechanism of these pixels
to the entire forest area, which results in a complete deviation
from the original scattering mechanism. However, for the reason
that the 1x 1 convolutional layer does not enlarge the receptive
field, the receptive field of the CV-DBCNN is far less than
that of the QPRFCN; therefore, the reconstruction result of the
CV-DBCNN is more accurate than that of the QPRFCN.

Finally, we compare the reconstruction effect of the LS esti-
mator, QPRFCN, the DoP-based method, and the CV-DBCNN
on the GF-3 data (Hulunbeier Grassland region), agriculture area
(area A). Fig. 11 shows the scatter plots of the CV-DBCNN,
which is more compact and closer to the diagonal line compared
with the QPRFCN, the LS estimator, and the DoP-based method.
Fig. 12(b) shows that the LS estimator overestimates the volume
scattering, which makes the green color in Fig. 12(b) darker than
thatin Fig. 12(a). The reason is that in CP data with the 7/4 mode,
the proportion of the volume scattering component is larger than
that of quad-pol data, especially in the agriculture area. The
reason is that the LS estimator is based on a three-component
decomposition method, which will result in overestimation of
the volume scattering in the pseudo quad-pol data. As shown
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Fig. 7. Scatter plots of the estimated log <|Shv|2> for the water area (area A) of UAVSAR testing data, the real value of log <|Shv|2> is displayed on the
abscissa, and the estimated value is displayed on the ordinate. (a) LS estimator. (b) QPRFCN. (c) DoP-based method. (d) CV-DBCNN.
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Pauli-basis images of the reconstructed pseudo quad-pol data for the water area (area A) in UAVSAR testing data. (a) Real quad-pol data. (b) LS estimator.
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(c) QPRFCN. (d) DoP-based method. () CV-DBCNN. The red, green, and blue channels of the Pauli-basis image represent the double-bounce scattering, volume

scattering, and single-bounce scattering, respectively.
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Fig. 9.  Scatter plots of the estimated log ( |Shy |2> for the forest area (area A) in ESAR testing data, the real value of log <\Shv \2> is displayed on the abscissa,
and the estimated value is displayed on the ordinate. (a) LS estimator. (b) QPRFCN. (c) DoP-based method. (d) CV-DBCNN.

in Fig. 12(d), the DoP-based method overestimates the volume
scattering, which is similar to the simulation result in the forest
area of ESAR data. As shown in Fig. 12(a) and (e), the Pauli-
basis image of the CV-DBCNN is consistent with that of real
quad-pol data, which shows that the CV-DBCNN has better
reconstruction effect than the QPRFCN and the LS estimator
within the agriculture area.

In conclusion, the CV-DBCNN has more accurate recon-
struction result than those of the LS estimator, the QPRFCN,
and the DoP-based method from three simulated CP datasets
with different sensors and different bands. Quantitative er-
ror analysis is shown in Table IIl. As shown in Table III,
the CV-DBCNN is superior to the QPRFCN, the LS estima-
tor, and the DoP-based method in two quantitative indicators.
Besides, we replace the complex convolution layer and the

complex activation function in the CV-DBCNN with the ordi-
nary convolution layer and the leaky ReLu activation function
(DBCNN), in order to validate whether adding the complex
convolution layer and the activation function can get better re-
construction effect. Obviously, the CV-DBCNN is superior to the
DBCNN in both quantitative indicators. In particular, the COI of
the CV-DBCNN is 10% higher than that of the DBCNN. For the
LS estimator, its reconstruction performance is better than that
of the QPRFCN on all three simulated CP datasets. However, the
reconstruction accuracy of the LS estimator is lower than that
of the CV-DBCNN. Moreover, the computational cost of the LS
estimator is too large. For each pixel, the LS estimator needs to
use the gradient descent method to find a local minimum in an
interval, which is the value of the reconstructed cross-polarized
term of the pixel. When the size of CP data is large, it results
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Pauli-basis images of the reconstructed pseudo quad-pol data for the forest area (area A) in ESAR testing data. (a) Real quad-pol data. (b) LS estimator.

