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Hyperspectral Image Denoising via Low-Rank
Representation and CNN Denoiser

Hezhi Sun™, Ming Liu"?, Ke Zheng

Abstract—Hyperspectral images (HSIs) are widely used in vari-
ous tasks such as earth observation and target detection. However,
during the imaging process, HSIs are often corrupted by various
noises. In this article, we firstly investigate the advantages of tradi-
tional physical restoration models and the denoising convolutional
neural networks (CNN) for HSIs denoising tasks. The sparse based
low-rank representation can explore the global correlations in both
the spatial and spectral domains, and the CNN-based denoiser can
represent the deep prior which cannot be designed by traditional
restoration models. Then, we propose a HSI denoising model with
low-rank representation and CNN denoiser prior in the flexible and
extensible plug-and-play framework by combining the advantages
of the two methods. The proposed model is user-friendly, requiring
no retraining. Simulated data experiments show that, compared
with competitive methods, the proposed one achieves better denois-
ing results for both additive Gaussian noise and Poissonian noise in
various quantitative evaluation indicators. Real data experiments
show that the proposed model yields the best performance.

Index  Terms—Convolutional neural network (CNN),
hyperspectral image (HSI) denoising, low-rank representation.

I. INTRODUCTION

EMOTE sensing imaging is the technology that uses
R satellites, airplanes and other spacecraft carrying imaging
equipment to observe the ground object. Through the propa-
gation and reception of electromagnetic waves, it perceives the
characteristics of ground objects and has the advantages of large-
scale observation and freedom from geographical restrictions.
It can simultaneously obtain spatial and spectral information of
the ground object [1], [2].

Hyperspectral images (HSIs) provide hundreds of continu-
ous observation bands throughout the electromagnetic spectrum
from the visible to the near-infrared wavelength ranges. With the
high-dimensional and distinguishing spectral features, hyper-
spectral remote sensing technology has been widely used in var-
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ious fields, such as earth observation, environmental protection,
and natural disaster monitoring [3]-[6]. However, due to various
factors, such as thermal electronics, dark current, random errors
in light counting and other factors in the imaging process, HSIs
will inevitably be affected by noises, such as such as Gaussian
noise, stripes, deadlines, and impulse noise. Therefore, HSI de-
noising, as a pre-processing step for subsequent applications, is
an important research direction that has attracted much attention
in recent decades [7].

Existing HSIs denoising methods can be categorized into
two groups: spatial based method and spectral-spatial based
method. From the perspective of human vision, the former
treats each band of the HSI as a grayscale image, and directly
applies the mature denoising algorithm for grayscale image or
RGB image to the HSI, denoising band by band. Representa-
tive examples of this type of methods include nonlocal mean
(NLM) [8], total variation (TV) [9], Gaussian mixture model
(GMM) [10], weighted nuclear norm minimization (WNNM)
[11] and the collaborative filtering of groups of similar patches
block-matching and three-dimensional filtering (BM3D) [12].
This type of methods focuses on denoising from the spatial
dimension, and mainly utilizes the self-similar characteristics of
the images. However, the information of the spatial dimension
cannot fully reflect all the information of the HSI, and it ignores
the high correlation between the bands of the HSI.

