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CGSANet: A Contour-Guided and Local
Structure-Aware Encoder–Decoder Network for

Accurate Building Extraction From Very
High-Resolution Remote Sensing Imagery
Shanxiong Chen , Wenzhong Shi , Mingting Zhou , Min Zhang , and Zhaoxin Xuan

Abstract—Extracting buildings accurately from very high-
resolution (VHR) remote sensing imagery is challenging due to
diverse building appearances, spectral variability, and complex
background in VHR remote sensing images. Recent studies mainly
adopt a variant of the fully convolutional network (FCN) with
an encoder–decoder architecture to extract buildings, which has
shown promising improvement over conventional methods. How-
ever, FCN-based encoder–decoder models still fail to fully utilize the
implicit characteristics of building shapes. This adversely affects
the accurate localization of building boundaries, which is partic-
ularly relevant in building mapping. A contour-guided and local
structure-aware encoder–decoder network (CGSANet) is proposed
to extract buildings with more accurate boundaries. CGSANet is
a multitask network composed of a contour-guided (CG) and a
multiregion-guided (MRG) module. The CG module is supervised
by a building contour that effectively learns building contour-
related spatial features to retain the shape pattern of buildings. The
MRG module is deeply supervised by four building regions that
further capture multiscale and contextual features of buildings.
In addition, a hybrid loss function was designed to improve the
structure learning ability of CGSANet. These three improvements
benefit each other synergistically to produce high-quality building
extraction results. Experimental results on the WHU and NZ32km2
building datasets demonstrate that compared with the tested algo-
rithms, CGSANet can produce more accurate building extraction
results and achieve the best intersection over union value 91.55%
and 90.02%, respectively. Experiments on the INRIA building
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dataset further demonstrate the ability for generalization of the
proposed framework, indicating great practical potential.

Index Terms—Building extraction, fully convolutional network
(FCN), hybrid loss function, multitask learning, very high
resolution (VHR) remote sensing imagery.

I. INTRODUCTION

BUILDINGS are one of the main artificial objects on the
earth. Extracting buildings automatically and accurately

from remote sensing data is of great significance in cadastral
mapping, disaster management, urban monitoring, and many
other geospatial applications [1], [2]. Remote sensing enables
users to collect data with coverage over extensive areas re-
peatedly and efficiently. Furthermore, with advances in remote
sensor technologies, very high-resolution (VHR) remote sensing
data can be acquired, making it possible to ameliorate the qual-
ity of the detected building boundaries. However, in practical
applications, automatic and accurate building extraction from
VHR remote sensing data is still challenging [3]. Buildings
come in varied shapes, sizes, heights, locations, and materi-
als, leading to large intraclass differences but small interclass
variances. Therefore, developing automatic and robust methods
for extracting buildings from VHR remote sensing data is a
nontrivial and meaningful task in the remote sensing commu-
nity. Several attempts have been made to extract discriminative
features to distinguish buildings from nonbuildings. Thus, the
existing building extraction methods can be roughly sorted into
manually designed feature-based algorithms and deep-learning
(DL)-based algorithms.

Manually designed feature-based building extraction methods
mainly rely on hand-crafted features, intuitively utilizing the
implicit or inherent characteristics of buildings. These are based
on low-/mid-level features, such as geometric features (e.g.,
key points [4], lines [1], and contours [5]), spatial-spectral fea-
tures [e.g., morphological building index (MBI)] [6], contextual
features (e.g., shadows) [7], shape features [8], and structure
features [9] or object-level features [10]. These methods can
extract buildings in a specific task. Still, they can hardly capture
high-level semantic information, leading to poor performance
in complex scenarios, which is now a more normal situation,
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especially in VHR remote sensing images with a more com-
plex background. Thus, manually designed feature-based meth-
ods usually have limited capabilities for generalization despite
many significant achievements since the hand-crafted features
are task-specific, over-specified, and incomplete, especially for
VHR remote sensing images. Recent DL-based methods have
achieved promising feature learning and classification perfor-
mance and promoted various research studies toward automatic
building extraction [11].

The DL-based building extraction methods learn discrimina-
tive features from training data automatically without explicit
manual feature design. This approach benefits from develop-
ments in convolutional neural network (CNN) theory and from
the support of many public datasets [12], [13]. The fully con-
volutional neural networks (FCNs) [14] are the most commonly
used CNN architectures in building extraction [11]. FCN ex-
tended the original CNN architecture by replacing the fully con-
nected layer with a fully convolutional layer to enable efficient
pixels-to-pixels dense prediction [14]. Despite the promising
classification performance of the conventional FCN model, it
has two inherent limitations. First, the repeated downsampling
process and coarse upsampling layers will lose detailed spatial
information, resulting in low boundary localization accuracy
[15]. Second, the receptive field of FCNs grows linearly with the
increase of network depth. The slow growth still fails to capture
the global context information, which leads to misclassification
of multiscale objects [16]. Much research has been devoted to
tackling these two issues in the computer vision community, with
solutions such as U-Net [17] and DeepLab series [18]. U-Net
employs encoder–decoder architecture cascades low-level fea-
tures to high-level features through skip connection, which helps
restores the spatial information loss caused by downsampling.
DeepLab series reduces downsampling through dilated convo-
lution and introduced atrous spatial pyramid pooling (ASPP)
module to fuse multiscale context information. These methods
have mitigated the two issues to a certain extent and have been
typical and widely used FCN architectures. However, there are
still problems when applying these classic semantic segmen-
tation methods to extract buildings from VHR remote sensing
imagery. For one thing, buildings in VHR remote sensing images
have diverse appearances, complex periphery, and larger scale
variances than objects in natural images. For another, buildings
are typical man-made objects with abundant morphological
properties, and the loss of detailed spatial information limits
their potential for practical applications. Therefore, the effective
extraction of features while retaining the spatial details of the
VHR remote sensing data to obtain accurate building boundaries
is a research frontier in the remote sensing community.

Many algorithms have been proposed to enhance the extracted
building boundary quality. The straightforward one is to add a
postprocessing stage, such as probability graph models [19],
[20] and empirical rules [11], [21]. The adopted postprocessing
step can refine the segmentation results. However, they are usu-
ally complicated methods. Some studies improve the extracted
boundary quality with semantic edge detection networks [22],
[23]. They have achieved high-quality results, but buildings have
highly structured shapes and boundaries rather than all the edges

of objects. Therefore, these practices increase the complexity of
the model while not achieving the optimal results. The highly
structured building shape priors can be encoded into the model
through building contour learning. There is an imbalanced fore-
ground/background problem, however, in contour learning since
the contour only accounts for a small proportion of all the sample
pixels. Contour learning, therefore, must preserve and retain
the structural properties of buildings to overcome this problem.
However, the most used binary cross-entropy (BCE) loss func-
tion only focuses on pixel-level similarity, resulting in the loss of
structural information and sensitivity to foreground/background
imbalance issues. Inspired by these two observations, methods
combining a multitask learning framework with a hybrid loss
function to learn building regions and outline simultaneously
to refine building extraction results were proposed. Wu et al.
[24] and Zheng et al. [15] designed robust loss function and
supervised roof region and outline simultaneously, which show
a great performance improvement. But they only supervise the
building edges in the last layer of the decoder, which still suffers
from the loss of detailed spatial information in the encoder.
Actually, the encoder layers have richer spatial details about
the original input [25]. These methods have improved the ex-
tracted building boundary quality but still overlook the building
shape priors or the abundant spatial information in the encoder
layers.

A framework integrating multitask learning, stepwise weight-
ing deep supervision techniques, and robust loss function
design could address these issues. In our proposed method,
a contour-guided (CG) module overcomes spatial information
loss and preserve building contour-related low-level features. A
multiregion-guided (MRG) module was designed for high-level
multiscale and contextual feature capture that overcomes fre-
quently occurrences of building scale variance in VHR remote
sensing images. The MRG module is similar to the U-Net
encoder–decoder architecture comprised of an encoder, ASPP
module, and decoder. The encoder is a modified ResNet34 [26]
backbone with fewer downsampling (i.e., three times) to further
reduce spatial information loss. Parameters from the encoder
layers are shared and updated by the CG and MRG modules
jointly through multitask learning. The ASPP module is an effec-
tive semantic segmentation module for capturing useful image
context at multiple scales. The decoder produces multiregion
outputs and is deeply supervised by building region ground truth.
The CG module is supervised by building contour ground truth.
In this way, complementary building edge semantic features and
multiscale building region semantic information are captured. In
addition, a pixel position-aware and structure-preserving hybrid
loss function is introduced to guide the network to learn param-
eters from the pixel-level similarity, local structural similarity,
and global similarity. The introduced loss function supervises the
CG and MRG modules simultaneously to further ameliate the
structure learning ability of our model. The main contributions
of this research work are given as follows.

1) A contour-guided and local structure-aware encoder–
decoder network (CGSANet) is proposed for accu-
rate building extraction from VHR remote sensing
imagery.
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2) An additional CG module at the encoder stage was devised
to overcome the loss of low-level spatial information and
the overlook of building shape priors.