(c) QPRFCN. (d) DoP-based method. (¢) CV-DBCNN. The red, green, and blue channels of the Pauli-basis image represent the double-bounce scattering, volume

scattering, and single-bounce scattering, respectively.
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Scatter plots of the estimated log <|S]er |2> for agriculture area (area A) in GF-3 testing data, the real value of log < [Shv \2> is displayed on the abscissa,

and the estimated value is displayed on the ordinate. (a) LS estimator. (b) QPRFCN. (c) DoP-based method. (d) CV-DBCNN.
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Pauli-basis images of the reconstructed pseudo quad-pol data for the agriculture area (area A) in GF-3 testing data. (a) Real quad-pol data. (b) LS estimator.

(c) QPRFCN. (d) DoP-based method. () CV-DBCNN. The red, green, and blue channels of the Pauli-basis image represent the double-bounce scattering, volume

scattering, and single-bounce scattering, respectively.

in a huge amount of time cost (the time for the LS estimator to
reconstruct an image with size of 2000 x 2000 is about 45 h). For
the reconstruction method based on deep learning, such as the
QPRFCN and the CV-DBCNN, with a well-trained network,
we can get the reconstruction result immediately instead of
waiting for a long time. For the QPRFCN, its too deep network
hierarchy leads to too large receptive field, which will make the
reconstruction result seriously deviate from the real quad-pol

data. In contrast, the CV-DBCNN has a smaller receptive field
and few parameters than the QPRFCN, making the network
easier to converge and have better reconstruction performance
than the QPRFCN. The experimental results indicate that the
CV-DBCNN achieves better reconstruction effect than the three
state-of-the-art methods (i.e., QPRFCN, LS estimator, and DoP-
based method). In summary, the proposed CV-DBCNN has a
stronger adaptability to the reconstruction of pseudo quad-pol
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TABLE III
QUANTITATIVE ERROR ANALYSIS

Data Terrain Type Metrics LS Estimator QPRFCN  DoP DBCNN CV-DBCNN

MAE 0.0774 0.0865 0.0462 0.0536 0.0427
UAVSAR  Water Col 0.695 0.724 0910 0811 0.926

MAE 0.0797 0.0818 0.0844 0.0741 0.0619
ESAR Forest

COI 0.604 0.596 0.764 0.753 0.841

MAE 0.0667 0.0613 0.0658  0.0559 0.0532
GF-3 Farmland

COI 0.746 0.768 0.797 0.803 0.884

data from the CP data with different sensors and different bands
and has better generalization performance than the QPRFCN,
the LS estimator, and the DoP-based method.

E. Comparison Results on the Entire CP Dataset With
Different Methods

In the previous subsection, we completely compare the re-
construction performance of the LS estimator, the QPRFCN, the
DoP-based method, and CV-DBCNN on different terrain types.
The experimental results show that the CV-DBCNN performs
better than the LS estimator, the QPRFCN, and the DoP-based
method in terms of quantitative indicators, scatter plots, and
visual results on three different terrain types. The DoP-based
method is based on an assumption that the surface scattering
exhibits zero response in the cross-polarized term, i.e., the de-
polarized power is totally contributed by the volume scattering.
Therefore, the DoP-based method is suitable for the area such
as the sea ice that satisfies this condition [23]. However, the
depolarized power is contributed by both of the volume and
surface scattering in many cases, and the cross-polarized power
is mainly contributed by the volume scattering [23]. Thus, when
the DoP-based method assigns all the depolarized power to the
cross-polarized channel, it will lead to the overestimation of
the cross-polarized scattering in most of nature areas. For the
pseudo quad-pol data simulation by the DoP-based method, the
volume scattering is overestimated and the surface scattering is
underestimated, which are explained in the experimental results
in Section IV-D. Due to the limitation of the DoP-based method,
we do not conduct the comparison of the DoP-based method on
the entire CP image. In addition, note that the time cost of the
LS estimator to reconstruct all three testing datasets is too high;
thus, here, we only further compare the reconstruction effects
of the CV-DBCNN and the QPRFCN on the entire CP testing
dataset, which mainly focus on the deep learning performance
evaluation.