The spectral-spatial based methods consider the spectral in-
formation on the basis of the spatial-based method and could
make full use of the high correlation in the spatial dimension
and the spectral dimension of HSIs [13]. For example, the
spectral-spatial adaptive hyperspectral TV [14] could adaptively
adjust the noise reduction intensity of each pixel according to
different types of features in the spatial domain, simultaneously,
the algorithm could also adjust the noise reduction intensity of
each band according to the noise intensity of different bands;
BM4D [15] and VBM4D [16] which are based on the BM3D al-
gorithm, use collaborative filtering in 3-D patches extracted from
image sequences and videos, respectively; MSPCA-BM3D [17]
is to denoise based on nonlocal spatial adaptation and spectral
dimension decorrelation for multispectral or HSIs; multichannel
WNNM method [18] expands the gray image denoising model
(WNNM) to RGB image denoising by introducing a weighting
matrix; PCA+BM4D [19] first performs the principal compo-
nent analysis (PCA) transformation on the noisy HSIs, keeping
the high-energy principal components of the first few signals
unchanged, and uses the BM4D to denoise for the low-energy
principal components of the remaining signal.
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With the vigorous development of compressed sensing the-
ory, the low-rank representation of high-dimensional data has
attracted more and more attention [20]. The high correlation
in the spatial and spectral dimensions of HSIs makes it exhibit
low-rank characteristics. More and more HSI processing algo-
rithms based on low-rank representation have been proposed, for
example, LRCF [21], NAILRMA [22], LRTV [23], FastHyDe
[24], RhyDe [25], WLRTR [26], FLLRSC [27], LSDM-MoG
[28], etc.

Recent years, deep learning-based models have been intro-
duced for nature images and HSIs applications [29]-[35]. The
spatial-spectral features can be extracted by deep convolutional
neural network, and these features represent low-to-high level
semantic information, and that denoising, destriping and super-
resolution are classical low-level vision tasks. Convolutional
neural network-based DnCNN [36] and FFDNet [37] are two
representative deep-denoising methods for single image, which
show good results. For HSIs denoising task, HSI-DeNet [35]
and spatial-spectral gradient network (SSGN) [38] show impres-
sive results. Due to the end-to-end training, the learning-based
method is not only faster in testing, but also has better per-
formance. In contrast, traditional (model-based) methods are
usually time-consuming with complex priors to achieve good
performance. Taking into account their respective merits and
drawbacks, it is natural to think of integrating the two together
to take advantage of their respective merits. This integration
leads to a deep plug-and-play (PnP) [39] HSI denoising method,
which uses a learning-based CNN denoiser prior to replace that
in model-based method.

In this article, we resort to the PnP framework to address HSI
denoising task. A low-rank and sparse representation method is
used to model the spatial-spectral low-rank prior of HSIs and
derive orthogonal subspace representation coefficients images
(herein termed eigen-images), while eigen-images are denoised
with the CNN-based DRUNet [40]. We embed them both into
the PnP framework to propose a PnP HSI denoising model
with low-rank representation and CNN denoiser prior. One can
find the flowchart of our model in Fig. 1. In the proposed
PnP framework, the submodel of low-rank based orthogonal
subspace representation refers to [24], the eigen-images are
denoised by the submodel of DRUNet.

The contribution of this article is summarized as follows.

1) A novel framework for HSIs denoising called PnP HSI
denoising model with low-rank representation and CNN
denoiser prior is proposed. Compared with the traditional
HSI denoising methods and other PnP-based denoising
frameworks, the proposed model is more universal, re-
quiring no retraining.

2) The framework combines traditional methods and deep
learning methods. On the one hand, it uses a low-rank
representation framework to make full use of the spatial
and spectral information of HSIs. On the other hand, it
uses the intensity fitting and computing power of deep
learning to improve the generalization of the algorithm.

The rest of this article is organized as follows: Section II
introduces related works, including PnP framework, low-rank
representation, and denoising CNN. Section III presents the
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Fig. 1. Flowchart of the proposed method. It includes three stages: A
Low-rank representation to get Eigen-images; B. Eigen-images denoising by
DRUNet; and C. Inverse transformation to get denoised HSIL. PnP is a bridge
connecting A, B, and C.

details of the PnP HSI denoising model. Section IV evalu-
ates the performances of our method compared with those of
other hyperspectral denoisers. Finally, Section V concludes this
article.

II. RELATED WORKS

In this section, we briefly review and discuss the three major
categories of relevant work, which are low-rank and sparse
characteristic of HSIs, PnP framework and denoising CNN.