3) A hybrid loss function was designed to treat pixels dif-
ferently and guide the model to learn parameters from the
pixel-level similarity, local structural similarity, and global
similarity.

The rest of this article is organized as follows. Section II intro-
duces a brief review of the existing DL-based building extraction
algorithms. Section III presents the proposed framework. Sec-
tion IV analyses the experimental results. The discussion and
conclusion are drawn in Sections V and VI, respectively.

II. RELATED WORK

Remote sensing data analysis has undergone significant ad-
vancement since the application of DL algorithms. The DL-
based methods can easily resolve typical remote sensing image
analysis tasks, such as scene classification [27], object detection
[28], change detection, land use land cover classification [29],
and semantic segmentation due to their superior performance in
hierarchical feature representation. DL-based building extrac-
tion is a binary semantic segmentation problem that aims to
classify every image pixel into building and nonbuilding pixels.
A brief review of the research efforts on DL-based semantic
segmentation methods can be seen from the recent review [30].
In this section, we focus on the development of CNN-based
building extraction methods in the remote sensing community.

Building extraction methods based on CNN can automati-
cally learn high-level and discriminative features and have been
widely adopted in remote sensing communities. Early work
[31], [32] trained a simple patch CNN for building labeling,
yielding competitive performance when compared to manually
designed feature-based methods. However, patch-based CNN
will dramatically increase the memory cost when processing
larger patch sizes, thereby significantly reducing its processing
efficiency [33]. Some approaches extract buildings based on
FCNs since the first success of end-to-end FCN [14] for semantic
segmentation. Despite the promising performance, the original
FCN cannot fully capture the long-range relationships between
pixels in an image [16], leading to incomplete extraction of
large objects and missing small objects. Furthermore, FCNs
need repeated downsampling operations to extract discrimina-
tive features, washing out high-frequency spatial details, leading
to blurry extraction boundaries [15]. For building extraction
from VHR remote sensing imagery, these two challenges are
more critical since larger scale variance and a more regular and
clearer shape of buildings. Various algorithms were developed
to improve the region segmentation and boundary localization
accuracy when extracting multiscale buildings from remote
sensing data.

Fusing multisource data, such as combining LiDAR data
or nDSM with spectral images, is another approach to extract
buildings [3], [34]. Huang et al. [3] proposed a gated residual
refinement network with LiDAR data and aerial imagery fusion
to extract buildings. The fusion of height and spectral infor-
mation is able to achieve promising results on complex data.

Another stream in data-fusion-based methods employ GIS data
to assist building extraction [35], [36]. Huang et al. [35] created
a dataset based on ground truth from the OpenStreetMap project
and trained a two-stream deep deconvolution network with RGB
and NRG fusion to extract buildings holistically. These data-
fusion-based approaches have yielded promising results, but are
limited by the difficulty of obtaining large-scale, high-quality
co-registered multisource data. Another stream in FCN-based
methods employ only a single data source and improve the build-
ing extraction results by improving the feature representation in
the FCN model.

To extract multiscale buildings more completely, many ap-
proaches extract buildings by feature-enhanced FCN model,
such as fusing multiscale features [2], [37], [38], adding multi-
constraints on additional predictions [33], and introducing atten-
tion mechanisms [39], [40]. To fuse multiscale features, Yuan
[2] designed an FCN that integrated activation from multiple
layers. To enhance the multiscale feature representation ability,
Wu et al. [33] proposed a multiconstraint FCN (MC-FCN)
with extra constraints applied on the intermediate layers. Yang
et al. [38] proposed a dense-attention encoder–decoder network
comprising lightweight DenseNets and spatial attention fusion
modules to integrate different level features rationally. By ex-
ploiting multiscale hierarchical and contextual features, these
feature enhancement-based methods boost the performance of
multiscale building region segmentation. However, these meth-
ods are still limited due to the complexity of VHR remote
sensing images and variation in the morphological properties
of buildings. The extracted building boundary accuracy needs
further improvement.

Specific strategies and FCN architectures were developed
for building extraction with more accurate boundaries. Apart
from the feature enhancement-based methods, recent methods
mainly include postprocessing methods, semantic edge-assisted
methods, and loss function design methods. Postprocessing
methods refine the building edges by adding a postprocessing
stage [11], [19]–[21]. Many methods employ probability graph
models [e.g., Markov random field (MRF) model and condi-
tional random fields (CRFs) model] to optimize preliminary
results [19], [20]. Vakalopoulou et al. [19] employed a CNN inte-
grating additional spectral information with pretrained features
from ImageNet to calculate deep features for automatic building
extraction and utilized the MRF model to optimize the extraction
results. Shrestha and Vanneschi [20] adopted the CRFs model
to improve the extracted building boundaries. Some approaches
deploy empirical rules to refine the initial results [11], [21].
Zhao et al. [21] introduced a boundary regularization process
to optimize segmentation maps from Mask R-CNN to generate
regularized building polygons. Wei et al. [11] developed a
framework for building segmentation and structured footprint
extraction; an empirical polygon regularization postprocess-
ing algorithm was designed to refine preliminary FCN-based
building segmentation results into structured building footprints.
The additional postprocessing step does improve the initial
segmentation results, but may improve the computational cost
of the methods and cannot be done end-to-end, which limits the
application.
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The semantic edge-assisted methods perform edge refinement
through a combined classic edge detection model and semantic
segmentation/object detection networks [22], [23]. Marmanis
et al. [22] developed deep CNN models combining the SegNet
model and the HED edge detection model to explicitly extract
the class boundaries to boost the semantic segmentation per-
formance of VHR aerial images. Xia et al. [23] proposed a re-
fined building footprint extraction approach based on the Faster
R-CNN and the CASENet edge detection model. In addition,
they proposed a boundary repair algorithm that further refines
incomplete building edges with distinct advantages in terms
of the quality of extracted building boundaries against Mask
R-CNN. These approaches have achieved promising results,
but the buildings are artificial objects with highly structured
semantic edges rather than all image edges; therefore, these
methods can be improved by explicitly encoded the building
shape priors into the model.

Building contours implicitly represent building shape and
structure features. The contours are learnable since the building
region label can easily generate building contour labels [41]. Re-
searchers adopted a multitask learning framework and designed
a hybrid loss function to learn building structure features [15],
[24], [42], [43]. The multitask learning paradigm aims to lever-
age valuable information in multiple related tasks to maximize
the performance of one or all of the tasks [44]. Building region
segmentation and building outline extraction are two highly
dependent tasks. Wu et al. [24] proposed a boundary-regulated
network (BR-Net), which supervised building regions and out-
lines simultaneously. They designed a shared U-Net backend
to extract local and global features and employed boundary
information to regulate the parameter updating, resulting in con-
spicuous performance improvements. Zheng et al. [15] proposed
an edge-aware neural network (EaNet) to optimize semantic seg-
mentation boundaries in VHR urban scene images and achieved
promising performance in the VHR ground/aerial images. These
methods have greatly improved the quality of extracted building
boundaries; but they only supervise the building edges in the last
layer of the decoder, which is still limited by the loss of detailed
spatial information in the encoder layers. Liao et al. [41] pro-
posed a boundary-preserved network for building extraction by
simultaneously learning building structure and contour. A struc-
tural prior constraint module combined with the dice loss func-
tion was designed to learn building contour information from
the gradient image. This method showed superior performance
on building edges, especially for adjacent buildings. However,
an additional gradient image is needed for the input data.

The semantic edge-assisted methods focus on spatial informa-
tion preservation but utilizing all the image edges, which is not
optimal as buildings are artificial objects with highly implicit se-
mantic contours. Feature enhancement-based methods often add
modules at the end of the encoder. Postprocessing and loss func-
tion design-based methods are often performed in the last layer
of the decoder. They ignore the abundant spatial information in
the encoder layers, and actually, the encoder layers retain finer
spatial details about the original input [25]. Inspired by these
observations, a CG and local structure-aware encoder–decoder
network (CGSANet) is proposed in this article. A CG module

appended in the encoder enhances the ability of the model to
preserve building contour-related low-level spatial features. A
local structure-aware hybrid loss function optimizes the model
parameters from the pixel-level similarity, local structural simi-
larity, and global similarity. The architecture of CGSANet, CG
module, and hybrid loss function are introduced in Section III.

III. METHODOLOGY

CGSANet solves the inaccurate building boundaries problem
and corrects incomplete extraction results caused by varied
building scales in VHR remote sensing imagery. This is achieved
through the network architecture and optimized with a novel
hybrid loss function. In this section, we present the framework
of the proposed CGSANet and its key components in detail. The
whole architecture of CGSANet is introduced in Section III-A.
The encoder CG module and loss function are depicted sepa-
rately in Sections III-B and III-C.

A. Architecture of CGSANet

The overall framework of CGSANet is shown in Fig. 1.
The basic architecture of CGSANet is similar to the U-Net
[17] encoder–decoder structure, with a skip connection. Our
framework integrates the deep supervision technique, multitask
learning, and hybrid loss function into a system to obtain accu-
rate building extraction results. Taking a VHR remote sensing
imagery as the input, CGSANet outputs four building region
predictions and a building edge map, i.e., D0, D1, D2, D3, and
D4 in Fig. 1. The former four predictions are deeply supervised
by the building region ground truth, and the D4 output is su-
pervised by building edge ground truth to guide the network
focus on building semantic edge-related spatial information,
thus improving the boundary quality of extracted buildings.

