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Incremental Knowledge Extraction From IoT-Based
System for Anomaly Detection in Vegetation Crops

Danilo Cavaliere and Sabrina Senatore , Member, IEEE

Abstract—Precision agriculture systems collect spectral images
from satellites, from which vegetation indices (VIs) can be assessed
to monitor vegetation and soil condition. It requires a near-daily
data acquisition to perform robust crop monitoring and data
analysis. Satellites provide a periodic data acquisition that need
a further data integration using multiple satellite sources along
with camera-equipped drones to achieve an accurate data collection
on a selected area. Moreover, VIs are not enough for a proper
vegetation evaluation of the monitored areas due to differences
among cultivars, the phenological season in which the vegetation
is evaluated, the latitude of the areas, etc. This article introduces
a system model to detect anomalies regarding the vegetation and
soil conditions according to the area phenology and the histori-
cal vegetation trends. The system collects spectral images of the
regions of interest (ROIs) from satellites and drones, harmonized
to calculate VIs and feeds a dataset of near-daily high-resolution
integrated images. The harmonic analysis allows phenological data
extraction about the ROIs, hence the territorial observation model
(TOM) has been extended to represent phenological stages and
build knowledge on the ROIs and their phenology that is stored on
a triple store. The system selects the VI values, calculated during
the learned growing seasons of the ROIs, and classifies them to
detect vegetation anomalies affecting those ROIs. The collected
knowledge can be used by end-users (e.g., agronomists, experts,
etc.) to analyze the anomalies correlated to historical results and
vegetation trends.

Index Terms—Harmonic analysis, ontology, phenological
context, precision agriculture (PA).

I. INTRODUCTION

NOWADAYS, multidevice systems are widely employed in
various contexts to detect and deal with anomalies and

critical events. They can provide benefits to IoT-based applica-
tions in many fields, including public defense, smart homes, and
smart cities, building management, fire fighting, and precision
agriculture (PA). Multidevice systems have been employed with
success in the agriculture domain, to collect data and support
various activities, such as seeding, spraying, etc. PA employs
specialized sensors to collect data from the cultivated fields to
constantly monitor plant growth and crop quality and increase
production and incomes and thus better meet food demand.

Manuscript received August 4, 2021; revised October 26, 2021 and December
13, 2021; accepted December 24, 2021. Date of publication December 29,
2021; date of current version January 12, 2022. (Corresponding author: Danilo
Cavaliere.)

The authors are with the Department of Computer Engineering, Electrical
Engineering, and Applied Mathematics (DIEM), University of Salerno, 84084
Fisciano, Italy (e-mail: dcavaliere@unisa.it; ssenatore@unisa.it).

Digital Object Identifier 10.1109/JSTARS.2021.3139155

Historically, PA adopted satellite multispectral images, from
which, vegetation indices (VIs) can be assessed. VIs allow for
assessment of vegetation vigor, coverage, water presence, and
soil conditions in the crop areas monitored. However, satellites,
including Modis and Landsat, return data within long periods
of time mining a near-daily data acquisition, which is neces-
sary for a proper and constant assessment of the vegetation
state. Additionally, satellites may also acquire spectral images
at low or different spatial resolutions, even though agriculture
demands for images at medium to high resolutions for reliable
vegetation state evaluations. To address these issues, solutions
focus on processing imagery from multiple satellites to enable
an integrated view of near-daily image acquisition at medium to
high resolutions, aimed at vegetation assessment and anomaly
detection.

Multiple devices of different types (ground vehicles, air
vehicles, etc.) equipped with different types of sensors (e.g.,
infrared sensors, spectral cameras, thermometers, etc.) can
effectively benefit environmental monitoring and vegetation
assessment. Heterogeneous devices can acquire large amounts of
data about the whole environment, providing different features
of the environment, from weather to plant characteristics (e.g.,
temperature, transpiration, jointing structure, etc.). However,
the use of heterogeneous devices and sensors may lead to data
integration issues, i.e., the data come in different formats and
require solutions to be integrated.

Additionally, in PA, data integration is not just a simple
format issue, but also a domain issue. The same data, such
as relative humidity, air temperature, plant transpiration, etc.,
can be read and interpreted in different ways depending on
their application (e.g., irrigation management, seeding, bacteria
infection prevention, etc.). Thus, data contextualization can be
necessary to correctly interpret the data and thoroughly support
the accomplishment of the application.

Multidevice PA systems must also consider differences in the
type of environment; the interpretation of VIs and vegetation
parameters for evaluating vegetation health may vary with lati-
tude (i.e., the vegetation of a crop field in Jamaica have different
features than a field in England) and context, for instance,
expected vegetation in a crop field is different from that in a
wood in the same period. Parameter evaluation may also change
with the cultivar type, i.e., grapes have different growing seasons
than oranges. To address all these differences and thus detect any
anomalies in vegetation, the data must be interpreted based on
the phenological data.
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This article introduces a multidevice system model, which
acquires spectral images from different devices such as satellites
and unmanned vehicles (UVs). Satellite data are integrated
through harmonization techniques. Fourier analysis is applied
to the VIs calculated from the satellite images to extract the
phenological data of the area to monitor. The data are stored in
ontology-based format. In particular, the territorial observation
model (TOM) ontology is extended to represent phenological
data in the selected areas and then stored as triples. Environment
monitoring is performed on each region using if–then rules
defined for anomaly detection. When an anomaly is detected,
an alert is sent to humans with a report describing the anomaly,
the geographical region, where the anomaly occurred and the
severity level of the anomaly. This approach aims at demon-
strating that low level data integration (data satellite harmo-
nization), combined with incremental knowledge building on
the scenario and VIs, can aid in comprehensive vegetation and
soil status analysis. Through online status assessments indeed, a
near-daily image dataset will be generated along with a posterior
analysis, providing human operators with reusable knowledge
about vegetation and soil conditions built incrementally with the
dataset.

The rest of this article is organized as follows: in Sec-
tion II, related work is analyzed and discussed, then in
Section III, a background on data from precision agriculture
field is given. Then, Section IV introduces and details the
whole system model step-by-step. Section V presents a sim-
ulated real-time implementation of the system model, which
is demonstrated through a case study accomplished using the
Apache Kafka framework. Finally, Section VII concludes this
article.