A. Low-Rank and Sparse Characteristic of HSIs

The column rank of a matrix is the maximum number of
linearly independent columns, and the row rank is the maximum
number of linearly independent rows. The row rank and column
rank of a matrix are always equal, which can be simply called
the rank of the matrix. The less nonzero elements in the singular
values of the matrix, the lower the rank of the matrix is. In the
field of information processing, rank represents the redundancy
of information. The lower the rank, the higher the redundancy
of information.

Like natural images, the information of each band of HSI rep-
resents the reflectivity of the same object in different spectrums,
the image of each band has self-similar characteristics, so there
is correlation between different pixels. Similarly, in the spectral
dimension, due to the narrow interval between adjacent bands,
there is even a certain spectral overlap, so that there is high
correlation between adjacent and even nonadjacent bands. The
high correlation in the spatial and spectral dimensions of HSI
makes it exhibit low-rank and sparse characteristics. However,
the noise will weaken the correlation in the spatial dimension
and the spectral dimension of HSI, and accordingly increases
the rank of the image matrix. Taking the Washington dc scene



718 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Singular value of noisy HSI
Singular value of clean HSI ||

singular value

0 50 100 150 200
band

Fig. 2. Singular value of Washington dc subscene disturbed by noise.

disturbed by noise as an example, Fig. 2 intuitively describes
this process. The singular value curves are obtained by singular
value decomposition (SVD) on image matrix of HSI. The larger
singular value determines the “main feature” of the image, that
is, the main signal energy of the HSI. It can be seen that the
singular values of image matrix of clean HSI are almost close to
0 after the eighth band, while the singular values of the image
matrix of HSI disturbed by noise are obviously higher than 0.
The smaller singular values after the 8th band are caused by
noise, and the presence of noise increases the rank of the image
matrix. Although the presence of noise weakens the correlation
in the spatial and spectral dimensions of HSI, there is still a lot of
redundancy in the images. Simultaneously, research [41] shows
that in most real observation scenarios, although the observed
HSI is interfered by noise, there is still high correlation between
the spectral vectors.

B. Plug-and-Play Framework

Recently, some works [42]-[45] using PnP framework for HSI
processing have been proposed. The main idea of PnP is that it
can decouple complex objective function through a certain vari-
able splitting algorithm into several related submodels, except
for the input and output each submodels can be flexibly replaced
with other similar models [46]. For image restoration (IR),
first, the data item and the prior item of the objective function
are decoupled through a certain variable splitting algorithm,
such as alternating direction method of multipliers [47] and
half-quadratic splitting [48], so as to obtain an iterative scheme
consisting of alternately solving the data subproblem and the
prior subproblem. Then we can use any available denoiser to
solve the prior subproblem, such as NLM [8], GMM [10], and
BM3D [12].

For PnP IR, the denoising operators are basically divided
into two categories: one is the traditional model-based denoiser,
and the other is the deep CNN denoiser. For example, some
research using the BM3D, GMM, or WNNM denoiser prior in a
PnP framework for image deblurring [49]-[52], super-resolution
[53], and denoising [24], [54]. These methods decouple the data
term and regularization term, then the regularization prior is
implicitly defined via the flexible denoisers, unlike traditional
model-based methods which need to specify the explicit and
handcrafted image priors.

CNN-based denoising methods have achieved efficient and
effective results, with the development of deep learning. There-
fore, some CNN-based PnP IR methods [55]-[59] have been
proposed, mainly taking IRCNN or DnCNN as denoiser. These
methods either adopt multiple CNN denoisers trained for differ-
ent noise levels to cover a wide range of noise levels or use
a single denoiser trained on a certain noise level, which are
not suitable to solve the denoising subproblem [40]. For exam-
ple, IRCNN denoiser consists of 25 separate 7-layer denoisers,
among which each denoiser is trained on an interval noise level
of 2 [56]. This undoubtedly increases the number of iterations,
calculation amount and affects the performance.