It can see from Fig. 1 that CGSANet is comprised of two
modules, a CG module and an MRG module. The MRG module
shown in the large aqua green box in Fig. 1 is comprised of an
encoder module, an ASPP module, and a decoder module. A
modified ResNet34 backbone was selected as the encoder of the
MRG module to extract multilevel feature and achieve consistent
training [25]. Other networks such as ResNet18 can be applied
as the encoder as well. To reduce the loss of spatial information,
the first two downsampling layers of ResNet34 were replaced
with a plain 3 ∗ 3 convolution block. The orange box in Fig. 1
indicates a plain convolution block, including a3 ∗ 3 convolution
(Conv) operator, a batch normalization (BN) layer, and a ReLU
operator in a sequential order. The gray box in Fig. 1 is the basic
ResNet block. A basic ResNet block comprises two layers of
3 ∗ 3Conv/BN/ReLU, as shown with an enlarged grey box at the
left bottom of Fig. 1. The four stages of ResNet34 include [3, 4, 6,
3] basic ResNet blocks, shown by the corresponding number of
gray boxes in Fig. 1. The red box in the MRG module is the ASPP
module. In the encoder stage, the output of the first convolution
block is fed into the four standard ResNet34 stages, during which
the feature map is downsampled three times. Multiscale features
are obtained by repetitive convolution operation on the local
receptive field in different scales.
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Fig. 1. Architecture of our proposed CGSANet

Fig. 2. Illustration of (a) normal convolution and atrous convolution with
kernel size three and different dilation rate and (b) the atrous spatial pyramid
pooling (ASPP) module within the DeepLabv3+ [18] architecture.

Fig. 3. Four region outputs of decoder layer and the corresponding building
region ground truth. Only the bottom-left corner of the sample image is shown
for better viewing. (a) D3 8*up output. (b) D2 4*up output. (c) D1 2*up output.
(d) D0 output. (e) Building region.

Based on the modified ResNet34 backbone encoder, we
introduce ASPP module for capturing multiscale context in-
formation to upgrade the model’s capability to perceive varied
scale targets. The ASPP module is proven to be an effective
component in DeepLabv3+ networks [18]. In this work, we
employ an ASPP module as a connector between the encoder
and decoder module to capture the multiple scales contextual and
image-level features. Fig. 2 illustrates the normal convolution,
atrous convolution, and ASPP module.

Fig. 2(a) shows that the input imagery is independently con-
volved with different dilation settings from left to right. The
big square box of 13∗13 represents the input image, and each
small square box indicates a pixel. The orange circle represents
the 3∗3 convolution kernel, and the square with gray color
represents the receptive field after convolution. It can see clearly
in Fig. 2(a) that the receptive field of the normal convolution with
the dilation rate of one is three, whereas the atrous convolution
with the dilation rate of two and four have a receptive field of
five and nine, respectively. Atrous convolution inserting “holes”
into the convolution kernel can effectively provide a larger
receptive field without extra downsampling. Normal convolution
is a special case of atrous convolution with a dilation rate
of one.

Given the feature maps sizedH/8∗W/8 ∗ 512 outputted from
the last encoder layer, the ASPP module produces a feature
map sized H/8∗W/8∗256. The H and W represent the height
and width of the input imagery. As shown in Fig. 2(b), the
ASPP module has four parallel dilated convolutions of different
dilation rates (1, 6, 12, 18) that maintain the same feature map.
In addition, ASPP introduced global average pooling to capture
image-level features, as shown in the bottom of Fig. 2(b). The
output feature maps are fused through concatenation, 1∗1 plain
convolution block, and dropout layer at the end.

The decoder part of CGSANet is comprised of stacked plain
convolution blocks. The plain convolution block is composed of
convolutional layers, BN layers, and ReLU activation layers.
Each decoder stage is comprised of three consecutive plain
convolution blocks. The spatial size and number of filters for
each convolution layer are adjusted with the corresponding
encoder stage. Bilinear interpolation is applied for upsampling.
The classic U-Net like encoder–decoder structure suffers from
the problem that the update priority of the middle layer features
is lower than the last layer [33]. The deep supervision technique
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is known to easily optimize and refine the model feature. There-
fore, the deep supervision technique is introduced to solve the
above updating priority problem. Furthermore, considering the
outputs of different decoder layers have different edge accuracy,
we designed a stepwise weighting deep supervision training
strategy.

Fig. 3 shows the four outputs we used for deep supervision and
the ground truth building region. Note that only the bottom-left
part of the sample image is shown for better viewing. The deeper
the output layer, the larger the upsampling factor. Thus, the
output from the deeper layer will have relatively low boundary
accuracy. As shown in Fig. 3, D3 is the closest to the encoder
layer and requires eight times of upsampling to restore to the
original input image size. It can be seen in the enlarged ma-
genta and red rectangle that the object boundaries in D3 are
too smooth. The building edges in D2 and D1 have similar
performance, and D0 achieved the best boundary accuracy. The
observation from the quantitative evaluation of the WHU test
dataset is consistent with the qualitative analysis. The intuitive
reason for the stepwise weighting strategy is that as the accuracy
increases, the corresponding output image should be highlighted
[45]. Therefore, these outputs should be assigned with different
weights. D0 is the highest weight, D3 the lowest, and D1 and
D2 are equal weights. In our experiments, we achieved the best
performance when setting the weights of D0, D1, D2, and D3
to 1, 0.5, 0.5, and 0.3.

An encoder–decoder framework equipped with an ASPP
module and deep supervision technique can extract hierarchi-
cal contexts and fuse the multilevel information efficiently for
multiscale building extraction. However, it still suffers from
the overlook of abundant building shape priors and the loss of
detailed spatial information, leading to inaccurate and irregular
building boundaries. We propose a CG module appended at the
encoder part to mitigate this problem. The CG module will be
introduced in Section III-B.

B. Building Semantic Edge Information Capture With Encoder
CG Module

Building contours indicate the shapes of buildings. The goal
in building extraction is to find the contours that distinguish
buildings and nonbuilding areas. From this perspective, the
accuracy of building extraction depends on the degree of match
between the contour of an extracted building and the ground
truth. Therefore, the quality of the building contour matters.
However, current methods still overlook much of the abundant
morphological properties of buildings and spatial information
in the encoder layers. Inspired by this observation, residual
learning [26], and multitask learning, a CG module appended
to the encoder and supervised with building contour ground
truth is proposed to effectively extract building semantic edge
information. In this section, we detail the proposed CG module.

The CG module is comprised of four contour residual blocks
(CRB) and two 1 ∗ 1 convolution layers. The CRB is the kernel
of the CG module. The CRB module extracts spatial features
from the encoder layers. Specifically, we expanded the encoder
by linking the last layer of each encoder stage with one of
the four CRB modules. Each CRB module consists of one

Fig. 4. Illustration of feature maps captured by the CG module on a WHU
aerial building dataset image, in which Conv is short for convolution, the red
hollow arrow represents contour supervision, and number∗Up means number
times upsampling. (a) Image. (b) Intermediate output of the CG module and the
building contour supervision.

1 ∗ 1 convolution layer, one basic ResNet block, and one 3 ∗ 3
convolution layer. The input feature channels of the four CRB
modules are 64, 128, 256, and 512, respectively, and the output
feature channels of the three parts of each CRB module are 21,
21, and 1. The output of the four CRB modules was upsampled
to the original input image size, concatenated, and followed by
two processing in 1 ∗ 1 convolution layers. The final outputs are
supervised by building contour. The building contour labels are
generated from the building region labels via a Laplacian opera-
tor [15], require no additional manual labeling. The intermediate
layer output of the CG module on a WHU aerial building test
dataset example image is shown in Fig. 4.

As shown in Fig. 4, CRBs at different stages can obtain
different degrees of edge information. The CRB1 and CRB2
capture abundant edge information but have much redundant
low-level information. The output of CRB3 is close to the final
output, but there are problems given the insufficient distinc-
tion between adjacent buildings and incomplete extraction of
complex buildings. CRB4 contains little low-level information
and contains more regional information. The combination of
four CRBs can produce a regular output close to the outline of
buildings. It removes redundant low-level information, retains
the regular contours, and can effectively distinguish adjacent
buildings as well as extract complex buildings. The features
acquired by the CG module can ameliorate building extraction
results through a multitask learning framework.

The multitask learning paradigm aims to learn multiple related
tasks jointly while maximizing performance on one or all tasks
[44]. We fuse the building contour and building region tasks
to achieve accurate building extraction results. Furthermore,
we added the building contour task to the encoder and the
building region task to each decoder stage. The parameters of
the encoder are shared and updated by the CG module and
decoder jointly through multitask learning. This can capture
complementary building edge semantic features and multiscale
building region semantic information. The whole architecture
is a synchronous end-to-end network supervised by the same
hybrid loss function that can easily train and fuse the two highly
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related tasks for accurate building extraction. The hybrid loss
function is introduced in Section III-C.