II. RELATED WORK

PA involves swarms of IoT devices that collect various types
of data from the environment to help to monitor vegetation with
aim of improving crop growth. To this purpose, multidevice
intelligent systems are demanded to keep fields under constant
monitoring and check for anomalies.

One major issue coming with the employment of different
sensors is the heterogeneity of data they return. The data are
of different types (analog and digital) and are represented in
different formats. To deal with this issue, researchers provide
various solutions to interface and integrate data coming from
different sources. In [1], the authors introduce Hydra as an
IoT multilevel data fusion system that fuses data at different
layers, including raw sensor data, events and decision-making,
and decision fusion based on applications, to support water man-
agement applications for cultivated fields. In another work [2],
the authors proposed an approach that exploits multivariate geo-
statistical data fusion techniques to fuse multitemporal data from
a multiband radiometer and a geophysical sensor, to delineate
homogeneous zones to be assigned to differential agricultural
management. In [3], the authors developed the phenological veg-
etation index, that is, synergistically used with the well-known
NDVI index to thoroughly extract Spartina Alterniflora from
images.

Beyond data integration and analysis, other challenges affect
other stages of the PA ecosystem. Among them, there is a
reduction of energy consumption in vast IoT sensor networks.
In [4], an approach based on the quantum-inspired gravitational
search algorithm evaluates the operational mode of each sensor
in the network and improves energy consumption accordingly.

To support data integration and contextualization, many
works in literature employ semantics and ontologies. A new
ontology network is introduced in [5] as composed of two
ontologies, one representing concepts on agricultural produc-
tion and the other on food processing, that are populated with
data coming from different sources to support applications in
viticulture and winemaking. In [6], the authors explore the
knowledge building for smart farming applications, defining a
service based on an ontology, modeling various domains (e.g.,
production resources, agricultural machinery, etc.), that can be
easily accessed and used by farmers and experts. Another system
based on semantics for agriculture has been defined as part of the
CANDELA Horizon2020 European project aimed at bridging
the gap between big data and earth observation data users [7].
CANDELA introduces a platform to access Earth Observation
data, provided by the Copernicus satellite Sentinel-2, that are
processed with data mining techniques for area classification
and change detection purposes. Deep learning is also applied for
change detection and data fusion is applied to merge data. The
platform has also a semantics-based module composed of two
submodules: a semantic indexing submodule devoted to knowl-
edge building from a user-selected dataset that is then stored
on Starbon triple store, and a semantic search submodule for
accessing the semantic data through queries. Notwithstanding
the benefits of such a platform, let us notice that CANDELA
processes data coming only from Sentinel satellites, ignoring
data coming from other satellites (e.g., MODIS, Landsat). Fur-
thermore, in the ontologies, employed in this project, concepts
explaining phenological data and anomalies are missing. Our
approach, instead, extends the TOM ontology with new classes
and properties to allow building a detailed knowledge on phenol-
ogy and features of the anomalies that can serve the generation
of more explanatory warnings for humans.

For what concerns anomaly detection, a reference point is the
anomaly hot spots of agricultural production (ASAP) system
introduced in [8]. ASAP allows detecting anomalies in crop
production in two steps. First, the subnational administrative
areas are classified into four categories based on vegetation and
rainfall anomalies, and updated every 10 days. Then, as the sec-
ond step, all the information acquired, including the warnings,
are analyzed by experts who support the labeling of countries
in potentially critical conditions. Despite the interesting warn-
ing generation mechanism introduced, ASAP mainly processes
satellite data ignoring the potential of using UVs, and they do
not use any semantics-based model to support management and
dissemination of data, such as those ontology-based mentioned
before. Additionally, ASAP employs just a VI, namely NDVI;
and assesses time series on NDVI from medium–low resolu-
tion satellite images (10-day SPOT-VEGETATION NDVI time
series at 1 km spatial resolution). In our approach, instead,
a dense dataset of high-resolution images is built to robustly
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assess VIs and phenological data that are encoded as ontological
assertions to support the end-users with the anomaly detection
and analysis.

III. PA DATA AND DEVICES

The main data processed by PA systems are spectral images
collected by satellites and UVs equipped with spectral cameras,
which allow the evaluation of the vegetation status by comparing
images of the areas at different spectral bands. This section goes
into detail about the role of these devices in PA applications.

A. Satellites

In this study, three types of satellites were considered:
Sentinel 2, Landsat 7, and Landsat 8.

Copernicus Sentinel-2 mission includes two polar-orbiting
satellites placed in the same sun-synchronous orbit, phased
at 180◦ to each other. This constellation of satellites allows
monitoring changes in Earth’s surface due to the wide swath
width (290 km) and high revisit time. The satellites are equipped
with a multispectral optoelectronic sensor for surveying with a
sentinel-2 resolution of 10–60 m in the visible, near-infrared
(NIR), and short-wave infrared (SWIR) spectral zones, includ-
ing 13 spectral channels, which ensures the capture of differ-
ences in vegetation state, including temporal changes, and also
minimizes impact on the quality of atmospheric photography.
These two satellites acquire data every 5 days at the equator
and every 2–3 days at middle latitudes. The multispectral sensor
generates 12 images achieved by capturing the light spectrum
into 12 distinct bands, including coastal aerosol, blue, green, red,
three different ranges of vegetation red edges, NIR, Narrow NIR,
water vapor, and three types of SWIR. The revisit frequency of
each Sentinel-2 satellite is 10 days, and the revisit frequency of
the combined constellation is about 5 days.

The Landsat 7 satellite is equipped with an observing tool
instrument called enhanced thematic mapper plus (ETM+). The
ETM+ allows global change studies, land cover monitoring and
assessment, and large area mapping. The main features of this
satellite are a panchromatic band with 15 m spatial resolution,
on-board, full aperture, 5% absolute radiometric calibration, a
thermal IR channel with 60 m spatial resolution, and an on-
board data recorder. This satellite provides images on 8 bands,
including three different bands in the visible spectrum, a NIR,
a SWIR, a thermal infrared, a mid-infrared, and a panchromatic
band.