C. Denoising CNN

As we introduced earlier, convolutional neural network-based
DnCNN [36] and FFDNet [37] are two representative deep-
denoising methods for single image. The main improvement of
DnCNN includes: adding batch norm-alization; and the strategy
of residual learning is introduced, unlike previous networks
that learn clean images from noisy images, DnCNN learns
the distribution of noise from noisy images to obtain residual
image, then makes difference between the residual image and the
original image to get the denoised image. This residual learning
strategy greatly reduces the amount of the network parameters.
DnCNN has achieved a good denoising effect on both indepen-
dent and identically distributed (i.i.d.) Gaussian noise and non-
independent and identically distributed (Non-i.i.d.) Gaussian
noise. However, it has limited effect on real image denoising.
FFDNet is based on DnCNN and uses a noise level map as
input, so that the network can handle a wide range of noise
levels.

For HSI denoising, HSI-DeNet [35] and SSGN [38] are
two representative deep denoisers, showing impressive results.
When the network is properly trained, the deep denoiser will
be much faster than the denoiser based on traditional machine
learning. However, the denoising performance is highly depen-
dent on the training data.

The abovementioned denoisers are difficult to directly meet
the requirement of the proposed PnP HSI denoising framework,
that is, single image denoising, blind denoising and handling
a wide range of noise levels via a single model. Perhaps the
most suitable denoiser for PnP denoising is FFDNet, but its
performance is only comparable to DnCNN and IRCNN, thus it
may not be able to improve the performance of PnP denoising.
In response to above problems, Zhang et al. [40] proposed a
flexible and powerful denoiser called DRUNet which combined
U-Net and ResNet. DRUNet takes the noise level map as input
and has the ability to handle various noise levels via a single
model. Compared with FFDNet and IRCNN, DRUNet has better
performance. Moreover, even trained on noise level range of
[0, 50], DRUNet can still perform well on an extremely large
unseen noise level of 200. Therefore, it is perfectly suitable for
PnP IR task.

III. FORMULATION AND PROPOSED METHOD

In this section, we described the HSI denoising problem
formulation first and then a generality framework called PnP
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HSI denoising model with low-rank representation and CNN
denoiser prior was proposed.

A. Problem Formulation

The clean 2-D matrix of HSI X = [xq,...,@,] € R™*"
(np is the number of bands, n is the size of spectral vector in
X)) is degraded by the interference of additive Gaussian noise.
Therefore, the observation model of HSI can be expressed as

Y=X+N (1)

where Y, N € R™*"_ N is the additive Gaussian noise. The
algorithm solution model can be expressed as

1
min - Y — X ||3 4 rrank(X) 2)

where X% = trace(X X7T) is the Frobenius norm of X, 7
is a positive regularization parameter to balance the two terms.
Equation (2) is nonconvex and has no effective solution. To find
an effective solution, we replace rank (X ) with the nuclear norm
I X |« = >, 0: (X) of X, and 0, (X)) represents the ith singular
value of X. Thus, the transformed convex optimization model
can be expressed as

1 9
min = [Y = X[} + 7| X].. )

B. PnP HSI Denoising Model

A low-rank and sparse representation method is used to model
the spatial-spectral low-rank prior of HSIs and derive eigen-
images, while the eigen-images are denoised with DRUNet. We
embed them both into the PnP framework to propose the PnP HSI
denoising model. It is mainly composed of three steps: low-rank
representation of HSI, eigen-images denoising by DRUNet and
inverse transformation to get denoised HSI.

Step 1: Low-Rank Representation of HSI: For additive Gaus-
sian i.i.d. noise, the transformed convex optimization model is
as Equation (3).