C. Loss Function

Loss function is essential for model optimization. The pixel-
wise BCE loss function is the most applied solution for building
extraction. However, The BCE loss function is entirely local
and treats every pixel separately, leading to ineffective structure
learning ability. Moreover, BCE treats all pixels equally and,
thus, is sensitive to imbalanced foreground/background prob-
lems. These issues adversely affect building extraction results
more than other semantic segmentation tasks as buildings have
abundant morphological properties.

Various structure-aware loss functions have been proposed to
strengthen the structure capturing ability [15], [46], [47], but
these still consider pixels separately, without taking account
of the local surroundings of the pixel. Wei et al. [45] pro-
posed pixel position-aware hybrid loss function, which treats
pixels differently to extend the BCE and intersection over union
(IoU) loss function. Inspired by this work, we propose a novel
hybrid loss function defined as the summation of weighted
BCE (wBCE), structural similarity index metric (SSIM), and
weighted IoU (wIoU) to optimize the model parameters from the
position-aware pixel-level similarity (wBCE), local structural
similarity (SSIM), and position-aware global similarity (wIoU).

The wBCE loss extends BCE by treating pixels differently,
which calculates a weightw(r,c) based on the difference between
the pixel and its neighborhoods to determine whether the pixel is
a hard pixel or a plain pixel, thereby assigning different weights.
In this way, LwBCE pays less attention to simple pixels and vice
versa. In addition, LwBCE integrates local structure information
by considering neighborhood pixels [45]. LwBCE is defined in
(1), shown at the bottam of this page, where r and c represent
the row and column of the image; H and W represent height and
width of the image; and λ is a hyperparameter to revise the ratio
of hard pixels. The valuew(r,c) indicates the assigned weight for
each pixel; it is calculated based on the difference between the
pixel and its neighborhoods, as shown in Equation (2). I(·) is the
indicator function. The notation l ∈ {0, 1} indicates nonbuilding
and building. g(r,c) and p(r,c) are ground truth and prediction
of the pixel at location (r, c). Prob(p(r,c) == l|ψ) denotes the
predicted probability.

w(r,c) =

∣
∣
∣
∣
Σi,j∈Nr,c

gi,j

Σi,j∈Nr,c
1

− gr,c

∣
∣
∣
∣ (2)

where | · | indicate absolute operation and Nr,c represents the
neighborhood of the pixel (r, c). g(r,c) is the ground truth of
the pixel at location (r, c). For any pixel, wr,c ∈ [0, 1]. A large
w(r,c) value indicates a pixel at (r, c) is very inconsistent with
its neighborhoods. It is a discriminative pixel (e.g., boundary
pixels) and should be paid more attention and vice versa. Paying

more attention to these challenging pixels can further enhance
model generalization.

Buildings are artificial objects and highly structured. Every
building has unique morphological properties. The SSIM loss
was added to the loss function to preserve building shape prop-
erties. Following [47], a local SSIM loss function (LSSIM) was
introduced to assess the structural similarity of the extracted
buildings. Let p = {pi, i =1, ..., N2} and g = {gi, i =1, ...,
N2} denote the pixel values of two matching square patches
cropped from the prediction map and the ground truth mask,
and N denotes the size of the sliding window; the LSSIM of p
and g is defined as follows:

LSSIM = 1− (2∗μ∗
pμg + C1)

∗(2∗σpg + C2)

(μ2
p + μ2

g + C1)∗(σ2
p + σ2

g + C2)
(3)

where σp, σg and μp, μg are the standard deviations and mean of
p and g, andσpg is their covariance.C1 = 0.012 andC2 = 0.032

are two constants utilized to avoid dividing by zero. The average
of LSSIM of all the cropped square patches represents the total
SSIM loss of the whole predicted map.

The IoU loss function was inspired by performance mea-
sure criterion and is widely applied in semantic segmentation
[46]–[48]. The IoU measure accounts for the class imbalance
issue usually present in the binary semantic segmentation [48],
and IoU loss function optimizes the global structure at image
level. Combined with attention to pixel position, the wIoU loss
function allocates different weights to challenging/simple pixels
to differentiate their importance [45], as shown in the following
equation.

The formulated hybrid loss function directs attention accord-
ing to pixel position, but also learns the difference between the
prediction and the reference map at the pixel level (wBCE),
local level (SSIM), and global level (wIoU). The designed
loss is robust with imbalanced background/foreground problem.
Therefore, for every side output, we utilize the same loss func-
tion, and just change the ground truth, i.e. for edge side output,
we utilize the building edge ground truth. Our total loss function
Ltotal is defined as the weighted summation over all side outputs

Li = LwBCE + LSSIM + LwIoU

Ltotal = w∗
iL

R
i + LE

1 , i = 1, 2, 3, 4 (5)

where wi = [0.3, 0.5, 0.5, 1] is the weight for multiregion out-
puts, as stated in Section III-A.LR

i represents region output loss
and LE

1 indicates there is only one edge output loss.

IV. EXPERIMENTS AND ANALYSIS

Experiments and analysis are presented in this section. Sec-
tion IV-A1 describes the experimental datasets, implementation
details, and evaluation metrics. Section IV-B presents the ex-
perimental results and visual and quantitative analysis of the
tested algorithms for the three datasets. An ablation analysis

LwBCE =−
∑H

r=1

∑W
c=1(1 +λ∗w(r,c))

∑1
l=0 I(g(r,c) == l) log Prob(p(r,c) == l|ψ)

∑H
r=1

∑W
c=1 λ∗w(r,c)

(1)
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of the proposed architecture and loss function are presented in
Section IV-C.

A. Dataset, Implementation Details, and Evaluation Metrics

1) Dataset: To assess the performance of our approach, we
conduct experiments on the WHU aerial building dataset (WHU)
[13], NZ32km2 dataset [24], and INRIA aerial image labeling
dataset (INRIA) [12]. They are three open benchmark datasets
provided at websites1,2,3, which are briefly described in the
following.

The WHU dataset [13] is divided into three parts: a 4736
tiles training set (130 500 buildings), a 1036 tiles validation set
(14 500 buildings), and a 2416 tiles test set (42 000 buildings). A
total of 8188 images and 187 000 buildings are included. Each
image tile has 512 ∗ 512 pixels. The ground resolution was
downsampled to 0.3 m.

The NZ32km2 dataset for Christchurch, New Zealand, was
provided by Xia et al. [24]. It contains aerial images at the 0.075
m resolution. The corresponding building roofs cover 32 km2.
The training dataset contains four big images with 32366 ∗
25218 pixels. The test dataset contains four big images with
33445 ∗ 26841 pixels. The big images were split into 512 ∗ 512
pixels tiles and slices with a building coverage rate lower than
15% were removed [24]. In our experiments, the training dataset
was further divided into training and validation datasets at a ratio
of 4:1. There are 6594 tiles for training, 1611 for validation, and
7569 for testing.

The INRIA dataset [12] includes 360 images covering ten
cities, each city with 36 images. Each image tile has a spatial
resolution of 0.3 m at a size of 5000 ∗ 5000 pixels. The dataset,
including a coverage area of ∼810 km2, covers highly different
and representative terrain, landforms, and buildings type. Only
Austin, Chicago, Kitsap County, Vienna, and West Tyrol have
public labels, with 180 images. Our experiments were conducted
on these five cities with disclosed ground truth. The label quality
of INRIA dataset is lower than the NZ32km2 and WHU datasets.
The ultimate goal was to assess the generalization power of the
techniques. Therefore, we tested our approach on this dataset
to assess the generalization ability of the proposed framework.
Following [49] and [50], the first five big images of each town are
chosen as the test dataset, and the rest were utilized for training.
The big images are split into 512 ∗ 512 pixels tiles. A total of
12 555 tiles were generated for training and 2025 tiles for testing.

2) Implementation Details: We implemented our method as
well as U-Net [17], DeepLabv3+ [18], MC-FCN [33], and

1[Online]. Available: http://gpcv.whu.edu.cn/data/building_dataset.html
2[Online]. Available: https://drive.google.com/file/d/1PNkGLRT8J9h4Cx9

iyS0Bh9vamQS_KOTz/view
3[Online]. Available: https://project.inria.fr/aerialimagelabeling/

BR-Net [24] on the PyTorch [51] library for detailed qualita-
tive and quantitative analysis. For a fair comparison, consid-
ering the number of parameters, we implemented another ver-
sion of CGSANet termed CGSANet-ResNet18. The CGSANet-
ResNet18 taken the modified ResNet18 as the encoder. Each
decoder stage was composed of two consecutive plain convolu-
tion blocks. The CGSANet took the modified ResNet34 as the
encoder. Our Pytorch source code will be available at GitHub.4

For U-Net implementation, the encoder was comprised of five
stages, each stage has two repeated plain convolution blocks
(with convolution, BN, and ReLU in sequence). The channel for
the output feature map was [64, 128, 256, 512, 1024]. Maxpool-
ing was applied with downsampling for four times. The decoder
was the symmetrical to the encoder, and transposed convolution
was utilized for upsampling. The DeepLabv3+ implementation
was taken from an open source repository.5 The MC-FCN and
BR-Net implementations were taken from the Paszke’s [52]
public released code. To verify the effectiveness of our method
further, we performed a quantitative analysis with the other
published state-of-the-art algorithms using the WHU and IN-
RIA datasets. These methods were MA-FCN [11], MAP-Net
[53], and EaNet [15] for WHU dataset. The GAN-SCA [49],
Building-A-Nets [50], and AMUNet [54] were the comparative
methods for the INRIA dataset. For a fair comparison, U-Net,
DeepLabv3+, MC-FCN, and BR-Net and our CGSANet and
CGSANet-ResNet18 were evaluated. Experiments on the corre-
sponding datasets were done using the same settings described
in the following.

