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MSG-SR-Net: A Weakly Supervised Network
Integrating Multiscale Generation and Superpixel

Refinement for Building Extraction From
High-Resolution Remotely Sensed Imageries

Xin Yan, Li Shen , Jicheng Wang, Xu Deng, and Zhilin Li

Abstract—Weakly supervised semantic segmentation (WSSS)
methods based on image-level labels can relieve the tedious pixel-
level annotation burden, and these methods are mainly based on
class activation maps (CAMs). However, it is challenging to gen-
erate high-quality CAMs for high-resolution remotely sensed im-
agery (HRSI). In this article, we propose a WSSS method for build-
ing extraction from HRSI using image-level labels. The proposed
method, termed as the MSG-SR-Net, integrates two novel modules,
i.e., multiscale generation (MSG) and superpixel refinement (SR),
to obtain high-quality CAMs so as to provide reliable pixel-level
training samples for subsequent semantic segmentation steps. The
MSG module is proposed to use global semantic information to
guide the learning of multiple features across different levels, and
then, respectively, to utilize multilevel features for generating mul-
tiscale CAMs. This component can effectively suppress the interfer-
ence of the class-irrelevant noise and strengthen the use of profitable
information in multilevel features. The SR module is designed
to take advantage of superpixels to improve multiscale CAMs
in target integrity and details preserving. Extensive experiments
on two public building datasets demonstrated that the proposed
modules made the MSG-SR-Net obtain more integral and accurate
CAMs for building extraction. Moreover, experimental results also
showed the proposed method achieved excellent performance with
over 67% in F1-score, and outperformed other weakly supervised
methods in effectiveness and generalization ability.

Index Terms—Building extraction, class activation map, high-
resolution remotely sensed imagery, superpixel refinement, weakly
supervised deep learning.

I. INTRODUCTION

BUILDING extraction from high-resolution remotely
sensed imageries (HRSI) plays a vital role in many
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important applications, such as population estimation, urban-
ization evaluation, and urban planning [1]. This task aims to
assign each pixel of the image as a building or nonbuilding label,
which can be regarded as a binary-class semantic segmentation
problem. However, due to the diversity of building objects and
the confusion between man-made objects (e.g., building, roads),
it is challenging to automatically extract building footprints from
HRSI.

In recent years, extensive investigations have been presented
to address this challenge, and among them, the fully convo-
lutional neural networks (FCNs) [2]–[7] based methods have
become the mainstream methods. As data-driven deep learning
methods, the FCNs rely on to some extent the sufficient training
on a large number of training images annotated with pixel-level
labels. Nevertheless, collecting large-scale pixel-level annota-
tions is very expensive and prohibitively time-consuming. On
the other hand, weak annotations, in the form of scribble-level
[8], point-level [9], bounding-box-level [10], [11], or image-
level labels [12]–[27], however, can be obtained in a relatively
cheap manner. Therefore, in this context, weakly supervised
semantic segmentation (WSSS) methods have shown a growing
potential in the domain of object extraction from HRSI. As stated
above, although weak annotations can have different forms,
in this article, we focus on pixel-level building extraction by
adopting only image-level labels, which indicates the existence
of object classes in images, and do not provide any information
about their locations or boundaries.

The WSSS based on image-level labels is very difficult,
because it needs to infer the precise spatial information only
from object presence in the images. To this end, existing works
usually rely on class activation maps (CAMs) for obtaining
object masks, and then make them into pseudolabels to train a
semantic segmentation network. Therefore, the quality of CAMs
has a crucial impact on the performance of these methods.
Nevertheless, existing methods cannot generate high-quality
CAMs for building extraction from HRSI, as they are mainly
designed for natural scene images (e.g., PASCAL VOC 2012
dataset [28]), and do not consider the characteristics of building
objects in HRSI: 1) more scale variance of building objects
in an image, 2) more complicated confusion between building
objects and background areas, and 3) the need for more accurate
boundaries of building objects.
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Considering the characteristics of building objects in HRSI,
making full use of multiple features at different levels are key to
generating high-quality CAMs for building extraction. Specif-
ically, due to the existence of subsampling layers, multilevel
features of CNNs can embed inherent multiscale information,
which are beneficial to the identification of building objects with
different sizes. Moreover, low-level features of CNNs also con-
tain much low-level information (e.g., edge information), which
can contribute to characterizing accurate boundaries of building
objects. Therefore, many researchers have tried to generate
CAMs utilizing multilevel features of CNNs [29], [30]. MS-
CAM [29], first, adopted convolution and up-sample operations
to extract available multilevel features, and then designed a fully
connected layer with an attention mechanism to enhance the
significant informative features and suppress less useful ones.
WSF-Net [30] utilized the top-down architecture with skip con-
nections to progressively merge different level features of CNNs.
Benefiting from the use of multilevel features, these methods
enhanced the quality of CAMs to some extent. However, there
exist much complicated confusion between building objects and
background areas in HRSI, which may result in accompanying
class-irrelevant noises in low-level features of CNNs (e.g.,
too much noisy texture). And these class-irrelevant noises can
impair the quality of CAMs. Yet, these methods ignored this
issue.