As we introduced in Related Works, although the presence
of noise weakens the correlation in the spatial and spectral
dimensions of HSI, there is still a lot of redundancy in the
images. In most real observation scenarios, although the ob-
served HSI is interfered by noise, there is still high correlation
between the spectral vectors. Therefore, x;,7 = 1,...,n live
in a low-dimensional orthogonal subspace S}, with p < ny.
From the perspective of low-rank representation, X can be
expressed as a linear combination of an orthogonal base matrix

E =ley,...,e,] € R™*Pandacorresponding representation
coefficient matrix Z = [21,...,2,] € RP*™,
X = EZ. 4)

In real observation scene, the two-dimensional matrix X of
the clean HSI is unknown. Therefore, an effective and feasible
method is needed to learn the orthogonal base matrix E from the
observed two-dimensional matrix Y of the noisy HSI. E can be
learned using HySime algorithm [60] or SVD. As we mentioned
earlier, the images associated with the rows of Z are called as
eigen-images. It can be seen from (5) that the eigen-images are

— Ground truth
........... Estmation H

Fig. 3. Gaussian noise level o of Washington DC Mall subscene disturbed by
Gaussian non-i.i.d. noise. Blue line denotes the ground truth and red one denotes
the estimated noise level.

linear representations of the original images (x;,7 = 1,...,n).
Therefore, in the process of projecting the original HSI into the
low-dimensional orthogonal subspace, the self-similar in spatial
structure is not destroyed, so the eigen- images also have the
self-similar characteristics [24].

Step 2: Eigen-Images Denoising With DRUNet: Referring
to [24], the components of Z which are the eigen-images
tend to be decorrelated. Regularization operator ¢(Z) can be
expressed as

¢ (elY)
¢ (E'Y) = : ) (3)
¢(ey Y)

The eigen-images denoising problem can be formulated as

A 1
Z = argmziniHEZfYH% + 19 (2)

:argmzin%HZfETHY%JrAQS(Z). (6)

We resort to the PnP prior framework to address the denoising
problem, the proposed method uses DRUNet as regularization
denoiser to denoising the eigen-images band by band. Therefore,
¢(+) denotes the network of DRUNet, the input are noisy eigen-
images and output are corresponding denoised ones. As we men-
tioned in the related works, DRUNet is a flexible and powerful
denoiser, which could handle images with various noise levels
without retraining the network. Not mention that it is much faster
than other machine learning-based denoisers. It should be noted
that DRUNet takes the noisy images and corresponding level
maps as input, the noise level map is a uniform map filled with
noise level o and has the same spatial size as noisy images.
Here, we refer to [60] to do the noise level estimation. In order
to verify the accuracy of the estimation method, the different
variance zero-mean Gaussian noise (Gaussian non-i.i.d. noise)
is added to each band of Washington DC Mall subscene, with
o being randomly selected from 0 to 0.3. Fig. 3 shows the truth
noise levels and estimated ones.
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Step 3: Inverse Transformation to Denoised HSI: After eigen-
images denoising, the denoised HSI can be written as

X =EZ. (7

For additive Gaussian non-i.i.d. noise, that is, when the Gaus-
sian noise intensity of each band is different, the HSI 'Y should
be Gaussian whitening before eigen-images denoising, so the
Gaussian non-i.i.d. noise will be transformed into Gaussian i.i.d.
noise. For poissonian noise, the Anscombe transform will be
applied to converts Poissonian noise into approximately additive
noise [24].

IV. EXPERIMENTS

To verify the effectiveness of our model, lots of experiments
on simulation and real HSI data are conducted. Five different
denoising methods, classic BM3D [12], DRUNet [40], HSID-
CNN [61], NAILRMA [22], and FastHyDe [24] are selected
as comparison methods, besides that for comparison we take
DnCNN as denoising submodel to replace DRUNet in the pro-
posed framework. It should be noted that DRUNet and DnCNN
with pre-trained model parameters are used in the experiment.
For HSID-CNN, we have retrained the network with the same
settings and datasets in [61]. The parameters of all comparison
methods are the optimal parameters given in their original litera-
ture. For our method, the spectral vectors in the two datasets are
projected on an orthogonal signal subspace learned via Hysime.