We used a NVIDIA GeForce RTX 3090 graphics card with 24
GB GPU memory for training and testing. For optimization, we
utilized the Adam optimizer with default values [55] to train our
model. The hyperparameter λ for calculating wBCE and wIoU
was set to five, and the sliding window size N for local SSIM
was 11 pixels. The image values were rescaled to [0, 1] before
inputting into the network, and no data augmentation techniques
were applied in our experiments. The weights that performed
best on the validation dataset in terms of IoU value were saved
for testing. Due to the different sizes and complexity of the three
datasets, we applied different weight initialization strategies and
training epochs. For the WHU dataset, we initialized the weights
with pretrained ResNet34 on the ImageNet dataset. All the tested
algorithms were trained for up to 60 epochs. For experiments on
the INRIA and the NZ32km2 datasets, the pretrained weights
on the WHU dataset were adopted for initialization and trained
100 epochs and 30 epochs. The batch size for all the experiments
was set to four.

4[Online]. Available: https://github.com/MrChen18/CGSANet
5[Online]. Available: https://github.com/whuchenlin/Khaos/tree/ff5b4ef

4810331ad681be2eba5f66cae67f4de18/deeplabv3plus

LwIoU = 1−
∑H

r=1

∑W
c=1(g

∗
(r,c)p(r,c))(1 + λ∗w(r,c))

∑H
r=1

∑W
c=1(g(r,c) + p(r,c) − g∗(r,c)p(r,c))(1 + λ∗w(r,c))

(4)

http://gpcv.whu.edu.cn/data/building_dataset.html
[Online]. ignorespaces Available: ignorespaces https://drive.google.com/file/d/1PNkGLRT8J9h4Cx9penalty -@M iyS0Bh9vamQS_KOTz/view
[Online]. ignorespaces Available: ignorespaces https://drive.google.com/file/d/1PNkGLRT8J9h4Cx9penalty -@M iyS0Bh9vamQS_KOTz/view
https://project.inria.fr/aerialimagelabeling/
https://github.com/MrChen18/CGSANet
https://github.com/whuchenlin/Khaos/tree/ff5b4efpenalty -@M 4810331ad681be2eba5f66cae67f4de18/deeplabv3plus
https://github.com/whuchenlin/Khaos/tree/ff5b4efpenalty -@M 4810331ad681be2eba5f66cae67f4de18/deeplabv3plus
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3) Evaluation Metrics: Five commonly used accuracy eval-
uation indicators were chosen to evaluate the region segmenta-
tion performance of our proposed method. They were overall
accuracy (OA), precision, recall, F1-score, and IoU. The OA,
precision, recall, F1-score, and IoU equations are shown in (6).

OA = (TP + TN)/(TP + TN + FP + FN)

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F1 = 2∗(Recall∗Precision)/(Recall + Precision)

IoU = TP/(TP + FP + FN) (6)

where TP (i.e., true positive) represents the number of building
pixels correctly classified; TN (i.e., true negative) represents
the number of nonbuilding pixels correctly classified; FP (false
positive) represents the number of nonbuilding pixels classified
as building pixels; and FN (i.e., false negative) represents the
number of building pixels classified as nonbuilding pixels.

The regional accuracy evaluates the extraction performance
of all the building pixels. The boundary accuracy evaluation can
better show the extraction performance of pixels near the edge of
the building. For boundary accuracy assessment, the Boundary
F1-score (BF-Score) was calculated. The BF-Score evaluates
the degree of match between the boundary of a predicted object
and the ground truth boundary. It is defined as the F1-score of
boundary pixels with an error tolerance buffer [56]. A MATLAB
built-in implementation function bfscore was applied for BF-
Score calculation.

B. Comparative Analysis

Comparative experiments and analysis on the three datasets
are presented in this section. Visual and quantitative analysis of
the tested algorithms on the WHU dataset, the NZ32km2 dataset,
and the INRIA dataset are presented separately in Section IV-B1
through Section IV-B3.

1) Experiments on WHU Aerial Building Dataset: To com-
pare the tested methods intuitively, five representative image
tiles of WHU dataset were selected for qualitative evaluation, as
shown in Fig. 5. The rows of Fig. 5 are images and results for
five samples in the WHU test dataset. Each column from left to
right represents the image, the visual accuracy evaluation results
of the five tested algorithms, and the ground truth. The pixels
colored in yellow, red, black, and green are TP, FP, TN, and FN.

As shown in Fig. 5, fewer pixels are colored in green and red
in column (f) than in the other columns. This indicates that our
method has fewer omission errors and less commission errors
compared with the other tested algorithms. There is perceptual
variance in building scales and appearance in the WHU dataset.
The proposed CGSANet can extract complex buildings more
completely than the comparative algorithms, such as the region
A marked by the red square in Fig. 5. The four comparative
methods all have omission errors for the complex buildings.
Our CGSANet showed more robust performance under complex
scenarios, as shown in the regions B and C marked by the red
square in the second and third rows. Buildings in the marked
regions B and C are built with different materials, shapes, and

Fig. 5. Building extraction accuracy evaluation results on WHU aerial building
test dataset. The pixels colored in yellow, red, black, and green are TP, FP, TN,
and FN. (a) Image. (b) U-Net. (c) DeepLabv3+. (d) MC-FCN. (e) BR-Net.
(f) Proposed. (g) Label.

sizes, and seriously affect the performance of the tested methods.
Our method, however, showed stronger performance, with no
omission errors and only a few commission errors.

Buildings in the fourth-row marked area D have complex
surrounding environments, e.g., spectral ambiguities and occlu-
sion. On the left side of the region D, the spectral difference
between the adjacent object and the building is minimal. U-Net,
DeepLabv3+, MC-FCN, and BR-Net have commission errors
in this area. On the right side, the complex building in the
marked area is obscured by the adjacent tree partly, leading to the
omission errors of the tested methods. Our CGSANet yielded
the highest quality result. The extracted result is close to the
ground truth.

There is a failed example as the region E marked by the yellow
square in Fig. 5. Our method incorrectly detects containers as
buildings because they are similar to buildings in spectrum,
shape, and even surrounding shadows, and there is no sign to
determine whether they are buildings in terms of this indepen-
dent image tile. Even with manual interpretation, only looking
at this image would be hard to correctly determine whether the
object is a building. Automatic algorithms cannot easily extract
buildings in such a situation at high quality.

To assess the building extraction results quantitatively, we
utilized six assessment indexes, including recall, precision, IoU,
F1-score, OA, and BF-Score, to evaluate the accuracy of 2416
images in the WHU test dataset, as given in Table I. The buffer
for calculating the BF-Score is set to three pixels. The first
column of Table I tabulates the nine approaches. Three other
recent state-of-the-art approaches, including MA-FCN [11],
MAP-Net [53], and EaNet [15], were quantitatively compared
to our CGSANet additionally. The accuracy evaluation results of
the three methods are cited from the relevant paper. The methods
are arranged in the ascending order of IoU value. The strongest
values per column are labeled in bold, and the secondary values
are underlined. “-” indicates that no relevant value is disclosed.

It can see clearly that our CGSANet achieved the highest IoU
value of 91.55% compared to other tested algorithms, indicating
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TABLE I
WHU AERIAL BUILDING TEST DATASET EVALUATION RESULTS OF THE

PROPOSED CGSANET AND SEVEN COMPARATIVE METHODS (%)

Strongest values per column are labeled in bold, and the secondary values are underlined.

that the proposed method balances the recall and precision
optimally. The CGSANet-ResNet18 ranked second in terms of
IoU and the BF-Score. EaNet achieved the highest recall value,
but its precision was lower than our method, by approximately
0.5%. The recall value of our approach was slightly lower than
the EaNet 0.02%; thus, the IoU value of our CGSANet was
higher than EaNet. MAPNet achieved the highest precision
value, but its recall value was much lower than our CGSANet,
while CGSANet outperformed its IoU value by approximately
0.7%. These two methods are recent powerful models. They
are representative methods of multiscale feature enhancement
model and robust loss function design building extraction model.
Given that these methods are already powerful, the improvement
is substantial.