Landsat 8 (formerly the Landsat data continuity mission,
LDCM) has been launched in orbit more recently than the other
Landsat satellites. It is currently used to collect valuable data and
imagery for assisting applications in agriculture, education, busi-
ness, science, and government. The multispectral sensors of this
satellite allow the acquisition of high-resolution multispectral
images of the Earth’s surface on a global basis. The data acquired
by Landsat spacecraft constitute the longest record of the Earth’s
continental surfaces as seen from space. It is a record unmatched
in quality, detail, coverage, and value. Landsat 8 acquires images
on 11 bands, including deep blue and violet, blue, green, red,
NIR, two different slices of SWIR, panchromatic, a band with a

thin slice of wavelengths (1370 ± 10) and two slices of thermal
infrared (TIR). Landsat satellites have a revisit frequency of
around 16 days.

The main advantages of Sentinel-2 are the high number of
different bands and the high frequency of data acquisition.
Landsat satellites return data with a lower frequency and have
lesser bands, but they have the thermal NIR band, which is
missing in Sentinel satellites, useful for evaluating land surface
temperature, and a bigger historical image archive (i.e., Land-
sat 7 was launched in 1999, Landsat 8 in 2013, Sentinel-2 in
2015).

B. UVs

UVs have been successfully employed to address various
tasks, including public surveillance, breeding, filmmaking, and
more. In PA, they have been used for various sensing and actu-
ation tasks, including plant temperature acquisition, irrigation,
pesticide spraying, etc. These devices have also been used in
combination with other IoT sensors in a dedicated environmental
monitoring swarm for PA and forestry management applications.
Being mobile, such devices can acquire measurements from the
area of interest and communicate with other fixed sensors, au-
tomated ground controllers, and humans to perform articulated
tasks.

UVs can be equipped with hyperspectral imaging cameras
and used alongside or as substitutes for satellites. They can
certainly better avoid cloud covering by acquiring data from
lower heights than satellites, however, they can sometimes suffer
from calibration and stability issues that can compromise the
quality of the collected measurements (e.g., blurred images).
Additionally, satellite services may be cheaper solutions as UVs
need to be equipped with expensive spectral image cameras. UVs
have been extensively investigated to collect and process the
information over large areas [9]; therefore, they might be used
alongside satellites to collect more images and satisfy the need of
acquiring a near-daily dataset. Although UVs can be leveraged
as a further source of spectral images, due to imagery collection
costs, the method and experimentation presented in this article
have been focused exclusively on satellite-taken spectral images.

IV. FRAMEWORK FOR ANOMALY DETECTION IN VEGETATION

The system model and the interactions among the main mod-
ules are sketched in Fig. 1.

The input data are the spectral images, that can be acquired
from satellites and camera-equipped drones. Let us notice that
in this study, only satellites (Landsat 7, 8, and Sentinel-2) have
been used, due to a matter of hardware availability. The collected
satellite images are processed by the data preparation and
integration module, that merges them through data harmoniza-
tion techniques, to generate fused images of the environment.
Specifically, the harmonic method generates phenological data
on each region of interest (ROI), under monitoring. The VI
calculation module reads the harmonized dataset and calculates
two VIs: standardized vegetation index (SVI) and normalized
burn ratio (NBR). Meantime, the phenological data are sent to
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Fig. 1. System overview.

the ontological context building module, that builds a knowl-
edge base (KB) by using integrated state-of-the-art ontologies,
and then storing the KB on an Apache Fuseki triple store.
This module also provides queries to extract knowledge from
the KB and support environment monitoring. Finally, the Area
monitoring module acquires the VIs and retrieves phenological
data for each processed ROI by running queries on the KB
provided by the ontological context building. This way, the
VIs on the ROI are contextualized according to the type of
environment and seasonal growth stages to finally achieve the
anomaly description through rules. According to the results, the
system alerts human operators on potential detected vegetation
anomalies and the possible worsening of vegetation over time.
Then, the architecture includes satellites and camera-equipped
drones to collect, stream, and process spectral images about
fields. Apart from dynamic collection and sensing capabilities,
the IoT-based infrastructure also enables the involved devices to
share and fuse the information they collect individually in a KB.
Thanks to the inference, the system knowledge gathers sensing
and environmental data that are decisive to support humans in
decisions, thanks to accurate evaluations on vegetation and soil
statuses. The remainder of the section details the modules of the
architecture.

A. Data Preparation and Integration

PA requires near-daily imagery at medium to high spatial
resolution (10–30 m) to clearly detect anomalies in vegetation.

Fig. 2. Data preparation and integration module.

Satellite types such as Sentinel-2 and Landsat fail to support
these requirements fully (see Section III). First of all, the two
satellite types have different spatial resolutions, in fact, Landsat
satellites have medium-high spatial resolution (30 m), while
Sentinel-2 acquires data with a spatial resolution that changes
according to the specific band from 10 to 60 m.

The two types of satellites also return data with different
frequencies over time: Sentinel-2 returns spectral images of the
Earth’s surface within 5–10 days, while Landsat satellites have
a longer review time (16 days). This long interval between two
successive data can lead to the loss of important observations re-
lating to the earth’s surface, especially in critical growth phases.
Solutions are needed to overcome this tradeoff between spatial
resolution and temporal acquisition between these satellites.
To address these issues, data fusion techniques enable image
integration coming from these different satellites, by converging
toward near-daily high-resolution integrated images for better
vegetation evaluation. Inspired by [10], the data preparation and
integration module implements a harmonization process to get
an integrated dataset of images from Sentinel and Landsat satel-
lites. The process consists in several steps, as reported in Fig. 2,
that are carried out by using Google Earth Engine (GEE) API.1

As a first step, spectral images are acquired from Landsat 7, 8,
and Sentinel-2, generally, satellite measurements are acquired
at top-of-the-atmosphere reflectance, which is a mix of light re-
flected off the surface of the Earth and off the atmosphere, there-
fore, spectral images require some atmospheric corrections [11]
to get rid of the effect of the atmosphere on the reflectance
values and get images showing only the actual reflectance of
the areas on the surface of the Earth (bottom-of-atmosphere
reflectance). GEE provides land surface reflectance datasets,
where atmospheric corrections have already been done so that
images are reliable for vegetation analysis. The second step is
called cloud covering image filtering that consists of removing
cloud covering, to prevent these phenomena, only images with
cloud covering at 0% of cloud covering have been acquired.
The Landsat 8-Sentinel-2 coregistration step processes Landsat
8 and Sentinel-2 images to revise misalignment (precisely, 38 m)
between them [12]. This misalignment depends on the residual
geolocation error in Landsat 8 framework. To solve this problem,