With the aforementioned considerations in mind, in this arti-
cle, we propose a weakly supervised method for building extrac-
tion from HRSI using image-level labels. The proposed method
integrates two novel modules, i.e., multiscale generation (MSG)
and superpixel refinement (SR), into a unified framework to ob-
tain high-quality CAM for reliable pseudolabels generation. The
MSG module is proposed to use global semantic information to
guide the learning of multiple features across different levels,
and then, respectively, to utilize multilevel features for generat-
ing multiscale CAMs. This component can effectively suppress
the interference of the class-irrelevant noise and strengthen the
use of profitable information in multilevel features. The SR
module is designed to take advantage of superpixels to improve
multiscale CAMs in target integrity and details preserving. A
superpixel is defined as a group of similar neighboring pixels
clustered based on low-level features, such as color histograms
and texture features, so superpixels can effectively separate
building objects from surrounding background areas, and can
also preserve edge details of building objects. Therefore, the
fusion of the two modules can ensure the generation of high-
quality CAMs, and so as to provide reliable pixel-level training
samples for subsequent semantic segmentation steps.

The rest of this article is organized as follows. Related work is
reviewed in Section II. The introduction of the proposed method
and its components are detailed in Section III. The performance
of the proposed method is evaluated in Section IV. Finally,
Section V concludes this article.

II. RELATED WORKS

A. Building Extraction With CNNs

Extensive investigations have been presented for building
extraction based on convolutional neural networks (CNNs)

owing to their capacity in hierarchical feature learning. Early
studies [31], [32] have achieved pixel-level results through a
classification network using the sliding window or superpixel.
These methods determined a pixel’s label by using CNNs to clas-
sify its corresponding sliding window or superpixel. However,
these strategies are time-consuming, and ignore the relation-
ship between different sliding windows or superpixels. Soon
afterwards, fully convolutional network (FCN) [2] has been
proposed, by extending the original CNN structure to enable
dense prediction and efficiently generating pixel-level segmen-
tation results. Since then, a variety of FCN-based networks have
been developed, such as SegNet [3], U-Net [4], and DeepLab
[5]–[7], [33], and also have been applied to building extraction
from remote sensing images. However, all FCN-based networks
need a large number of pixel-level labels, and collecting such a
training dataset is time-consuming and expensive.

B. Weakly Supervised Semantic Segmentation Based on
Image-Level Labels

To relieve the cost of pixel-level labeling, weakly supervised
semantic segmentation methods based on image-level labels
have been studied in recent years. Early methods trained the
segmentation network based on prior assumptions about the
class distribution from image-level labels, such as multiple
instance learning [13], [14] or expectation-maximization for-
mulation [15], [16]. Recently, the methods [17]–[19] utilized
pretrained classification networks to generate CAMs for ob-
taining object masks. Most of existing methods [17]–[28] are
based on CAMs to obtain object masks as pseudo labels, and
then train a semantic segmentation network on the pseudolabels.
However, CAMs generated by the methods [17]–[19] only acti-
vate coarse object regions, which cannot be used for training an
accurate segmentation network. Therefore, subsequent methods
aimed at obtaining CAMs for covering more integral regions of
objects.

Some researchers have tried to expand CAMs into integral
and accurate regions. SEC [25] designed three losses, i.e., seed
loss, expand loss, and constrain loss. DSRG [26] proposed to
dynamically expand CAMs based on pseudolabels from CAMs
by region growing. AffinityNet [34] used CAMs as pseudolabels
and utilized pixel affinity to expand CAMs. IRNet [27] generated
class boundary maps and displacement fields from CAMs and
utilized them to expand CAMs. BENet [35], first, synthesized
boundary annotations by exploiting CAMs, and then trained on
the annotations for excavating more object boundaries to provide
constraints for the segmentation model. However, these methods
still start from initial CAMs, and they learn and expand based on
initial CAMs. If initial CAMs only focus on the discriminative
parts of buildings or even cover many nonbuilding regions, it
is difficult to expand CAMs into integral and accurate regions
of buildings. Therefore, the quality of the CAMs has a crucial
impact on the performance of these methods.