Among the four comparison methods we implemented, BR-
Net achieved the highest F1 value, reaching 95.08%. Our
CGSANet-ResNet18 outperformed their F1 index by 0.31%.
Furthermore, the BF-Score of our CGSANet-ResNet18 outper-
formed BR-Net by 1.29%. Much higher than region improve-
ment, these results demonstrate that our method improves the
quality of the extracted building region, especially the edge
quality. To further verify the quality of the building boundary
extracted by our method, we conducted a qualitative and quan-
titative evaluation of the boundary quality.

The qualitative result for boundary accuracy assessment is
shown in Fig. 6. We selected the marked area of the same
sample images as the region evaluation for boundary qualitative
evaluation. The buffer size was set to one pixel—a rigorous
setting that will not tolerate any localization error between the
predicted boundary and the ground truth.

From Fig. 6, it is clear that the misclassification could cause
severe visual degradation on boundaries. Our method still out-
performs the other tested methods visually with fewer missed
detections on the contours of each building and false detections
on all buildings. Most of the extraction results of the comparative
methods have omission and commission errors simultaneously,
which seriously affects the usability of the extraction results.
Actually, a one-pixel buffer size is too strict and would con-
sequently over penalize algorithms since even the ground truth
data may contain boundary localization errors. So, it was rational
to set a tolerance buffer. A comparative analysis of boundary
performance with varied buffer size is shown in Fig. 7.

Fig. 6. Building extraction boundary accuracy evaluation results on WHU
aerial building test dataset. The pixels colored in yellow, red, black, and green
are TP, FP, TN, and FN. (a) Image. (b) U-Net. (c) DeepLabv3+. (d) MC-FCN.
(e) BR-Net. (f) Proposed. (g) Label.

Fig. 7. Comparative analysis of boundary performance with varied buffer size

Fig. 7 shows a quantitative comparison of BF-Score in dif-
ferent methods under different buffer size settings. It shows that
no matter how large the buffer is, the BF-Score of our approach
was higher than that of the compared algorithms indicating that
our method can extract boundaries closer to the ground truth.
When the buffer size is set to three pixels, the BF-Score of the
comparative methods are less than 90%, while our method is
close to 92%. This fully demonstrates that our method can extract
more accurate buildings than the counterpart methods.

A detailed qualitative and quantitative analyses demonstrate
that our method achieved competitive performance on the high-
quality labeled WHU dataset. The intuitive qualitative evalua-
tion illustrates that CGSANet has fewer missed detections and
can produce more accurate building boundaries than the counter-
part methods. The objective quantitative analysis demonstrates
that our method outperforms the compared algorithms in both
region and boundary accuracy. The WHU dataset downsampled
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Fig. 8. Building extraction accuracy evaluation results on NZ32km2 test
dataset. The pixels colored in yellow, red, black, and green are TP, FP, TN,
and FN. (a) Image. (b) U-Net. (c) DeepLabv3+. (d) MC-FCN. (e) BR-Net.
(f) Proposed. (g) Label.

the image resolution to 0.3 m, to further demonstrate the effec-
tiveness of our proposed method on ultrahigh-resolution images
and more complex scenes, experiments on the NZ32km2 dataset
and the INRIA dataset were conducted.

2) Experiments on NZ32km2 Dataset: To validate the effec-
tiveness of CGSANet on ultrahigh-resolution images, experi-
ments were conducted on the NZ32km2 dataset. The imagery
spatial resolution of the NZ32km2 dataset is 0.075 m, four
times the resolution of the images in the WHU dataset. We
implemented four comparative methods for experiments on the
NZ32km2 dataset. The weights that performed best on the WHU
dataset were utilized as the pretraining parameters. Five repre-
sentative images were selected for visual accuracy evaluation,
as shown in Fig. 8.

Fig. 8 shows the building extraction accuracy evaluation
results of five 512 ∗ 512 size images of the five tested methods,
including the proposed method. Because the spatial resolution is
ultrahigh (0.075 m), a 512 ∗ 512 size imagery can only contain
a few buildings, and the outline of the buildings is clear. Fig. 8
contains five rows and seven columns, and each row contains
images, accuracy evaluation results of the tested method, and the
ground truth. The images in the first four rows are taken from
four large test images separately. The sample in the fifth row is
to show the extraction effect of large and complex buildings.

Compared with other methods, CGSANet can extract more
accurate buildings. As shown in the first and last rows of Fig. 8,
our method has fewer missed detections than comparative meth-
ods on large complex buildings. U-Net, MC-FCN, and BR-Net
failed to detect the building in the bottom right corner of the
first row in Fig. 8. DeepLabv3+ cannot detect the building
completely. Our CGSANet has almost perfectly detected the
building outline. For the building in the upper right corner of the
first row in Fig. 8, DeepLabv3+, MC-FCN, and BR-Net tended
to detect this building as two buildings, and our method only has
a small amount of missed detection at the building boundary. For
the sample image of the second row, all methods have achieved

TABLE II
NZ32KM2 TEST DATASET EVALUATION RESULTS OF THE PROPOSED CGSANET

AND FOUR COMPARATIVE METHODS (%)

Strongest values per column are labeled in bold, and the secondary values are underlined.

high-quality detection results. But our method outperformed the
other tested methods because there are fewer green pixels and
red pixels in column (f) than in other columns.

The accuracy evaluation results in the third and fourth rows
demonstrate that CGSANet can achieve the highest quality
results when extracting buildings with complex surrounding en-
vironments or with abundant outline details. In contrast, the other
comparative methods are prone to missing or false detections.
The sample image in the fifth row contains only one building.
This building is huge and has a complicated shape. All four com-
parative methods failed to detect the building contour accurately,
but our method has the least missed detections. The qualitative
evaluation of these methods shows that our method can extract
buildings more accurately, especially in complex scenes and
complex building outlines. The quantitative evaluation results
are given in Table II.

The accuracy assessment result of 7569 test images in the
NZ32km2 building dataset is given in Table II. The first column
of Table II represents six methods, and the second to seventh
columns represent the six accuracy evaluation indicators. The
methods are arranged in an ascending order of IoU value.
From Table II, our CGSANet achieved the highest IoU value of
90.02%, which is 1–2% higher than other methods, indicating
that our approach achieved a balance between precision and
recall. Although our CGSANet was lower in precision than U-
Net, it achieved a higher IoU, by nearly 1%. The performance of
CGSANet-ResNet18 was also better than the comparative meth-
ods. Apart from our proposed methods, DeepLabv3+ achieved
second-ranked precision value and third-ranked IoU value. MC-
FCN achieved the highest precision but the lowest recall, thus
it only achieved the lowest IoU. BR-NET was not outstanding
in the precision index and the recall index, but it has achieved
a better balance in the two indexes and achieved a higher IoU
than MC-FCN. Although the F1-score of Deeplabv3+ is higher
than that of MC-FCN and BR-Net, its BF-Score is lower than
these two methods.

MC-FCN represents building extraction methods with deep
supervision techniques, and BR-Net represents simultaneously
supervises building edges and regions at the last decoder layer.
The performance improvement of CGSANet relative to theirs
further demonstrates the usefulness of the proposed modules.
Furthermore, our method performed stable on the WHU dataset
and the NZ32km2 dataset with images of different resolutions.
The four comparative algorithms have obvious differences in the
performance of processing images of different resolutions. For
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Fig. 9. Building extraction accuracy evaluation results on INRIA dataset. The
pixels colored in yellow, red, black, and green are TP, FP, TN, and FN. (a) Image.
(b) U-Net. (c) DeepLabv3+. (d) MC-FCN. (e) BR-Net. (f) Proposed. (g) Label.

example, on the WHU dataset, BR-NET achieved the highest
IoU value among the compared methods, but on the NZ32km2
dataset, its IoU performance only ranked the third and is worse
than DeepLabv3+ and U-NET. Our method, however, outper-
formed the other tested methods on both datasets. This further
demonstrates the robustness of our proposed method against the
resolution change of the VHR imagery. To further demonstrate
the effectiveness of our proposed method under more complex
scenes, experiments on the INRIA dataset were conducted.

3) Experiments on INRIA Dataset: Visual and quantitative
analysis of the tested algorithms on the INRIA dataset are pre-
sented in this section. We introduced the qualitative evaluation
of five representative images and then quantitatively analyzed
the whole official validation dataset. Five representative images
of five cities were selected for qualitative analysis. The visual
accuracy evaluation results are shown in Fig. 9.

Fig. 9 shows the building extraction accuracy evaluation
results of five 512 ∗ 512 size images of the five tested methods.
Each column from left to right represents the image, the five
tested methods, and the ground truth. The images in each row
are taken from a different city. The scenes and building styles
of different cities are different. The five-row sample images
were from Austin, Chicago, Kitsap County, Austrian Tyrol,
and Vienna. As shown in the first row of Fig. 9, buildings in
Austin were evenly distributed and surrounded by trees that
often occluded buildings. Therefore, the comparative methods
tended to miss detect parts of buildings, as shown by the area
marked by the red square. However, our method can generate
more regular building detection results because the loss function
considers structural information and utilizes the building edge
for supervision.