1[Online]. Available: https://developers.google.com/earth-engine

https://developers.google.com/earth-engine
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the displacement between two overlapping images from the
two satellites is measured thanks to GEE functionalities. The
reprojection, rescaling step is in charge of reprojecting bands of
Sentinel 2 (WGS84) and rescaling them (to 30 m) by using the
cubic interpolation method [13]. After the image rescaling, the
BRDF correction, Topographic correction step applies the bidi-
rectional reflectance distribution functions (BRDF) approach,
introduced in [14], to reduce the directional effects depending on
differences in solar and view angles between the satellites. This
method sets the view angle to the NADIR (i.e., the lowest point
of the celestial sphere vertically downward to the observation
point) and the illumination according to the center latitude
of the tile. Another correction involves topography: the Sun-
Canopy-Sensor Topographic Correction method [13] is used to
account for reflectance variations generated by slope, aspect,
and elevation. It handles mountain shadowing on the fields. The
band adjustment and rescaling step consists of adjusting bands
across satellites to make them compatible. Six bands, including
blue, green, red, are adjusted by cross-sensor transformation
coefficients provided by [15], where the coefficients have been
determined by running absolute difference metrics and major
axis linear regression analysis on 10 000 image pairs of the USA
territory. The collection of harmonized band images generated
by the abovementioned steps from the images of Landsat 7, 8,
and Sentinel 2 form the so called harmonized dataset.

With the scope of extracting phenological data, the harmonic
or Fourier analysis is applied to the generated data (Harmonic
analysis step) due to its proven effectiveness in characterizing
seasonal cycles and variation in cover types [16]. Thus, the
normalized difference vegetation index (NDVI, see Definition 1)
is calculated over the band images from the harmonized dataset,
by the harmonic analysis over time series of NDVI values to
recognize the growing seasons of each area. The harmonic
regression model to determine fitted values on the NDVI time
series is described by the following equation:

pt = β0 + β1 · t+ α · cos(2 · π · ω · t− φ) + εt

= β0 + β1 · t+ β2 · cos(2 · π · ω · t) + β3

· sin(2 · π · ω · t) + εt

where pt is the scalar pixel at the time t, εt is a random error, α
is the curve amplitude, ω is the curve frequency, φ is the phase.
Note that β2 = α · cos(φ) and β3 = α · sin(φ), which implies
that the amplitude A = (β2

2 + β2
3)

1/2.
To fit the harmonic model to the NDVI time-series, φ is set

to the number of cycles per unit time, hence the β0, β1, β2,
β3 parameters are learned by applying the least squares method
to solve regression and determine the curve on fitted values.
The resulting curve allows studying the vegetation trends of
the ROIs over the years, from which growing seasons on the
cropland can be extracted. The seasonal variations in vegetation
are recognized according to curve amplitude and phase angle:
the higher the amplitude and phase angle, the higher the seasonal
variations. By analyzing the curve amplitude, the phenology is
extracted using three parameters: the start of the season (SOS),
the senescence (SEN), and the end of the season (EOS). These

parameters help to individuate the growing seasons character-
izing various plant growth stages (seeding, flowering, fruiting,
etc.). These data are acquired for each ROI and stored in the
ontological context building module.

B. VI Calculation

The VI calculation module processes the images in the harmo-
nized dataset, generated by the data preparation and integration
module to assess VIs. The VIs allow the evaluation of various
vegetative features, including the vegetation coverage, vigor,
nitrogen presence, moisture, and water presence in the soil. A
VI is assessed through formulas combining different bands; for
instance, the most famous VI called NDVI is assessed by relating
the red band image with the NIR band image.

Let us consider Red and NIR be, respectively, the red band
value and the NIR band value in the pixel p, the NDVI is assessed
as follows:

NDVI =
NIR − Red
NIR + Red

. (1)

The red value and the NIR value in the same pixel p of the
image are used to assess the NDVI value in that pixel. This way,
by processing all the pixels of the image, a new raster image
with the NDVI values is generated. This image evidences high
coverage and vigor in vegetation with higher pixel values, and
low coverage and vegetation with lower pixel values. NDVI has
been chosen to evaluate the vegetation in terms of variations
of greenness, since it has been proven to have a very sensitive
response to green vegetation, even for areas with low vegetation
coverage. Additionally, it is the most used index for regional
and global vegetation assessments and, it is related not only to
canopy structure and Leaf Area Index (LAI), but also to canopy
photosynthesis [17].

NDVI describes vegetation in a specific moment in time, other
indices, instead, such as SVI, are used to evaluate vegetation
parameters over time. The SVI can provide an evaluation of veg-
etation and plant health that takes into account the comparison
of current values with others acquired in past years. This index
is also considered a drought index and helpful in preventing
natural hazards. As introduced in [18], the SVI is mainly based
on the NDVI and describes the probability of variation from the
normal NDVI over multiple years of data, on a weekly time step.
The index is defined as the z-score deviation from the mean in
units of the standard deviation, calculated from the NDVI values
assessed for each pixel location of a composite period for each
year during a given reference period. Therefore, let us consider
the pixel i in the image I , the week j in the year k over a period
of n years, the SVI is defined as follows:

zi,j,k =
NDVIi,j,k − μi,j

σi,j
(2)

where zi,j,k is the z-score for the pixel i, in the week j during year
k; NDVIi,j,k is the NDVI value on the same pixel (i) in the same
period (week j, year k); μi,j is the mean for pixel i in the week
j over the n years considered and σi,j is the standard deviation
for the pixel i in the week j over the n years. Another important
index is the normalized burn ratio (NBR) used to detect the
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presence of recently burnt areas. It relates the reflectance of the
land surface in the NIR and SWIR bands to detect burnt areas.
The rationale behind this is that the vegetation presents high
reflectance in the NIR band and a low reflectance in the SWIR
band, while it is the exact opposite in burnt areas (low reflectance
in the NIR band, high reflectance in the SWIR band). NBR has
been considered to depict changes in soil moisture due to its
proven features to detect scars in the soil, perform vegetation
monitoring years after a fire, and achieve satisfactory results in
supporting vegetation recovery monitoring [19]. Let NIR be the
value of NIR band in a pixel p and SWIR be the SWIR value in
p, the NBR is defined in function of these two bands as follows:

NBR =
NIR − SWIR
NIR + SWIR

. (3)

Low values of NBR identify recently burnt areas, while high
values denote vegetation. Values around the 0 denote a nonburnt
area.