Experiment Environment. The algorithms were implemented
on MATLAB R2014a and Pytorch framework on a desktop PC
equipped with Intel Core i7-6700 CPU (at 3.60 GHz), NVIDIA
Titan Xp GPU and 16 GB of RAM memory.

A. Simulated Data Experiments

Two HSIs are used to evaluate the performance of the pro-
posed model including: Washington DC Mall subscene and
Pavia Centre subscene.

1) Washington DC Mall: This data was taken by HYDICE
sensor in Washing DC Mall. The wavelength range is
400-2500 nm. To simulate the clean images, low signal-
to-noise bands, due to the water vapor absorption, were
discarded, and 191 bands were remained. The ground
sample distance (GSD) of this data is 2.8 m and the image
size selected in the experiment is 256 x 256 pixels.

2) Pavia Centre: The second data was gathered by ROSIS
sensor using flight campaign in Pavia. It contains pixels
with 115 spectral bands from 430-860 nm. Because the
atmospheric absorption affection, 80 spectral bands were
remained with 35 bands discarded. The GSD of this data
is 1.3 m. The image size selected in the experiment is
200x200 pixels.

Before adding simulated noise, the gray values of HSIs are
normalized to [0, 1] band by band, and they are restored to the
original interval after denoising. For comparison, we use the
similar experiment settings as [24] to generate noisy HSI data
under there different noise cases. The details are listed in the
following.

1) Case I: In this case, the noise intensity was equal for

different bands. Zero-mean Gaussian noise of same vari-
ances (Gaussian i.i.d. noise) was added to each band. The

variances of the Gaussian noise are {0.022 0.04% 0.06>
0.08%0.1% 0.22 0.3%}.

2) Case 2: In this case, the noise intensity was different
for different bands. That is, different variance zero-mean
Gaussian noise (Gaussian non-i.i.d. noise) was added to
each band, with the variance value being randomly se-
lected from 0 to 0.12.

3) Case 3: In this case, Poissonian noise Y ~ P(aX) was
added, where P(A) stands for a matrix of size(A) of inde-
pendent Poisson random variables whose parameters are
given by the corresponding element of A :=[a,;]. The pa-
rameter « is such that SNR :=a(3" 4, ja;;%) /(3 4, jai;)
was set 15 dB.

For data in case 3, the Poissonian noise is converted into ap-

proximately additive noise by applying the Ansocmbe transform

Y = 24/Y + %, since the compared methods assume additive
Gaussian noise.

The peak signal-to-noise (PSNR) index and the structural
similarity (SSIM) index of each band are calculated for quanti-
tative assessment. The larger the PSNR and SSIM, the better the
restoration performance of the corresponding method. The cor-
responding mean PSNRs (MPSNR) and mean SSIMs (MSSIM)
for Washington DC Mall data and for Pavia Centre are reported
in Tables I and II, respectively. In all cases our model achieves the
best results compared with other methods and the gains increase
as the noise increases. It is worth noting that our model achieves
an improvement of MSSIM more than 0.5 dB compared with
the second-best result.

For visual evaluation, we show the 70th band of the recovered
HSI with the noise in case 1 (the variance of the Gaussian
noise is 0.12), cases 2 and 3 in Figs. 4 and 3, it can be seen
that the results of our model are closest to the original refer-
ence images comparing with other methods, especially in the
preservation of details. The reconstructed spectral vectors for
different denoising methods in all cases are depicted in Figs. 6
and 7, it is also clear from the results of our model that the
spectral characteristics are closest to ones in the clean HSI.
Figs. 8 and 9 show the PSNR and SSIM values of each band of
denoised Washington DC Mall data and Pavia data, our proposed
method shown in red, uniformly provides the best performances
in almost all cases.