Other researchers have made improvements in generating
CAMs. AE-PSL [20] adopted an iterative erasing strategy to
capture complementary regions. SPN [21] adopted superpixel
pooling to generate more integral regions. MDC [22] used
multiple convolutional layers with different dilation rates to
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Fig. 1. Framework of the proposed MSG-SR-Net.

expand the activated regions. FickleNet [23] randomly dropped
connections in each sliding window and then merged multiple
inference results. SEAM [36] forced CAMs predicted from the
same images after various transformations to be consistent, to
generate more consistent and integral object regions. CIAN
[37] exploited cross-image affinity containing same class ob-
jects to obtain more consistent object regions. Splitting versus
Merging model [38] proposed two losses, i.e., discrepancy loss
and Intersection loss, for optimizing the classification model
to obtain integral object regions. Although these methods have
made improvements in generating CAMs, most of them only
focus on the highest feature maps of CNNs, ignoring low-level
detailed information, and thus, often generate relatively coarse
CAMs. Yet, the coarse CAMs could misclassify surrounding
background regions as the object class, and are also unable
to obtain integral regions and accurate boundaries of objects.
Therefore, many researchers have tried to generate CAMs using
multilevel features of CNNs [29], [30]. MS-CAM [29], first,
adopted convolution and up-sample operations to extract avail-
able multilevel features and then designed a fully connected
layer with an attention mechanism to enhance the significant
informative features and suppress less useful ones. WSF-Net
[30] utilized a top-down architecture with skip connections to
progressively merge different level features of CNNs. However,
when utilizing multilevel features, these methods ignored that
low-level features of CNNs also contain much class-irrelevant
noise (e.g., too much noisy texture), which would impair the
quality of CAMs.

In this article, our main contribution is to improve the quality
of generated CAMs for building extraction by integrating two
novel modules, i.e., the MSG and the SR.

III. PROPOSED METHOD

In this section, we introduce the proposed weakly supervised
building extraction method. It includes two sequential stages:
obtaining CAMs via image-level labels, and training a building
extraction model with CAMs. During the first stage, we first
train a classification network based on image-level labels, then
generate CAMs by using the trained classification network, and
further improve CAMs. Then, in the second stage, we process
improved CAMs into pseudolabels, and train a segmentation
model based on the pseudolabels.

The proposed network, termed as the MSG-SR-Net, is com-
prised of two modules (i.e., the MSG and the SR). As shown
in Fig. 1, it is a universal design framework, which carries out
a straightforward extension of any classification-based network
architecture. Besides, it allows for exploiting pretrained classifi-
cation models for parameter preconditioning. The MSG-SR-Net
is proposed to obtain integral and accurate CAMs. We will give
detailed presentation about the MSG and the SR in Section III-A
and III-B, respectively. The obtained high-quality CAMs are
used for training a building extraction model. For obtaining bet-
ter building extraction results, we adopt a reliable label selection
strategy, which selects confident regions in CAMs for training
and ignores uncertain regions. We will introduce this part in
Section III-C.

A. Multiscale Generation Module

The MSG module is proposed to adequately utilize profitable
information in multilevel features for generating multiscale
CAMs. Aimed at eliminating class-irrelative noise in features
and avoiding the overuse of high-level semantic information,
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Fig. 2. Multiscale generation module.

the MSG encodes the class-specific semantic information into
multilevel features, and then separately utilizes multilevel fea-
tures to generate multiscale CAMs, as illustrated in Fig. 2.

The MSG comprises multiple CAMs generation units (CG-
Unit), which are used to capture multilevel features, as shown in
Fig. 2(a). Each CG-Unit consists of a 1 × 1 convolution layer,
followed by a batch normalization layer with a rectified linear
unit layer, and a general classification layer, as illustrated in
Fig. 2(b). Specifically, a 1 × 1 convolution kernel is employed
to integrate inputted feature maps into new embeddings for the
benefit of image classification. The rectified linear unit layer is
adopted because we only focus on features that have a positive
influence on classification. Subsequently, the filtered features
are inputted into a general classification layer, including a globe
average pooling layer and a fully connected layer. Finally, the
output of the CG-Unit is a tensor, which represents the predicted
score of each class. In the training phase, the output is used to cal-
culate a classification loss. In particular, the cross-entropy loss is
adopted in this article. Minimizing the classification loss guides
multiples features at lower levels to encode the global semantics,
thus eliminating class-irrelative noise mixed in features.

Then, in the inference phase, we can exploit multilevel fea-
tures without class-irrelative noise to generate CAMs. The CAM
for each category is obtained by a set of selected feature maps
and corresponding weights. We adopt the Grad-CAM++ tech-
nique [19] to calculate multiple CAMs with multilevel features,
which are separately from different CG-Units. In detail, for
each CG-Unit including a C categories classification layer,
let a set of corresponding-level feature maps be expressed as
Ω = {F 1, F 2, . . . , F k, . . . , Fn} , where n is the number of
channels and F k ∈ Rh×w corresponds to each feature map with
h× w pixels. We represent the contribution score of the kth
feature map on the specific class c as wc

k. So, the spatial location
(i, j) in a class-specific CAM Ac is calculated as

Ac
i,j =

∑
k

wc
k · F k

i,j . (1)

According to Grad-CAM++ technique, wc
k is calculated by

wc
k =

∑
i

∑
j

αk,c
i,j · relu

(
∂Y c

∂F k
i,j

)
(2)

where Y c represents the classification score for class c and
αk,c
i,j represents the gradient weights at the spatial location (i, j)

for the specific class c on the feature map F k, which can be
formulated as

αk,c
i,j =

∂2Y c

(∂Fk
i,j)

2

2 ∂2Y c

(∂Fk
i,j)

2 +
∑

a

∑
b F

k
a,b ·

{
∂3Y c

(∂Fk
i,j)

3

} . (3)

Here, both (i, j) and (a, b) are iterators over the same class-
specific CAM Ac and are used to avoid the confusion.