To assess the burn severity of an area over time, another index
is delta NBR (dNBR), which considers several NBR values
calculated over time to detect ROIs that have been affected by the
fire. High, greater-than-0, dNBR values denote severe damages
caused by the fire, while negative values indicate regrowth sit-
uations following a fire episode. Let NBRt and NBRt+1 denote
the NBR assessed on a pixel p at the time t and the NBR assessed
on p at a later time (t+ 1), respectively, the dNBR is calculated
as follows:

dNBR = NBRt − NBRt+1. (4)

The formula is applied to pixels of consecutive images to
evaluate the severity of fire between two consecutive moments
in time on ROIs. USGS provides a classification table to evaluate
the dNBR value and reports a corresponding burn severity status.

The SVI and dNBR values calculated on pixels of ROIs
are input to the area monitoring module to handle anomaly
detection.

C. Ontological Context Building

The ontological context building module stores as semantic
assertions the collected information on the ROIs and the acquired
phenological data and vegetation parameters. To achieve this
task, a well-known ontology, composed of various subontolo-
gies, has been employed to model knowledge on the agriculture
domain and support environmental monitoring. This ontology,
taken from Candela project,2 has then been extended to include
knowledge related to the harmonized spectral images and area
phenology. The core ontology model is shown in Fig. 3, where
the “Feature Of Interest” class represents all the territorial
elements to monitor, while the GeoFeature class includes the
specific territorial units, such as the ROIs in the environment
identified by an ID. Other classes identify the feature of the ROI
to observe (e.g., vegetation coverage) and the parameters, such
as VIs, to evaluate the feature (i.e., instances of the “GeoFeature
Observable Property” class). The classes in red contour, includ-
ing GeoFeatureCollection, “Growing Season” and Anomaly, are

2[Online]. Available: https://candela-h2020.eu/

Fig. 3. Extended ontology model: new classes are evidenced with a thick red
contour.

imported by TOM to represent knowledge on the areas, their
phenology and anomalies. The GeoFeatureCollection represents
an AOI as a set of all the ROIs lying within the same AOI.
The “Growing Season” class allows knowledge modeling on
the extracted growing seasons of a ROI. The Anomaly class
represents the kind of anomaly (depending on the VI, e.g.,
SVI anomaly, dNBR anomaly) that affects a ROI (GeoFeature
instance).

When the data preparation and integration and VI calculation
modules accomplish their tasks, they pass their data to the
ontological context building module. At this time, the incoming
data are used to populate the integrated and extended TOM
ontology with facts about the ROIs and their phenology, and
vegetation parameters assessed on the ROIs. In detail, each ROI,
encoded as a GeoFeature instance and equivalent to a Feature
instance in GeoSPARQL, is stored along with its GPS data (area
and position). The growing seasons, which have been detected
for each ROI by the data preparation and integration module,
are added as a “Growing Season” instances to the ontology.
Along with each “Growing Season” instance, the SOS, EOS, and
SEN parameters describing the growing season are also added
to the ontology and related to the growing season through data
properties. This way, the ROI (GeoFeature instance) is related
to its detected growing seasons “Growing Season” instances).

The KB can be queried to extract ROIs and phenological
data when it is required. Specifically, when the area monitoring
module needs to interpret the SVI and dNBR, provided by the
VI calculation module (see Section IV-D), sends a request to
the ontological context building module that queries the KB to
get the SVI values on a ROI according to its growing seasons.
The query results are returned to the area monitoring module
that evaluates the SVI for checking the presence of an anomaly.
Examples of queries will be presented as part of the case study
discussed in Section V.

Finally, when the area monitoring detects an anomalous SVI
or dNBR value, the anomaly is detected and added by the
ontological context building module as an Anomaly instance
to the ontology. The anomalous SVI value, a string expressing

https://candela-h2020.eu/
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TABLE I
ANOMALY INTENSITY ACCORDING TO SVI

the level of the anomaly and the day of the year when the
anomaly happened are also added to the ontology and related
to the anomaly through ad-hoc data properties. This way, the
KB is filled with facts about ROIs (GeoFeature instances) and
their anomalies (Anomaly class instances) to support vegetation
analyses in retrospect on the area.

D. Area Monitoring

The area monitoring module is in charge of analysing the
acquired data, find eventual anomalies on vegetation and notify
about it to humans. It gets the SVI and dNBR values from
the VI calculation module; then it retrieves contextual data
about the ROI querying the ontological context building module.
The latter, in turn, returns the phenological data to the area
monitoring module. Depending on the growing season, the SVI
values can be considered for the evaluation of the anomaly on
vegetation.

In this case, the area monitoring module assesses the intensity
of anomaly by applying if–then rules to SVI values. In this study,
Table I has been defined to classify anomaly intensity based
on the SVI values. The table includes several ranges that are
selected in accordance with the z-score definition at basis of
SVI [see (2)]. In detail, in a normal standard distribution, the
z-score z can be determined from every random variable X by
the following formula:

z =
(X − μ)

σ
(5)

where μ and σ are the mean and standard deviation of the
distribution.

The z-score represents how many standard deviations the
value X is away from the mean. From the sigma rule [20], it
is known that in a large dataset, the 68% of the values lie within
the first standard deviation ([μ− σ, μ+ σ]), the 95% of the data
within two standard deviations ([μ− 2σ, μ+ 2σ]) and 99.7%
within three standard deviations of the mean ([μ− 3σ, μ+ 3σ]).
Since in normal distribution μ = 0 and σ = 1, the resulting
ranges ([−1, 0], [0, 1], etc.) on deviations have been associated
with labels expressing different types of anomaly intensity and
used to define the classification as shown in Table I. The table
reports three classes of anomaly intensity based on three ranges
of negative values. Positive values are not given, since they
represent nonanomalous situations. By using this table, the area
monitoring checks the presence of the anomalies occurred in
the scene. In a nutshell, if the area monitoring module detects
positive SVI values, no anomaly on vegetation occurs, and
the module keeps monitoring the environment by analyzing
the incoming data. Otherwise, if the SVI value is negative, the
corresponding anomaly intensity is returned.