Fig. 13 shows the Pauli-basis images of the reconstructed
pseudo quad-pol data with different methods for the entire
UAVSAR quad-pol data. Fig. 13(a) shows that the UAVSAR
data contain many different types of land covers, including
water body, agriculture area, and forest area, which are densely
distributed. In Fig. 13(b), the QPRFCN obviously overestimates
the volume scattering within water area and overestimates the

Fig. 13.  Pauli-basis images of the reconstructed pseudo quad-pol data with
different methods (UAVSAR). (a) Real quad-pol data. (b) QPRFCN. (c) CV-
DBCNN. The red, green, and blue channels of the Pauli-basis image represent
the double-bounce scattering, volume scattering, and single-bounce scattering,
respectively.
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Fig. 14. Relative errors of the reconstructed 10g<\$’hv|2>c for UAVSAR
test data, where the relative error is defined by, e.g., \(10g<|shv|2>C -
10g<|Shv‘2>)/10g<‘Shv|2> |. The relative error of 10g<‘Shv‘2>c recon-

structed by the QPRFCN and the CV-DBCNN, is shown in (a) and (b), re-
spectively.

double-bounce scattering within agriculture area and forest area.
However, the reconstruction result of the CV-DBCNN is consis-
tent with the original quad-pol data in all kinds of land covers,
as shown in Fig. 13(c). This indicates that the CV-DBCNN is
more robust and has much better generalization performance
than the QPRFCN. Besides, we can also observe that there is a
difference of the terrain features between Fig. 13(a) and (c). Note
that reconstruction from CP data to pseudo quad-pol data only
changes the form of the CP data to the form of quad-pol data. The
polarimetric information saved in the CP image does not change
after the reconstruction, i.e., without increasing any new infor-
mation. However, the polarimetric information saved by the CP
image is less than that of the quad-pol image; the reconstructed
pseudo quad-pol image will definitely lack some information
than the real quad-pol image. Fig. 14 shows the relative error of
the QPRFCN and the CV-DBCNN. As shown in Fig. 14(a) and
(b), in the water area and agriculture area, the relative error of the
QPREFCN is significantly higher than that of the CV-DBCNN.
Fig. 15 gives the cross-polarized term of the UAVSAR data after
averaging by columns. The cross-polarized term reconstructed
by the QPRFCN obviously deviates the real value, whereas
the reconstruction result of the CV-DBCNN is more close to
the original cross-polarized term, as shown in Fig. 15(a) and
(b). To further evaluate the scattering mechanism preservation
between the real and reconstructed quad-pol data, we perform
the Freeman three-component decomposition on the real and
proposed reconstructed pseudo quad-pol data, respectively, and
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Fig. 15.  Value of the reconstructed cross-polarized term after averaging by
columns. (a) QPRFCN. (b) CV-DBCNN.

then give the proportions of double-bounce, odd-bounce, and
volume scattering components. Fig. 16 shows the combined
RGB images of the decomposition results in the water area of
the UAVSAR data, where the red, green, and blue channels of
the Pauli-basis image represent the double-bounce scattering,
volume scattering, and surface scattering, respectively. Fig. 17
shows the proportions of double-bounce, odd-bounce, and vol-
ume scattering components in Fig. 16. From Figs. 16 and 17,
we can find that in the water area of the original quad-pol data,
odd-bounce scattering is dominant with some double-bounce
scattering. The reconstructed pseudo quad-pol data have the
similar scattering mechanisms. However, the volume scattering
is overestimated, as shown in Figs. 16(b) and 17(b). The over-
estimation of the volume scattering is inevitable for the reason
that the ratio of volume scattering of CP data is higher than that
of quad-pol data. Fig. 18 shows the combined decomposition
images of the urban area of the UAVSAR data. Fig. 19 shows the
proportions of three scattering components. We can see through
Figs. 18(b) and 19(b) that the CV-DBCNN overestimates the
volume component in the urban area for the reason that the
reflection symmetry is not fully satisfied the urban area, which
will influence the reconstruction from CP data to quad-pol
data. However, it is worth pointing out that the double-bounce
scattering is still the dominate scattering in the urban area of
the pseudo quad-pol data, which consists of the radar polari-
metric scattering behavior. Above all, in Figs. 17 and 19, the
reconstructed pseudo quad-pol data and the real quad-pol data
have the similar scattering mechanisms. However, the volume
scattering is overestimated due to the higher ratio of volume
scattering of CP data than that of quad-pol data. The reason is
that the scattering of some areas does not obey the reflection
symmetry. Therefore, the volume scattering overestimation will
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(b)