In practice, we adopt ResNet-50 [39] as the basic architec-
ture, and we select multilevel features from stages 1–4. Cor-
respondingly, the MSG consists of four CG-Units, which are,
respectively, added at the end of each stage. So, we compute
four losses in all, and the overall loss is computed as the sum
of these losses. Through training with the MSG and the overall
loss, we can obtain features of four levels without class-irrelative
noise. And in the inference phase, we obtain multiscale CAMs
separately generated by four CG-Units and corresponding-level
feature maps.

After the abovementioned procedures, CAMs of four scales
are calculated. CAMs from low-level features capture more
detailed information, while CAMs from high-level features fo-
cus on rough building areas, as depicted in Fig. 2(a). Finally,
adopting the fusion strategy proposed in [22], we merge multi-
scale CAMs into final CAMs by A = 1

3 Σ3
i = 1Ai +A4, where

Ai (i = 12, 34) represents CAMs of four scales. In the merged
CAMs, nonbuilding areas are suppressed, while building regions
are sharply highlighted, as shown in Fig. 2(a).

B. Superpixel Refinement Module

When the MSG is devised to exploit multilevel features for
generating CAMs, the SR module is proposed to improve CAMs
for better ensuring accurate boundaries and local consistency,
i.e., nearby pixels with similar appearance should share the same
label.

A superpixel clusters a group of similar pixels in a neigh-
borhood according to some low-level feature-based rules, so
it can effectively separate building objects from surrounding
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Fig. 3. Illustration of the SR module.

background areas, and can also provide edge information of
building objects. To take advantage of this characteristic, the
SR module is designed in this article, as illustrated in Fig. 3.
The merged CAMs A ∈ RW×H and their original image I ∈
RW×H×C are inputted into the SR, where W denotes width, H
denotes height, and C denotes the number of channels. First,
based on the original image, we adopt the SLIC algorithm
[40] to generate its corresponding superpixel map S ∈ MW×H .
M = [1, N ] indicates the sign of superpixels, and Si,j = n
represents that the pixel at location (i, j) belongs to the nth

superpixel. Then, for each pixel in the same superpixel, the
average of their building scores is assigned as the final score.
In summary, the CAM improved by the SR is expressed as
On = mean{An

i,j |(i, j) : Si,j = n, n ∈ [1, N ]}.

C. Building Extraction Model

Based on the procedures described previously, integral and
accurate CAMs can be generated based on sample images with
image-level labels. And then, we adopt a reliable label selection
strategy to use the CAMs for training the building extraction
network in a fully supervised manner.

First, we make CAMs into pseudo pixel-level labels. The
CAMs suggest that the higher the score value is, the higher
the likelihood of the area belonging to building class will be,
while the lower the value is, the higher the likelihood of the area
belonging to nonbuilding class will be. Meanwhile, when the
score value lies in the middle, the area could belong to building or
nonbuilding class. Consequently, to utilize more reliable labels
for training a segmentation model, we divide pixels into three
groups: 1) building class, 2) nonbuilding class, and 3) uncertain
class. We, first, normalize the values of score maps into the range
of [0, 1]. Then, a high prior threshold of 0.5 is set, and pixels
higher than 0.5 are regarded as building class, whereas pixels
lower than a low prior threshold of 0.2 are regarded as non-
building class. Particularly, we divide pixels with the score value
between 0.2 and 0.5 as the uncertain class, which will be ignored

in the training stage. Until now, pseudolabels Y ∈ (01, 2)W×H

are generated for training the building extraction model, where 0
for nonbuilding class, 1 for building class, 2 for uncertain class,
respectively.

We train our building segmentation model based on pseudola-
bels. DeepLabv3+ [7], one of the most popular fully supervised
segmentation models, is selected as our building segmentation
model, and the cross-entropy loss function is used as its objective
function. For our pseudolabels, the loss is expressed as

L = −
∑

(i,j)∈Φb

log
(
P b
i,j

)
|Φb| −

∑
(i,j)∈Φn

log
(
Pn
i,j

)
|Φn| (4)

where Φb = {(i, j)| Yi,j = 1}, Φn = {(i, j)| Yi,j = 0} are
pixel sets of building and nonbuilding, respectively,P b

i,j ,Pn
i,j are

the building probability and nonbuilding probability predicted
by the model for pixel (i, j). Especially, pixel sets of uncertain
class are ignored in the training stage. Optimizing on the loss
function means minimizing the difference between the real value
and predicted value of the model, so that the model can classify
building pixels and nonbuilding pixels, and even learn to identify
whether pixels of uncertain class in pseudolabels belong to
building class or not.