As shown from the second row of Fig. 9, buildings in Chicago
had large-scale variation, and the distribution was very dense;
therefore, missed detection of small buildings and false detection
of multiple adjacent buildings as one building, as shown by
the area marked by the red square. Our method considers the

TABLE III
INRIA VALIDATION DATASET BUILDING EXTRACTION EVALUATION RESULTS

OF THE PROPOSED CGSANET AND SEVEN COMPARATIVE METHODS (%)

Strongest values per column are labeled in bold, and the secondary values are underlined.

building edge information and assigns a higher weight to the
more difficult pixels, so we only had a few false detections
among the dense buildings. Most of the buildings were detected
independently. However, our method missed five buildings. All
the tested methods missed the building in the bottom middle.
A visual comparison revealed that it was actually an error in
the ground truth. There is no building in the image. One of
the missed detections of the other two small buildings was
because they were completely obscured, and the other was
because of the spectral reflection close to the road. Other com-
parative methods had more missed detections than our proposed
CGSANet.

The third row of Fig. 9 is the image of Kitsap County and its
accuracy evaluation results. Kitsap County had more vegetation
and an uneven building distribution. All the tested methods
achieved high-quality extraction results, with only a few false
detect pixels. The fourth row of Fig. 9 is the image of Austrian
Tyrol and its accuracy evaluation results. Austrian Tyrol is a
low-density urban settlement. The shapes of the buildings in
Tyrol were more complicated than those in other images. As
shown in the area marked by the red square, all the comparative
methods miss detected the link pixels in the complex building,
which resulted in falsely detecting it as two or three buildings.
Our method completely detected the building at the cost of a
small number of falsely detected pixels. There are many missed
detections in the Austrian Tyrol sample image. We found that the
missed detections of larger buildings were ground truth errors,
and there are actually no buildings on the corresponding location
in the image.

The last row of Fig. 9 is the image of Vienna and its accuracy
evaluation results. Buildings in Vienna are large, complex in
shape, and densely distributed. As shown in the area marked by
the red square, U-Net, DeepLabv3+, and BR-Net made false
detections in the bottom left corner, MC-FCN made missed
detections in the bottom right corner, but our method can detect
buildings more correctly, with fewer missed detections and false
detections.

The qualitative evaluation of these methods demonstrates
that our algorithm can extract buildings more accurately even
when dealing with different scenes and building types. The
quantitative evaluation results of the tested approaches on the
INRIA validation dataset are given in Table III. In addition to
the qualitative comparative algorithms in Fig. 9, three other
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recent state-of-the-art approaches, including GAN-SCA [49],
Building-A-Nets [50], and AMUNet [54], were further com-
pared to our CGSANet. The accuracy evaluation results of the
three methods were directly quoted from the relevant paper. The
methods are arranged in ascending order of IoU values.

From Table III, the recall, precision, IoU, and OA for
our CGSANet without overlapping prediction were 88.68%,
90.22%, 80.90%, and 97.12%, respectively. The F1-score of
our CGSANet-ResNet18 in the INRIA validation dataset was
88.69%, indicating that the method has specific adaptability.
Even without the overlapping strategy, CGSANet achieved the
highest recall, precision, and IoU scores among the tested algo-
rithms, indicating that our CGSANet can optimally balance the
completeness and correctness of the extracted results. The de-
tected buildings were the most accurate as our method achieved
the highest BF-Score as well.

The INRIA dataset covers the affluent and representative
areas, from densely populated areas to low-density towns in high
mountains. This dataset is challenging. In general, our method
achieved more convincing results than many other algorithms,
which further demonstrates the robustness and generalization
ability of the proposed method. The extraction performance on
the INRIA dataset was lower than in the previous two datasets.
The INRIA dataset has various scene changes; the image quality
of the INRIA dataset is worse than the previous two datasets,
and the label has some errors. Our method relies on ground
truth building edge supervision to improve the extracted features.
However, CGSANet still achieved more convincing results than
comparative methods with less missed detection and fewer false
detections.

The detailed experimental analysis of the three datasets
demonstrates that our method is highly competitive. To analyze
the effectiveness of the specific modules of our proposed frame-
work, ablation experiments with the proposed architecture and
loss function were conducted on the WHU dataset. The ablation
analyses are introduced in Section IV-C.

C. Ablation Analyses

In this section, the key modules of CGSANet, including the
encoder CG module and the stepwise weighting deep supervi-
sion strategy (WDS) of the multiscale region supervision, were
analyzed. In addition, the robustness of the hybrid loss function
was further discussed by comparing with BCE, wBCE+wIoU,
BCE+SSIM+IoU, and wBCE+SSIM+IoU loss functions. Ex-
periments were conducted on the WHU dataset and NZ32km2
dataset. The experimental setting on the corresponding dataset
is consistent with Section IV-B.

We evaluated the two modules of CGSANet by gradually
subtracting components. The model that removes the CG module
and the WDS module was taken as the baseline. The baseline
is comprised of the modified ResNet34, the ASPP module, and
the symmetrical decoder with only one building region output.
All the models were optimized by the proposed hybrid loss
function. Table IV tabulates the quantitative evaluation results
of the ablation experiment using the proposed architecture. W/O
is short for without.

TABLE IV
ARCHITECTURE ABLATION ANALYSIS BUILDING EXTRACTION EVALUATION

RESULTS ON THE WHU DATASET AND NZ32KM2 DATASET (%)

W/O, Rec, Prec, and BF are short for without, recall, precision, and BF-Score.
Strongest values per column are labeled in bold, and the secondary values are
underlined.

As given in Table IV, CGSANet achieved the highest value
in three of the four evaluation indicators in both datasets, which
demonstrates the rationality of the architecture design. Specif-
ically, the baseline achieved an IoU of 91.00% on the WHU
dataset, an IoU of 89.82% on the NZ32km2 dataset, indicating
that the basic architecture with the modified encoder combined
with the ASPP module delivers high building extraction per-
formance. The proposed method achieved an IoU of 91.55%,
an increase of 0.55% over the baseline on the WHU dataset.
This shows that the proposed two modules further improve the
effectiveness of the model.

From the perspective of a single module, the CG module has a
greater impact on the model performance. The approach without
the CG module achieved the highest precision value but the
lowest recall value on both datasets. As a result, without the
CG module will bring 0.40% IoU loss on the WHU dataset,
and 0.43% BF-Score loss on the NZ32km2 dataset. The WDS
module can increase the IoU of the model by 0.21% on the WHU
dataset, and 0.17% on the NZ32KM2 dataset. Therefore, each
module contributes, and the combination of two modules can
achieve the highest IoU value. In terms of boundary quality, the
last column reveals that compared with the baseline model, the
proposed framework improved the results by nearly 0.7% on
the WHU dataset, and 0.5% on the NZ32km2 dataset, simulta-
neously indicating the high edge and regional accuracy of the
extracted buildings.

To visually compare the differences between the ablation
experiments, we show heat maps utilizing the Grad-CAM [57]
technique to better understand the features captured by different
models. The results for a sample image in the WHU dataset
are shown in Fig. 10. The first row of Fig. 10 shows the
heatmap of Baseline, Baseline+CG, Baseline+WDS, and the
ground truth. The second row shows the four regional outputs
of CGSANet. As shown in Fig. 10, the Baseline model can
capture the characteristics of multiscale buildings due to the
introduced ASPP module but have false detections on objects
similar to buildings. The introduction of the CG module can
eliminate the false detections from the Baseline model, but it
may lead to the missed detection of the building area with
inconspicuous edges. The introduction of the WDS module can
make the backpropagation of the gradient more stable. It can
see from the second row that all four outputs of CGSANet can
more accurately identify multiscale buildings, indicating that
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Fig. 10. Heatmaps of different models and four regional branches of
CGSANet.

TABLE V
LOSS FUNCTION ABLATION ANALYSIS BUILDING EXTRACTION EVALUATION

RESULTS ON THE WHU DATASET AND NZ32KM2 DATASET (%)

Strongest values per column are labeled in bold, and the secondary values are underlined.

the introduction of a stepwise WDS can improve the learning
efficiency of the network.

To verify the hybrid loss function, CGSANet was trained with
different loss functions on the WHU dataset and NZ32km2
dataset. The loss functions for comparison include BCE,
wBCE+wIoU, BCE+SSIM+IoU, wBCE+SSIM+IoU, and the
proposed wBCE+SSIM+wIoU. The quantitative results on the
WHU dataset and NZ32km2 dataset are given in Table V.

As given in Table V, the wBCE+SSIM+wIoU achieved the
highest values in Recall, IoU, and BF-Score index on both
datasets, indicating that the proposed hybrid loss function op-
timally balances the precision and recall and generates the
highest quality building boundaries. For experiments on the
WHU dataset, the BCE and wBCE+wIoU achieved the second-
highest recall and precision, respectively, but the BF-Score index
based on the BCE alone is the lowest. For experiments on the
NZ32km2 dataset, the BCE achieved the highest Precision but
the lowest IoU and BF-Score. On both datasets, the IoU score of
wBCE+wIoU and BCE+SSIM+IoU was equivalent, indicating
that pixel position attention strategy is essential for improving
the loss function. At the same time, SSIM is a powerful supple-
ment as wBCE+SSIM+IoU outperformed other loss functions
on BF-Score index.