From the comparison with results of FastHyDe and Suspace
+ DnCNN, it can be seen that DRUNet is more suitable for
the eigen-images denoising in this framework than BM3D and
DnCNN. Our model takes advantage of CNN denoiser and
traditional low-rank representation method.

B. Real Data Experiments

To further verify the effectiveness of the proposed denois-
ing method, two real-world data, the AVIRIS (airborne visi-
ble/infrared imaging spectrometer) Indian Pines scene and GF-5
data, were employed in our real data experiments.

1) Indian Pines: This image recorded over North-western
Indiana of 20 m per pixel and 220 spectral channels. The
size of the selected scene is 145 x 145 pixels, with strong
noise in a few bands.
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TABLE I
QUANTITATIVE ASSESSMENT OF DIFFERENT ALGORITHMS APPLIED TO WASHINGTON DC MALL

o Index E}? ;;}é BM3D DRUNet HSID-CNN NAILRMA  FastHyDe  Subspacet+DnCNN Ours
MPSNR 33.98 3631 37.15 4251 4338 49.69 4846 50.14
002 VissM 0.9370 09667 09727 0.9928 0.9977 0.9981 0.9976 0.9983
MPSNR 27.96 32.03 32.89 3829 43.14 4478 44.50 45.32
004 VissIM 0.8099 09164 09319 0.9813 0.9921 0.9945 0.9942 0.9952
MPSNR 22.44 29.82 30.64 35.17 40.24 41.97 41.93 42.54
0:06 VissIM 0.6824 08667  0.8909 0.9651 0.9835 0.9901 0.9900 0.9914
MPSNR 21.94 28.37 29.15 33.39 38.20 40.09 40.16 40.72
Casel 008 oo 0.5728 0.8207 0.8523 0.9475 0.9760 0.9853 0.9855 0.9873
MPSNR 19.99 27.31 28.05 34.26 36.69 38.69 38.82 39.39
Ol VssiM 04832 07786 0.8164 0.9505 0.9680 0.9804 0.9808 0.9832
MPSNR 13.98 2423 24.98 3026 3173 34.50 34.76 35.26
02 \MsSIM 02288 0.6067  0.6719 0.8973 0.9192 0.9542 0.9562 0.9611
MPSNR 10.46 2275 23.45 27.55 28.98 3225 32.55 33.01
03 MssIM  0.1282 05048 05731 0.8257 0.8647 0.9282 0.9313 0.9382
MPSNR 28.62 32.99 33.76 3891 47.44 5129 49.16 51.52
Case2 MSSIM 07507 0.8928 09118 0.9788 0.9977 0.9983 0.9978 0.9984
MPSNR 26.98 3133 32.15 37.04 4178 4321 4321 43.75
Case 3 MSSIM 07980 09129  0.9250 0.9731 0.9881 0.9914 0.9920 0.9931
TABLE II
QUANTITATIVE ASSESSMENT OF DIFFERENT ALGORITHMS APPLIED TO PAVIA CENTRE DATA
o Index II\rIr(l);Z}é BM3D  DRUNet HSID-CNN  NAILRMA  FastlyDe  Subspace+DnCNN Ours
MPSNR 33.98 36.75 37.66 4284 46.67 46.98 46.01 4741
002 \issim 0.9330 09670 09731 0.9924 0.9952 0.9965 0.9956 0.9968
MPSNR 27.97 32.78 33.69 38.44 41.70 42.54 42.40 43.09
004 \issm 0.7948 09224 09369 0.9789 0.9870 0.9908 0.9903 0.9919
MPSNR 24.43 30.64 31.51 35.57 38.86 40.02 40.01 40.66
006 \issiv 0.6548 0.8784  0.9000 0.9631 0.9775 0.9841 0.9839 0.9863
MPSNR 21.94 29.20 30.02 33.93 36.80 3833 3839 39.06
Casel 008 \ssMm 0.5372 08372 0.8645 0.9417 0.9646 0.9770 0.9773 0.9807
MPSNR 19.99 28.12 28.90 34.61 3529 36.98 37.11 37.78
01 Mssim 0.4408 0.7991 0.8309 0.9506 0.9540 0.9698 0.9705 0.9749
MPSNR 13.98 24.93 25.65 30.69 30.43 3333 33.66 34.27
02 \ssim 0.1897 0.6349  0.6899 0.8940 0.8811 0.9361 0.9396 0.9472
MPSNR 10.46 23.35 23.96 27.72 27.58 31.33 31.64 3227
03 Mssim 0.1029 0.5255 0.5850 0.8069 0.8008 0.9045 0.9093 0.9205
MPSNR 2873 3381 34.60 40.19 43.49 48.59 46.52 48.87
Case 2 MSSIM 0.7204 0.8990 0.9163 0.9829 0.9935 0.9977 0.9964 0.9978
MPSNR 26.97 3225 3270 37.14 40.59 41.63 4161 42.14
Case 3 MSSIM 0.7592 09125 0.9263 0.9700 0.9848 0.9891 0.9888 0.9904
TABLE Il
AVERAGE RUNTIME COMPARISONS FOR HSI DENOISING METHODS IN REAL EXPERIMENTS
Method BM3D DRUNet HSID-CNN  NAILRMA FastHyDe Sub+DnCNN Ours
Time (s) 53 17 3 15 10 4 5