IV. EXPERIMENTS

A. Experimental Setting

1) Datasets: We evaluate the proposed method on two pub-
lic building datasets that are popular for evaluating building
extraction methods, i.e., the WHU building dataset [41] and
the InriaAID building dataset [42]. The two building datasets
cover varied urban landscapes, where there are various and
versatile architecture types of buildings with different colors,
sizes, and usage. Therefore, they are ideal study data to evaluate
the effectiveness and robustness of building extraction methods.

The WHU aerial imagery building dataset is a large, high-
resolution, accurate, and open-source building dataset consisting
of 8189 images with RGB bands. Each image has a size of 512×
512 pixel and a 0.3-m spatial resolution. The dataset is divided
into three parts: 1) a training set of 4736 images, 2) a validation
set of 1036 images, and 3) a testing set of 2416 images.

Because the original WHU building dataset is created for
fully supervised building extraction, we process it into a weakly
supervised segmentation dataset. We keep the original division
into training, validation, and testing dataset. With a sliding step
size of 128, we crop the images into image blocks with a size
of 256 × 256. For the training set, which is for training our
weakly supervised building extraction method based on image-
level labels, we label the blocks without any building pixels
as negative samples and annotate the blocks, whose building
coverage rate is over 15%, as positive samples for training
stability. In total, 34 142 blocks and corresponding image-level
labels are collected for training. For the validation and testing
set, which is, respectively, to determine the hyperparameters
of the method and to evaluate building extraction performance,
the origin pixel-level labels are retained. In total, 9315 blocks
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are collected for validation and 21717 blocks for testing, with
corresponding pixel-level labels.

The InriaAID building dataset in Chicago consists of 36
aerial images with RGB bands. Each image has a size of 1500
× 1500 pixel and a 0.3-m spatial resolution. This dataset is
labeled in pixel-level into two semantic classes: building class
and nonbuilding class.

For the InriaAID building dataset, we first divide it into three
parts: a training set of 24 images, a validation set of four images,
and a testing set of eight images. Then, we process it into a
weakly supervised learning dataset using the same strategies
as the WHU dataset. With a sliding step size of 128, we crop
the images into image blocks with a size of 256 × 256. Then,
we label the blocks without any building pixel as negative
samples and annotate the blocks, whose building coverage rate
is over 15%, as positive samples. For the training set, 28925
blocks and corresponding image-level labels are collected for
training. For the validation set and testing set, 6084 blocks and
12 168 blocks are, respectively, collected, with corresponding
pixel-level labels.

2) Network Settings: The proposed MSG-SR-Net is imple-
mented in the PyTorch [43] platform. We adopt ResNet-50 [39]
as our backbone, which is pretrained by the ImageNet dataset
[44], and modify it according to the design of the proposed
network. We use the SGD optimizer with momentum 0.9 and
weight decay 5e−4. The initial learning rate is 0.01 and is poly
decayed by power 0.9 every epoch. We train the model with batch
size 24 for 50 epochs. The training images are augmented by
random horizontal flipping, color jittering, and random rotation
between −90° and 90°.

For our final building extraction model, we adopt the
DeepLabv3+ network, which adopts ResNet-101 as the back-
bone and is pretrained by the PASCAL VOC 2012 dataset
[28]. For the building extraction model, we also use the SGD
optimizer with momentum 0.9 and weight decay 5e−4. The
initial learning rate is 0.01 and is poly decayed by power 0.9
every epoch. The batch size is set as 32, and the training time is 10
epochs. The final building extraction model is also implemented
in the PyTorch platform.

3) Quantitative Metrics: We select several comprehensive
metrics for evaluating the quality of our pixel-level building
extraction including overall accuracy (OA), intersection-over-
unions (IOU) score, and F1 score. In order to adhere to defi-
nitions used in the literature, we call building class as positive
class and nonbuilding class as negative class. The metrics are
calculated as

OA =
TP+ TN

TP + TN+ FP + FN
(5)

IOU =
TP

TP + FN+ FP
(6)

F1 = 2× Prec× Rec

Prec + Rec
(7)

where TP, TN, FP, FN represent true positives, true nega-
tive, false positive, and false negative, respectively; Prec and
Rec, respectively, represent Precision rate and Recall rate,

TABLE I
QUANTITATIVE RESULTS OF ABLATION EXPERIMENTS FOR EACH MODULE OF

THE PROPOSED METHOD

calculated by

Prec =
TP

TP + FP
(8)

Rec =
TP

TP + FN
. (9)

B. Performance Evaluation

The pipeline of our weakly supervised building extraction
method based on image-level labels includes: 1) obtain CAMs
via image-level labels and 2) train building extraction model
with CAMs in a fully supervised manner. Since the proposed
network mainly improves on the first step, so to show the
effectiveness of our proposed network for obtaining CAMs,
model analysis with each proposed module and comparison with
other weakly supervised methods are reported. Especially for
quantitative analyses of CAMs, a threshold is set on CAMs to
obtain segmentation results, and then quantitative analyses are
obtained by comparing segmentation results with ground truth
labels. Besides, we also compare our building extraction model
with models obtained by other weakly supervised methods.