In terms of edge accuracy, when the buffer is set to three pixels,
the wBCE+SSIM+wIoU had the highest BF-Score value. The
edge accuracy of wBCE+SSIM+IoU was close to the proposed
loss function. However, the difference between the BF-Score of
other loss functions and the wBCE+SSIM+wIoU was larger than
the difference of the F1-score based on the region, especially

Fig. 11. Ablation experimental edge accuracy evaluation results of the fourth-
row marked area D in Fig. 5. (a) BCE. (b) wBCE+wIoU. (c) BCE+SSIM+IoU.
(d) wBCE+SSIM+IoU. (e) Baseline. (f) W/O CG. (g) W/O WDS. (h) Proposed.

for the BCE loss function. This further proves the superiority
of the proposed loss function in improving boundary quality.
To visually compare the differences between the ablation exper-
iments, we selected the area marked by the red square in Fig. 5
D for clearer edge qualitative evaluation. The results are shown
in Fig. 11. All the images are dilated for better viewing.

Fig. 11 shows the ablation experimental edge accuracy eval-
uation results of the fourth-row marked area D in Fig. 5. The
first row shows ablation experimental results of different loss
functions based on the proposed CGSANet. The second row
shows ablation experimental results of the proposed architecture
based on the proposed hybrid loss function. From the area
marked by the purple circle in Fig. 11, it can be seen clearly
that without the SSIM loss function [i.e., Fig. 11(a) and (b)] or
the CG module [i.e., Fig. 11(f)], the edge quality of the extraction
result is much lower. Without WDS module Fig. 11(g) will
lead to incomplete extraction of complex buildings. Fig. 11(c)
and (d) shows the results of loss function BCE+SSIM+IoU and
wBCE+SSIM+IoU, which considered pixel-, local- and global-
level information simultaneously. Hence, the edges produced by
these two methods are high quality but still not as accurate as the
edges extracted by our method. As shown in the marked area by
the purple circle on the top of Fig. 11(c), the BCE+SSIM+IoU
method missed some building pixels and was less effective than
our method on this building. The marked area by the purple
circle in the bottom of Fig. 11(d) shows the wBCE+SSIM+IoU
experiment produced irregular building extraction results, the
edge quality was lower than our method. Therefore, each module
of the proposed method contributed to the result, and their
combination achieves optimal performance.

D. Computational Complexity Analysis

To quantitatively evaluate the computational complexity of
different models, the number of parameters and inference speeds
of the tested models were counted, as given in Tables VI and
VII. Params are the abbreviation of Parameters, and M is short
for Million, and frame per second (FPS) counts the number of
processed image patches per second. We conducted experiments
on the test dataset of the WHU building dataset. The input image
size is 512 ∗ 512 pixels.
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TABLE VI
COMPUTATIONAL COMPLEXITY ANALYSIS OF DIFFERENT COMPARATIVE

MODELS ON THE WHU TEST DATASET (%)

TABLE VII
COMPUTATIONAL COMPLEXITY ANALYSIS OF DIFFERENT ABLATION MODELS

ON THE WHU TEST DATASET (%)

As given in Table VI, MC-FCN and BR-NET have the least
number of parameters, and their FPS value is relatively high,
indicating that their inference speed is fast. DeepLabV3+ has the
largest number of parameters but the highest FPS value. How-
ever, the IoU and BF-Score index of DeepLabV3+ are the lowest.
The proposed method achieved the highest IoU and BF-Score
values. When we select modified ResNet18 as the backbone
encoder, the proposed method has 27.46 M parameters, and the
FPS is 18.59, which is equivalent to one-half of deeplabv3+,
and the performance was the best among all the tested methods.
It can see from the bottom row of Table VII that when taking
the modified ResNet34 as the backbone, the parameters of the
proposed method increased by 15.57 M, and the FPS decreased
to 11.85, but a better performance can be achieved. Furthermore,
the designed CG module and WDS module only increased the
number of parameters slightly but significantly improved the
model performance. The limitation of the proposed method was
that the computation cost is relatively high. The training and
inference time of our method was longer than other comparative
methods. However, our method yielded higher performance in
automatic building extraction, especially on boundary local-
ization. Furthermore, we can select an appropriate backbone
encoder according to practical limitations; when taking a lighter
backbone, such as ResNet18, the performance of our method
still can outperform other tested algorithms.

V. DISCUSSION

The boundary unreliability of the FCN-based methods for
building extraction has been a long-standing problem. Repeated
downsampling and coarse upsampling cause detail degradation,
and the BCE loss function cannot learn structural information.
Detail degradation and weak structural-preservation ability af-
fect the reliability of the resulting building boundaries, limiting
the practicality of these methods. Early approaches reduced the
number of downsampling, designed an upsampling module that
retains position information, and introduced structure preser-
vation loss function to improve boundary reliability. Recent
methods further improve the reliability of the extracted building
edges by introducing a multitask learning framework and deep

supervision technique. However, they only supervise the build-
ing contour in the last decoder layer, ignoring the rich spatial
information of the encoder layers. Moreover, the newly designed
loss function still treats the pixel independently without consid-
ering the neighborhood information of the pixel. Our method
integrates the advantages of the other methods and simultane-
ously overcomes shortcomings. Specifically, we improved the
preservation of spatial information by adding a building contour
supervision module to the encoder layers. Residual learning
is introduced to improve the stability of the learning process.
Our loss function design takes pixel position, local structure,
and global information into consideration. These combinations
further improved the reliability of the extracted edges. Many
experiments were conducted on three public datasets to illustrate
the robustness of the proposed approach.

Experiments on the three challenging public datasets have
shown that the proposed algorithm has competitive performance,
despite the severe foreground/background imbalance of the
WHU dataset, the ultrahigh resolution of the NZ32km2 dataset,
and the complex scenarios INRIA dataset. The WHU dataset has
various building scales and appearances, and the annotations
are of high quality. There is a severe building/nonbuilding
imbalance in the WHU dataset, as buildings only account
for about 18.7% of the number of pixels in the training
dataset [15]. We conducted many experiments on the WHU
dataset, including a comparative visual analysis, boundary
accuracy evaluation, and ablation experiments. Compared with
the recent state-of-the-art approaches, our method achieved
the highest IoU value. The boundary accuracy evaluation
further demonstrates that the proposed method has improved
the reliability of the extracted building boundaries to the
comparative algorithms. The ablation experiment on the WHU
dataset indicates the rationality of each module design and
the superiority of the proposed hybrid loss function. They
benefit each other synergistically to yield improved building
extraction performance. Experiments on the NZ32km2 dataset
demonstrate that our algorithm can still obtain robust results
when processing images with a spatial resolution of less than
0.1 m. In contrast, the performance of other tested methods was
affected by the change of image resolution. This verifies the
effectiveness of our approach against the resolution change of
the input imagery. The performance on the INRIA dataset shows
that our method can also achieve competitive results in complex
scenarios. In conclusion, a detailed quantitative and qualitative
analysis demonstrates that our algorithm can extract multiscale
and complex-shaped buildings in a complex surrounding
environment more effectively than the other tested approaches.

The limitation of the proposed method was that the number of
model parameters is relatively large. We argue that the increase
in the number of model parameters stems from the decrease
in downsampling times. Since our model only downsamples
the input image three times, the computational cost and the
number of parameters in the model increased. However, our
method has the capability to preserve spatial details, and the
improvement on the boundary localization is substantial. In
our proposed framework, the backbone can be adjusted flexibly
according to practical requirements to balance accuracy against
computation costs. With the improvement of GPU performance,
such processing is acceptable.
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VI. CONCLUSION

A novel CGSANet for accurate building extraction from
VHR remote sensing imagery is proposed in this article. The
proposed method employs multitask learning, deep supervision
techniques, and a new hybrid loss function to extract building
boundaries at high quality. An efficient encoder CG module
was designed to preserve and refine detail spatial feature maps.
A framework with encoder–decoder structure, combined with
ASPP module, was designed for multiscale contextual feature
capture. A robust hybrid loss function was introduced to guide
the model to learn parameters from the pixel-level similarity,
local structural similarity, and global similarity.

The performance of CGSANet was tested on three challeng-
ing datasets, the WHU dataset, NZ32km2 dataset, and INRIA
dataset. Experimental results showed that even when extracting
buildings with complicated shapes and buildings in images
with complex backgrounds, CGSANet can generate regular
and crisp building boundaries. CGSANet building extraction
outperformed other tested algorithms, with the IoU of above
91.5% in the WHU dataset, an IoU of 90.4% in the NZ32km2
dataset. Experiments on the INRIA dataset further indicate that
the proposed method has specific adaptability. An ablation anal-
ysis on the architecture modules and loss function demonstrates
the rationality of the designed framework. The limitation of the
proposed method was that the model parameters were relatively
large because of the preservation of the low-level spatial infor-
mation. When considering computational efficiency, switching
to a lighter backbone is an option. Our future investigations on
building extraction will improve building boundary regularity
with a computationally efficient model.
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