Fig. 16. Combined RGB image of the three-component decomposition for
UAVSAR data (Ocean area). The red, green, and blue channels of the Pauli-basis
image represent the double-bounce scattering, volume scattering, and single-
bounce scattering, respectively. (a) Decomposition results of the real quad-pol
data. (b) Decomposition results of the reconstructed quad-pol data.
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Fig. 17.  Proportions of double-bounce, odd-bounce, and volume scattering
components in the ocean area of UAVSAR data. (a) Results of the real quad-pol
data. (b) Results of the reconstructed quad-pol data.

(b)

Fig. 18. Combined RGB image of the three-component decomposition for
UAVSAR data (Urban area). The red, green, and blue channels of the Pauli-basis
image represent the double-bounce scattering, volume scattering, and single-
bounce scattering, respectively. (a) Decomposition results of the real quad-pol
data. (b) Decomposition results of the reconstructed quad-pol data.
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Fig. 19. Proportions of double-bounce, odd-bounce, and volume scattering
components in the urban area of UAVSAR data. (a) Results of the real quad-pol
data. (b) Results of the reconstructed quad-pol data.
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Azimuth

Fig. 20. Pauli-basis images of the reconstructed pseudo quad-pol data with
different methods (GF-3). (a) Real quad-pol data. (b) QPRFCN. (c) CV-DBCNN.
The red, green, and blue channels of the Pauli-basis image represent the double-
bounce scattering, volume scattering, and single-bounce scattering, respectively.

exist in our proposed method. However, the dominate scattering
mechanism will not change in comparison with the real quad-pol
data.

The Pauli-basis images of quad-pol GF-3 data are shown in
Fig. 20, and the relative error of the reconstructed log <\Shv |2>C
reconstructed by the QPRFCN and the CV-DBCNN is shown
in Fig. 21. Similar to UAVSAR data, the QPRFCN seriously
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Fig.21.  Relative errors of the reconstructed log <|Shv |2 > . for GF-3 test data,

The relative error of log <|Shv |2>C reconstructed by the QPRFCN and the CV-
DBCNN is shown in (a) and (b), respectively.

overestimates the volume scattering on GF-3 data, especially
in the agriculture area, whereas the CV-DBCNN achieves more
accurate reconstruction results.

Fig. 22 shows the Pauli-basis images of different recon-
struction methods for the ESAR quad-pol data. As shown in
Fig. 22(a), the ESAR testing data contain two main terrain
types: forest area and urban area. Fig. 22(b) and (c) shows
that the reconstruction result of the QPRFCN is inconsistent
with the original quad-pol data, especially in the forest area.
However, the color of the CV-DBCNN is more accurate than
the QPRFCN. Besides, the scattering mechanism preservation
ability of reconstruction methods is important. In this article,
we introduce the H/alpha decomposition to further analyze the
ability of the QPRFCN and the CV-DBCNN on the preservation
of the scattering mechanisms.

H/alpha decomposition [44] is a classical method for scatter-
ing mechanism analysis. Fig. 23(a) shows the H/alpha decom-
position scattering plot diagram of real quad-pol ESAR data
(Munich area, L-band). Fig. 23(b) and (c) shows the decom-
position results of the pseudo quad-pol data reconstructed by
the QPRFCN and the CV-DBCNN. As shown in Fig. 23(a),
the H-alpha decomposition results of the real quad-pol data
indicate that in ESAR data, high-entropy vegetation scatter-
ing, medium-entropy multiple scattering, and medium-entropy
vegetation scattering are dominant. The high-entropy vegetation
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Fig. 22.  Pauli-basis images of the reconstructed pseudo quad-pol data with
different methods (ESAR). (a) Real quad-pol data. (b) QPRFCN. (c) CV-
DBCNN. The red, green, and blue channels of the Pauli-basis image represent
the double-bounce scattering, volume scattering, and single-bounce scattering,
respectively.