The proposed method mainly make improvement in gener-
ating CAMs, so five existing weakly supervised segmentation
methods, which are similarly aimed at generating CAMs are
adopted for comparison: 1) CAM method [17], 2) GradCAM++
method [19], 3) WILDCAT method [45], 4) superpixel pooling
network (SPN) [21], and 5) SEAM method [36]. Note that for
all the weakly supervised methods, we follow the same pipeline
as our method.

C. CAM Results

1) Ablation Study: To illustrate the effectiveness of our pro-
posed modules in the MSG-SR-Net for obtaining CAMs, we
carry out ablation experiments on both the WHU building dataset
and the InriaAID building dataset. First, we remove both the
MSG and the SR from the MSG-SR-Net, and thus, obtain a
simplified network as our baseline method, which is exactly the
GradCAM++ method. Second, only the MSG is added into
the baseline method, and the obtained network is termed as
the baseline+MSG method, which is specifically designed to
analyze the impact of the MSG. Third, we only add the SR into
the baseline method, creating the baseline+SR method, which
is specifically designed to assess the effectiveness of the SR.
Finally, we add the SR into the baseline+MSG method, exactly
obtained the proposed unified network.
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Fig. 4. Qualitative results of ablation experiments for each module of the
proposed method.

The quantitative results listed in Table I demonstrate that the
proposed method achieved the best performance, and both of
the proposed two modules make improvements in generating
CAMs. It can be seen that the incorporation of the MSG alone
or the SR alone can gain a quite considerable improvement.
With the help of the SR, the baseline+SR method outper-
forms the baseline method in all the metrics on both building
datasets. It is not surprising because the SR can improve CAMs
on accurate boundaries and local consistency. Comparing the
baseline+MSG method with the baseline method, the MSG
yields the improvement of 7.25 points in overall accuracy, 10.2
points in IOU-score, 9.48 points in F1-score on WHU building
dataset, and 5.1 points in IOU-score, 4.69 points in F1-score
on InriaAID building dataset. We argue that this is because
the MSG can eliminate class-irrelative noise in features and,
thus, take advantage of multilevel features to generate multiscale
CAMs. And multilevel features, especially low-level features,
can contribute to generating high-quality CAMs. Moreover,
through the comparison between the baseline+MSG method and
the proposed method, we also can see that the addition of the SR
further improves performance on two building datasets. Finally,
the integration of two novel modules makes the proposed method
outperform the baseline method by an extremely significant
margin on both two datasets, in detail, 7.68 points in overall
accuracy, 10.99 points in IOU-score, 10.17 points in F1-score
on WHU building dataset, and 5.57 points in IOU-score, 5.11
points in F1-score on InriaAID building dataset.

For an all-around comparison, we show the benefit of the
MSG and the SR qualitatively in Figs. 4 and 5. We can see
that CAMs generated by the baseline method focus on the most
discriminative parts of buildings, shown in Fig. 4(b); whereas

Fig. 5. More detailed qualitative results of ablation experiments for each
module of the proposed method.

Fig. 6. Qualitative results of multiscale CAMs from stages1–4 (a) without the
MSG or (b) with the MSG, and fusion CAMs.

benefiting from both modules, the proposed method can ob-
tain more integral and accurate building regions, as shown in
Fig. 4(e). And the more detailed comparison, as shown in Fig. 5,
shows that by introducing the MSG, the baseline+MSG method
can perform better in obtaining integral regions of buildings
and identifying nonbuilding areas around buildings. The repre-
sentative examples can also be found in the second and fourth
rows of Fig. 5. Besides, comparing between Fig. 4(b) and (c),
or (d) and (e), we can observe that due to the SR, the CAMs in
Fig. 4(c) or (e) can obtain more accurate boundaries of buildings
and suppress nonbuilding disturbance. The more representative
examples can also be found in the first and third rows of Fig. 5.
This means that the SR can further improve CAMs in building
boundaries, regardless of the improvement of the MSG.

2) Effect of MSG Module in Utilizing Multilevel Features:
In terms of both visual and quantitative results, the MSG gains
a quite significant improvement in obtaining CAMs. To better
understand the effectiveness of the MSG, we carry out further
experiments. In Fig. 6, we, respectively, show a) multiscale
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TABLE II
QUANTITATIVE RESULTS OF CAMS WITH DIFFERENT MULTISCALE METHODS

Fig. 7. Qualitative results of CAMs obtained by different multiscale methods.