TABLE II
BURN SEVERITY CLASSIFICATION TABLE BASED ON dNBR VALUES

PROVIDED BY USGS

For what concern burn severity evaluation, the area moni-
toring module interprets the dNBR values provided by the VI
calculation module by using a classification table developed by
USGS3 and reported in Table II. It reports various ranges of the
dNBR values and the corresponding class of burn severity; the
positive values evidence increasing levels of severity, while val-
ues around 0 and negative values denote unburned and postfire
regrowth scenarios.

When an anomaly occurs, the Area monitoring module gener-
ates an alert message to humans containing the description of the
detected anomalies, the anomaly intensity and the burn severity.

V. SYSTEM AT WORK

To show the potential of the proposed system, real-time envi-
ronment monitoring has been simulated by using Apache Kafka
Stream. The technology is used to implement the modules of our
architecture and support the communication between the system
components and human operators. The potential and efficiency
of this implementation are proved through practical case studies.

A. Kafka-Based Implementation

The system has been implemented as an online tool capable
of acquiring data from the environment, detecting and reporting
anomalies in vegetation to humans in simulated real-time. To
this purpose, a stream processing application based on Apache
Kafka Stream has been developed to allow the framework to
process data and interact with humans in real-time. In a Kafka
network, two main entities, namely producers and consumers,
exchange messages over the network through reading and writ-
ing operations on a Kafka topic. A topic is a category or feed
name to which data is published by producers. In detail, the
communication can be synchronous or asynchronous, therefore,
the consumers wait for new incoming events on the topic, when
the producers write messages on topic, the consumers will read
the new events. The Kafka-based stream processing application
is built on a processor topology defining its computational logic.
A topology is composed of stream processors (nodes) that are
connected by streams (edges) or shared state stores.

The architecture of the framework implemented as Kafka-
based streaming application is presented in Fig. 4, along with
the processor topology. At basis of this architecture, there are
the producers in charge of feeding new data into the network.
When new data are acquired by UVs and satellites, the producers

3[Online]. Available: https://un-spider.org/advisory-support/recommended-
practices/recommended-practice-burn-severity/in-detail/normalized-burn-
ratio

https://un-spider.org/advisory-support/recommended-practices/recommended-practice-burn-severity/in-detail/normalized-burn-ratio
https://un-spider.org/advisory-support/recommended-practices/recommended-practice-burn-severity/in-detail/normalized-burn-ratio
https://un-spider.org/advisory-support/recommended-practices/recommended-practice-burn-severity/in-detail/normalized-burn-ratio
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Fig. 4. Data stream processing for anomaly detection.

write these data on the topics. Data of the same type are written
on the same topic. Two topics have been defined: one for SVI
data and one for dNBR data. Then, the new data are processed
and streamed out by the stream processors, that are organized
according to the topology of Fig. 4. Each topic has its own stream
processor (node) into two different subgraphs rooted at the NBR
source processor and the SVI source processor that, respectively,
process dNBR and SVI data.

The NBR source processor streams out dNBR data to the NBR
classifier that performs the dNBR classification as explained in
Section IV-D. According to the classification result, if anomalies
are detected, the store triples on Fuseki node stores the data on
the detected anomaly as semantic triples on the Fuseki triple
store.

The SVI source processor node streams out SVI data coming
from satellites and UVs to the filter on negative values node, that
filters out all the positive values representing nonanomalous sce-
narios. The subsequent vegetation type processor splits ROIs in
cultivated areas and noncultivated areas, which are then handled
by two distinct processors (no crop and crop nodes). SVI values
in cultivated areas are then processed by the growing season filter
processor, that filters out data collected in nongrowing seasons.
Data on crop and noncrop areas are merged on the ROIs by
the merge node, to be finally processed by the SVI classifier
processor that checks the presence of the anomaly and its inten-
sity, as detailed in Section IV-D. In presence of anomalies, the
store triples on Fuseki processor stores the data on the detected
anomaly as semantic triples on the Fuseki triple store.

Anomalies detected on both the topics (SVI, dNBR) are finally
processed by the anomaly sink processor that writes the detected

anomalies on the anomaly topic. New anomalies written on
the anomaly topic are collected by the consumers. Consumer
outputs are read by experts on the agriculture domain working
in analysis laboratories or from agriculturists in farmhouses.

B. Case Study in Simulated Real-Time

The case study is developed on an AOI in the province of
Benevento, Italy, precisely, on three ROIs on the selected AOI.
A map of the AOI to monitor is shown in Fig. 5, with its three
ROIs coloured according to their type of environment: the light
green-colored ROI1 and the green-colored ROI2 represent two
distinct vineyards, while the ROI3 in cyan is a wooded region.

By focusing on ROI1, 327 spectral images have been acquired:
117 of them are taken from Landsat 7, 125 from Landsat 8 and 85
from Sentinel-2. Band images of interest for VI calculation are
the red, NIR, and SWIR bands. They may have been acquired
at a different wavelength and spatial resolution depending on
the satellite, as shown in Table III comparing the three satellites
involved. Sentinel-2 has different spatial resolutions for the three
bands (10 m, 20 m) involved that are way smaller than the spatial
resolution of Landsat satellites (30 m). Examples of processed
images of ROI1 from the Landsat 8 and Sentinel-2 satellites are
shown in Fig. 6 along with map of the area.

According to the system overview shown in Fig. 1 data
preparation is carried out by the preprocessing and data in-
tegration module, including satellite data harmonization. Two
of the 85 images taken from Sentinel-2 are processed to re-
move excessive cloudiness, then the coregistration, rescaling
and reprojection, BRDF correction and band adjustment tasks



884 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 5. Area to monitor: an AOI showing Solopaca vineyards in Benevento,
Italy, including three ROIs: ROI1 in light green (vineyard), ROI2 in green
(vineyard), ROI3 in cyan (woodland). The image scale is 1:100000.