scattering includes the scattering of forest canopy. The medium-
entropy multiple scattering may occur in the forest area and the
urban area. The medium-entropy vegetation scattering mainly
occurs on the vegetation areas composed of anisotropic and
moderately correlated direction angle scatterers. It is shown
in Fig. 23(b) and (c) that the decomposition results of the
CV-DBCNN are more closer to the decomposition results of real
quad-pol data than the QPRFCN. The QPRFCN overestimates
the medium-entropy vegetation scattering and underestimates
the high-entropy vegetation scattering, as shown in Fig. 23(b).
Above all, the ability of the CV-DBCNN on the preservation of
the scattering mechanism is stronger than that of the QPRFCN.

The polarimetric decomposition result of the ESAR data is
shown in Figs. 24 and 25. Fig. 24(a) shows the alpha decompo-
sition result of the original quad-pol data, Fig. 24(b) shows the al-
pha decomposition result of the QPRFCN, and Fig. 24(c) shows

90
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Fig. 23.  H/alpha decomposition scattering plots diagrams of the ESAR data
(Munich area, L-band). H (entropy) is displayed on the abscissa and alpha is
displayed on the ordinate. (a) Decomposition results of the original quad-pol
data. (b) Decomposition results of the QPRFCN. (¢) Decomposition results of
the CV-DBCNN estimator.

the alpha decomposition result of the proposed CV-DBCNN.
In the city area of ESAR data, as shown in areas A and B of
Fig. 24(a), we can clearly observe that the result of the QPRFCN
is obviously deviate from the alpha decomposition result of the
original quad-pol data. However, the alpha decomposition result
of the CV-DBCNN is more closer to the true value. The entropy
decomposition result of the original quad-pol data is shown in
Fig. 25(a), Fig. 25(b) shows the result of the QPRFCN, and
Fig. 25(c) shows the result of the proposed CV-DBCNN. It is
clear that the QPRFCN seriously underestimates the entropy of
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Fig. 24.

Alpha of the H/alpha decomposition results of the ESAR data
(Munich area, L-band). Areas A and B are different part of the city area
in ESAR data. (a) alpha decomposition result of the original quad-pol data.
(b) alpha decomposition result of the QPRFCN. (¢) alpha decomposition result
of CV-DBCNN estimator.

the forest area of ESAR data, which can be seen in area A of
Fig. 25(a), whereas the result of the CV-DBCNN is more closer
to the real value, as shown in Fig. 25(b) and (c).

V. CONCLUSION

In this article, we proposed a method to reconstruct the pseudo
quad-pol data from CP data. This method was based on a CV-
DBCNN, which consists of the branch with 1x1 kernel size
and the branch with 3 x 3 kernel size. The proposed network can
learn the regional polarimetric features of the training data and
generate the nonlinear combination relationships between the
channels of the input CP data.

Compared with the three state-of-the-art method (i.e.,
QPRFCN, LS estimator, and DoP-based method), our method
showed a superior performance in both quantitative error anal-
ysis and scatter plots, especially in the result of the H/alpha
decomposition, which shows that the reconstructed pseudo
quad-pol data of the proposed method has better preservation
capacity of the scattering mechanisms than that of other meth-
ods. In the future, we will focus on the extension of our method
on the pseudo quad-pol data reconstruction from CP data with

Fig. 25.  Entropy (H) of the H/alpha decomposition results of the ESAR data
(Munich area, L-band). Area A is the forest area of the ESAR data. (a) Entropy
decomposition result of the original quad-pol data. (b) Entropy decomposition
result of the QPRFCN. (c) Entropy decomposition result of the CV-DBCNN
estimator.

the DCP and HCP modes and validation with real CP data.
Besides, the assumption of reflection symmetry is not always
true for different land covers, which would also limit the scope
of application of our proposed method. In the future, we will
explore other assumptions, which are more universal than the
reflection symmetry.
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