CAMs without the MSG and b) multiscale CAMs with the
MSG and their fusion CAMs. Multilevel features used for two
kinds of CAMs are the same, all from stages 1–4 in ResNet-50.
As depicted in Fig. 6, it is obvious that low-level features
reveal more spatial details such as edge and texture information.
Especially, as shown in Fig. 6(a), in the origin CAMs from
low-level features without the MSG, such as the CAMs from
stages 1 and 2, there exists much class-irrelevant noise, which
can interfere with building extraction. Compared with Fig. 6(a),
Fig. 6(b) manifests the effectiveness of the MSG in eliminating
class-irrelevant noise in CAMs, which makes CAMs focus on
building regions. Moreover, in the fusion CAMs, misclassified
nonbuilding areas are further suppressed, while building regions
are sharply highlighted.

Besides, Table II and Fig. 7 compare the performance of
different multiscale methods for generating CAMs. Obviously,
the MSG obtains the best performance of CAMs in terms of
both quantitative assessment and qualitative inspection. As seen
in Fig. 7, MS-CAM confuses some roads with building regions,
and WSF-Net cannot separate different building objects with
surrounding background areas. Instead, the MSG module is able
to obtain accurate building regions with only a small amount
of background noise involved. Besides, the MSG can better
characterize accurate boundary details, which is different from
other methods. It also should be noted that although all these

TABLE III
QUANTITATIVE RESULTS OF CAMS REFINED BY THE SR AND DENSE CRF

(CAM∗ REPRESENTS CAMS OBTAINED BY THE BASELINE+MSG METHOD)

Fig. 8. Qualitative results of CAMs refined by the SR and dense CRF.

multiscale methods can improve the performance of CAMs on
the WHU dataset, the MS-CAM performs quite badly on the Inri-
aAID dataset, indicating its weak generalization ability. By com-
parison, the MSG and the WSF-Net show better generalization.

3) Effect of the SR in Refining CAMs: The results in Table III
and Fig. 5 show the performance of the SR in refining CAMs.
To better understand the effectiveness of the SR, we compare
it with the state-of-the-art postprocessing method, dense CRF
[46]. The experiments, as illustrated in Fig. 8, demonstrate that
dense CRF can refine CAMs to some extent, but its performance
is not stable enough. To be specific, for the scenes where building
region are significantly different from background areas, CAMs
can be refined quite well by dense CRF into integral building
regions with accurate boundaries, as shown in the second col-
umn and fifth column of Fig. 8. But the dense CRF can also
confuse building objects with other surrounding objects (e.g.,
cars and roads). For example, as shown in the first column and
third column of Fig. 8, many cars and roads are misclassified
as building class. Besides, some building regions identified in
CAMs can be filtered out by dense CRF refinement, as shown in
the fourth column of Fig. 8. Therefore, to sum up, the dense CRF
postprocessing method may result in a significant decreased
accuracy for building extraction. As shown in Table III, the
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TABLE IV
QUANTITATIVE COMPARISON OF CAMS WITH THE PROPOSED METHOD AND

OTHER METHODS

Fig. 9. Qualitative results of CAMs with the proposed method and other
methods.

IOU-score drops after dense CRF refinement from 51.85% to
45.49% on the WHU dataset. Different from dense CRF, the SR
module can stably improve CAMs for diverse building scenes.
As shown in the Fig. 8, it can refine CAMs to better ensure
accurate boundaries and local consistency for different scenes.
And the results in Table III also demonstrate that it can consis-
tently improve CAMs quantitatively in the extraction accuracy.
Therefore, the SR is more suitable to refine CAMs for building
extraction in high-resolution remotely sensed imageries.

4) Comparison With Other Weakly Supervised Methods: In
Table IV and Fig. 9, we show the performance of our proposed
method on generating CAMs quantitatively and visually, com-
pared with other weakly supervised methods. From Table IV,
we can see that our proposed method achieves over 50% in
IOU-score, 67% in F1-score on both WHU dataset and Inri-
aAID dataset, and outperforms most of other weakly super-
vised methods by an obvious margin. Especially, the SEAM
method achieves similar performance to our proposed method
in IOU-score and F1-score on WHU dataset and in overall
accuracy on InriaAID dataset, but considering all the metrics,
the proposed method performs better. As shown in the visu-
alization results of Fig. 9, the proposed method can obtain
more integral regions of buildings than the CAM method and
GradCAM++ method. Particularly, as shown in the second and
fourth rows of Fig. 9, it is obvious that the proposed method suc-
cessfully separates adjacent buildings, whereas other methods
including WILDCAT, SPN, SEAM, misclassify many back-
ground regions around buildings. This happened because both
proposed modules make our method more effectively exploit
multilevel features, particularly low-level features, to generate

TABLE V
COMPARISON OF QUANTITATIVE RESULTS ON THE WHU DATASET

TABLE VI
COMPARISON OF QUANTITATIVE RESULTS ON THE INRIAAID DATASET

CAMs, and multilevel features (e.g., texture) can help to classify
diverse building objects and distinguish between nonbuilding
and building regions. Moreover, from the first row of Fig. 9, it
can be seen that the proposed method also obtains more accurate
boundaries of buildings. The reason is that the MSG and the SR
can effectively utilize rich detailed information of multilevel fea-
tures and the characteristic of superpixels, which both contribute
to obtaining accurate edge information of buildings.