TABLE III
ACQUIRED SATELLITE IMAGE DETAILS

Fig. 6. Comparison between images captured from the editor map before the
Band Adjustment phase: (a) is the ROI1 on the map; (b) is the L8 image (spatial
resolution: 30 m); (c) is S2 image (spatial resolution: 10 m).

are accomplished on the collected images. Preprocessing helps
improving the alignment between merged images coming from
different satellites, by reducing differences caused by different
spatial resolutions (see Section V-C for details on evaluations of
the preprocessing task).

For each preprocessed NDVI image in the series, the mean
NDVI is calculated as the average of the NDVI values in each
pixel of the image. Then, to extract the phenological data about
the ROI, the harmonic model described in Section IV-A is run
over the NDVI time series. As shown in Fig. 7, the harmonic
regression applied to ROI1 allows fitting the model to the NDVI
time series as composed of the mean NDVI of each image
captured in a given date (blue points) providing a curve on
the fitted values (red values) depicting the main trend of the

Fig. 7. Harmonic model over four years (from 2016 to 2020): harmonic
regression generates a fitted model (red curve) on the NDVI time series (blue
points) describing the phenological trend of the area.

Fig. 8. Harmonic patterns: comparison of fitted curves for four years (2016,
2017, 2018, 2019) over one year time (365 days).

vegetation over the analyzed years. The amplitude and phase
of this curve helps depicting changes in vegetation (i.e., curve
peaks evidence the periods of the year where vegetation grows
more). From a first glance, let us notice that the greenness has
a little dip through the years, in fact, the red curve tends to go
down a little as the years go by. A comparison of the fitted NDVI
time series from year to year is displayed in Fig. 8 that shows
some trends, such as the year with the lowest mean NDVI values
(2016) or the one with the highest values (2019), as well as the
very close NDVI time series throughout the year between 2017
and 2018. Let us notice from figure that the harmonic patterns
of the four years are similar throughout the year timeline, this
phenomenon may depend on the fact that the area was not subject
to climatic changes, did not suffer from diseases (e.g., fungal
attack or fire episodes) and the weather (temperatures, humidity,
etc.) have registered little changes from year to year. By zooming
in on the curve of Fig. 8, it is possible to see curve amplitudes
and phases, as shown in Fig. 9, which allow the system to
detect phenological data on the ROI (see Section IV-A). In this
case, two growing seasons, identified by SOS, SEN, and EOS
parameters expressed in day of the year (doy), are detected for
ROI1; they are: [SOS = 124,SEN = 203,EOS = 231], [SOS =
234,SEN = 299,EOS = 363].

Once the growing seasons have been detected, the ROIs and
their growing seasons, expressed by SOS, EOS and SEN, are
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Fig. 9. Phenological data extraction: zoom in on the fitted curve shows how
the growing seasons are selected.

encoded into triples by the ontological context building module
(see Section IV-C), and stored on Fuseki triple store. Then, the
system simulation starts with reproducing the SVI and dNBR
values stream from 01/01/2020 to 31/12/2020, for each of the
three ROIs considered.

Each satellite and UV are simulated by Kafka producers that
generate every 4 s SVI and dNBR values data from the collected
VI data, aimed at simulating the time passage (specifically, each
day lasts around 4 s). In this case study, three producers have
been defined:P1,P2,P3. TheP1 thread represents a satellite that
generates SVI values, theP2 thread simulates a UV that provides
SVI values by using a random generator and the P3 thread is a
satellite providing NBR values. These threads randomly select
data entries from the collected VI data to be sent in a day to
consumers, in accordance with the time passage simulated by the
time thread. Therefore, each time a producer generates new data,
these are written on a specific topic, according to the type of data
detected (e.g., SVI, dNBR). The streamed data are processed by
the processor topology, as detailed in Section V-A, and then,
the detected anomalies are written in output to the consumers.
In this case study, the consumer threads represent an analysis
laboratory and a farmhouse, respectively. The consumers wait
for new eventual upcoming data, and whenever anomalies are
detected, they read the ROI affected by the anomaly, the type
and intensity of the detected anomaly from the messages sent
by the producers on the SVI and dNBR topics.

The detected anomalies are notified to end-users by the con-
sumer threads. Then, the environment monitoring module allows
the end-users (e.g., experts, agronomists) to query the knowledge
base to have details on the occurred anomalies. For instance, if
the end-users want details on vegetation anomalies affecting the
vineyard ROI1 in the first growing season ([SOS = 124,SEN =
203,EOS = 231]), the system runs an ad-hoc query. This query
is shown in Listing 1, it retrieves the ordered list of detected
anomalies related to the ROI (line 14) that lie in the reference
growing season (line 11) by comparing the doy (line 18), when
the anomaly happened to the SOS and EOS of the season (lines
12, 13, 19). The returned results, reported in Table IV, show the

Listing 1: Query to get vegetation anomalies (SVI anomalies) on ROI 1.

TABLE IV
ANOMALIES ON VEGETATION OF ROI1 IN THE FIRST GROWING SEASON

TABLE V
ANOMALIES ON POST-FIRE CONDITIONS OF ROI1

IN THE FIRST GROWING SEASON

anomalies on vegetation according to the SVI value in the year
period between the doy 127 and 133. On average, the anomaly
intensity is low or medium on ROI1 according to the SVI values.
During the first growing season, no severe soil conditions are
found, as shown in Table V where the dNBR-based anomalies
detected on ROI1 are listed, by using a query similar to the
previous one.

C. Tests on Case Study Results

According to [10], the efficiency of the preprocessing stage
has been evaluated by assessing the Pearson correlation between
two overlapped images of the ROI1 with the same date and
hour, taken from Landsat and Sentinel satellites on the red,
NIR, and SWIR bands used for calculating the VIs considered.
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TABLE VI
PEARSON CORRELATION (R) ON A HARMONIZED IMAGE OF THE ROI1, COMING

OUT FROM LANDSAT AND SENTINEL INTEGRATION

For instance, the achieved results on a couple of images captured
on June are reported in Table VI, the correlation has been
evaluated at each preprocessing step, from the original data
acquisition to the band adjustment phases. Let us notice that
the correlation value increases from values between 34% and
58% on the starting data to values greater than 92% after the last
preprocessing subtasks for all the bands involved. This result
demonstrates that the preprocessing perfectly accounts for the
spatial difference between the original images taken from the
satellites and guarantees the quality of the built dataset. De-
pending on the Pearson value between images from Sentinel-2
and Landsat satellites, images can be further filtered to improve
the quality of the harmonized dataset (i.e., images with low
correlation can be filtered out).