D. Building Extraction Results

In this section, we verify the effectiveness of our building
extraction model, compared with models obtained by other
weakly supervised methods using image-level labels. For further
illustrating the robustness of our building extraction model, we
evaluate it on two public building datasets, which contain various
building objects with different colors, sizes, and usage.

1) Results on the WHU Building Dataset: The comparison
results of our proposed method and other methods on the WHU
building dataset are provided in Table V. Our building extraction
model obtains an excellent performance of 92.18% in overall
accuracy, 56.69% in IOU-score, 72.36% in F1-score on the
validation dataset, and 91.81% in overall accuracy, 53.66%
in IOU-score, 69.84% in F1-score on the test dataset. The
comparison results in Table V also indicate that our model can
outperform most compared models with an obvious margin, and
the SEAM model can have a similar performance to ours. SEAM
model performs slightly better on the test dataset than ours in
the metrics of IOU-score and F1-score, but our model performs
better in the OA metric.

In Fig. 10, the segmentation results on the WHU dataset
for different methods are visualized for a better inspection.
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Fig. 10. Comparison of qualitative results on the WHU dataset.

Fig. 11. Comparison of qualitative results on the InriaAID dataset.

Obviously, compared to other weakly supervised methods, our
model performs better in integrity and accurate boundaries of
buildings, and a representative example can be found in the
first row of Fig. 10. Moreover, our model also can accurately
distinguish different building objects. For example, as shown
in the fourth row of Fig. 10, our model successfully separates
adjacent buildings, where the background areas between the
two buildings severely interfere with the predictions from other
methods. Compared with ground truth labels, there are still

some misclassified pixels in the results of our proposed method,
however, which are less than other weakly supervised methods.

2) Results on the InriaAID Building Dataset: We also carry
out experiments on the InriaAID dataset, to further evaluate
the effectiveness and the generalization ability of our proposed
weakly supervised method on building extraction. The quanti-
tative comparison of the InriaAID dataset is listed in Table VI,
and the visualization results are also shown in Fig. 11. From
the visualization results in Fig. 11, it is obvious that our model



1022 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

performs better in integral and accurate regions of buildings. We
argue that the reason is that the performance of the final building
extraction model is strongly related to the quality of CAMs. Ac-
cording to the analysis about the performance of CAMs, benefit
from the MSG and the SR, the proposed method is capable of
generating more accurate and integral CAMs. Therefore, our
building extraction model trained on these high-quality CAMs
can obtain more excellent extraction results.

According to Table VI, our building extraction model achieves
the top performance of over 85% in overall accuracy on both
validation and test dataset. As for the metrics of IOU-score and
F1-score, our model reaches over 55% and 70% on both the
validation dataset and the test dataset. Slightly different from the
results on the WHU dataset, the proposed method can perform
favorably against all the other compared methods on the Inri-
aAID dataset, including the SEAM model, which has a similar
performance to ours on the WHU dataset. It is not surprising
because the InriaAID dataset contains more diverse building
objects and more adjacent buildings, as shown in the first column
of Fig. 11. And due to lack of multiscale information, most
compared methods have an unsatisfactory performance on this
kind of buildings, while benefit from the MSG and the SR, the
proposed method can take advantage of multilevel features and
superpixels, which contribute to separating adjacent buildings,
and classifying diverse building objects with different sizes and
types. Therefore, the proposed method can have more excellent
and more robust performance.

V. CONCLUSION

In this article, we proposed the MSG-SR-Net to generate
high-quality CAMs for weakly supervised building extraction
based on image-level labels, which integrates multiscale CAMs
and SR. Extensive experiments on two building datasets, i.e., the
WHU building dataset and the InriaAID building dataset, show
that the proposed MSG-SR-Net can identify accurate building
regions and achieve excellent building extraction performance.
Moreover, qualitative and quantitative analysis results verified
that the proposed two novel modules, i.e., the MSG and the
SR, can effectively utilize multilevel features of CNNs and
the characteristic of superpixels, and thus, enable more precise
weakly supervised building extraction. Ablation studies for the
two modules convincingly demonstrated that the MSG can
eliminate class-irrelative noise in features and adequately utilize
multilevel features for generating multiscale CAMs, and the
SR can further improve CAMs in target integrity and details
preserving. Besides, through performance evaluation on two
datasets, we demonstrate that our building extraction model
obtained by the proposed MSG-SR-Net can achieve excellent
building extraction performance and outperform other weakly
supervised methods in the effectiveness and the generalization
ability on building extraction.
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