To evaluate the accuracy of our system at detecting the
growing seasons of the ROIs from the NDVI time series, the
coefficient of determination has been calculated on the harmonic
regression results. The coefficient of determination (R2) is de-
fined in terms of the residual sums of squares (SSres) and the
total sums of squares (SStot) as follows:

SSres =
∑

i

(yi − fi)
2 (6)

SStot =
∑

i

(yi − μ)2 (7)

where y1, y2, . . . , yn are the values of the NDVI time series,
f1, f2, . . . , fn are the predictions generated by the harmonic
regression (fitted values) and μ = 1/n

∑n
i=1 yi. Therefore, R2

is calculated as follows:

R2 = 1− SSres

SStot
(8)

An R2 very close to 1 implies a good fitting curve, otherwise
the fitted curve fails in describing the vegetative growing trend.
The coefficient has been calculated on the NDVI time series
determined from the harmonized dataset (blue points in Fig. 7)
and the predicted values (red points in Fig. 7). The calculated
R2 is equal to 0.94, which means that the assessed fitted curve
(red curve in Fig. 7) perfectly describes the vegetative growing
trend of the selected area.

Since no field measurements on the selected geographical
area are available, the accuracy has been assessed by build-
ing a “Ground Truth (GT)” dataset composed of Landsat 8
high-quality images (with cloudiness coverage at 0%), manually
checked to remove any anomalous values and/or missing pixels
(due to cloud or sensor damage). The NDVI and NBR values

Fig. 10. Pearson correlation (ρ) between NDVI images of our harmonized
dataset and Landsat 8.

Fig. 11. Pearson correlation (ρ) between NBR images of our harmonized
dataset and Landsat 8.

calculated on the harmonized dataset, achieved by fusing data
from Landsat 8, Landsat 7, and Sentinel-2, have been compared
with the same indices assessed on the GT dataset, over the same
period. The use of Landsat to build the GT dataset provides
high-resolution images and accurate estimation parameters and
resolution comparable to our harmonized dataset. The similarity
between two images, one belonging to the harmonized dataset
and the other to the ground truth dataset, has been evaluated
by the Pearson coefficient (ρ). A Pearson correlation value
(|ρ|) greater than 0.7% represents a strong correlation between
two images. Therefore, the stronger the correlation, the more
accurate the NDVI-based vegetation status evaluation or the
NBR-based soil status evaluation. Pearson correlation on the
NDVI images and NBR images between the harmonized dataset
and Landsat-based ground truth dataset are reported in Figs. 10
and 11. The correlation between the harmonized dataset and
the ground truth dataset on the NDVI is constantly very strong
(ρ closer to 1) over the four years considered, except for few
values occurring in May–June 2016, early months of 2017
(January, February) and May 2017. Similarly, the correlation
on the NBR images is very strong throughout the four year
period, except in May 2016, January, February and between
May and June 2017. The achieved results demonstrate the
accuracy of the VIs assessed on the harmonized datasets, and
consequentially the reliability of our approach in the anomaly
detection.
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VI. DISCUSSION

The approach introduced several benefits to multidevice field
smart monitoring with respect to existing solutions. Exiting
semantics-based methods in literature introduce new ontologies
aligned to existing ones for knowledge representation of remote
sensing images [21], define rules to classify images exploiting
expert-knowledge [22], build knowledge on data coming from
just one satellite [7], [21], or use the ontology constructs to
help interoperability on high-level information coming from
different satellites [5]. Our approach, instead, not only interfaces
heterogeneous data through the knowledge but provides a way
to achieve a near-daily dataset of reliable images for vegetation
monitoring and a knowledge base to help anomalous vegetation
status analysis in two integration steps, one at low level and
one at the high level. In fact, first, the approach fuses, at the
row level, images coming from different satellites (Landsat
7, Landsat 8, Sentinel 2) through data harmonization, then it
builds high-level knowledge on the indices calculated from those
images to contextually relate VIs, depicts soil and vegetation
conditions, and supports anomalous vegetation status analysis
by querying the knowledge acquired. This approach provides
the chance to assess more reliable VI values calculated by fusing
data from different satellites (low-level integration) and exploit-
ing ontological knowledge to relate the indices with contextual
data (high-level integration) to reach a high-level explanation
of soil and vegetation status. Additionally, data harmonization
helps to satisfy the need for near-daily image acquisition, while
the semantic annotation provides reusable knowledge that can be
reused for a-posteriori analysis of the images, vegetation status,
and occurred anomalies.

VII. CONCLUSION

This article presents a system model for IoT-based PAto detect
anomalies in vegetation using phenological and environmental
data. The system acquires spectral images from satellites and
drones, that allow building an integrated dataset of near-daily-
acquired high-resolution images. Harmonic regression is then
applied to the images to extract phenological data about the
monitored ROIs, which are then stored on a knowledge base.
The acquired images are processed to assess VIs and field status
over time by considering historical VI series acquired over the
years. Finally, the model allows environment monitoring by
classifying the VIs that lie in the detected growing seasons. The
system introduces many benefits that support end-users (experts,
agronomists, etc.) in vegetation monitoring for anomaly detec-
tion, summarized as follows:

1) The harmonization of the spectral images allows a consoli-
dated store of near-daily high-resolution images necessary
for achieving robust evaluation and continuing monitoring
of crop fields.

2) The harmonic regression provides phenological param-
eters for assessing the growing seasons and vegetation
trends of the specific ROIs.

3) The combination of the phenological context with the his-
torical VI time series allows a more complete evaluation

of the vegetation and soil anomalies on several areas (e.g.,
crop fields, wooded areas, meadows, etc.).

4) The knowledge base describing the ROIs and their pheno-
logical and environmental context help end-users to get
appropriate data to analyze the occurred anomalies on
vegetation and soil conditions.

Future research directions will be focused on an extension of
the proposed framework to include and process data acquired
from UVs and further data sensors to achieve vegetation status
analysis through an enhanced contextual knowledge acquisition
of the scenario.
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