The noise was assumed to be non-i.i.d. and estimated with
HySime. The subspace dimension input to our model and
FastHyDe is set to 25, considering the robustness of FastHyDe
to subspace dimension overestimation [24]. Fig. 10 shows three
bands of the denoised results of Indian pines (1, 2, and 61), the

first column shows the noise bands, the last column shows the
results of our model which yield the best performance.

The corresponding computational times are given in
Table IIT . Qualitatively, though HSID-CNN has the shortest
runtime, our method yields the best result in the second shortest
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Casl Case 1 Case 1 Ca 1 R Case 1 Cas Ca 1 Case 1

Clean image Noisy image DRUNet HSID-CNN NAILRMA FastHyDe Subspace+DnCNN

Zoomed area Case2 Case 2 Case 2 Case 2 Case 2 Case 2 Case 2
of clean image Noisy image BM3D DRUNet HSID-CNN NAILRMA FastHyDe Subspace+DnCNN

Case 3 Case 3 Case 3 Case 3 Case 3 Case 3 Case 3 Case 3
Noisy image BM3D DRUNet HSID-CNN NAILRMA FastHyDe Subspace+DnCNN Ours

Fig. 4. Denoising result of band 70 of Washington dc dataset. Case 1: Gaussian i.i.d. ¢ = 0.1. Case 2: Gaussian non-i.i.d. noise. Case 3: Poissonian noise.

Casel Case 1 Case 1 Case 1 Case 1 Case 1 Case 1 Case 1

Clean image Noisy image BM3D DRUNet HSID-CNN NAILRMA FastHyDe Subspace+DnCNN Ours

Zoomed area Case2 Case 2 Case 2 Case 2 Case 2 Case 2 Case 2 Case 2
of clean image Noisy image BM3D DRUNet HSID-CNN NAILRMA FastHyDe Subspace+DnCNN Ours

Case 3 Case 3 Case 3 Case 3 Case 3 Case 3 Case 3 Case 3
Noisy image BM3D DRUNet HSID-CNN NAILRMA FastHyDe Subspace+DnCNN Ours

Fig. 5. Denoising result of band 70 of Pavia centre dataset. Case 1: Gaussian i.i.d. o = 0.1. Case 2: Gaussian non-i.i.d. noise. Case 3: Poissonian noise.

time. It should be noted that steps 1 and 3 of our method is 10% of the test samples randomly generated from each class.
running on MATLAB, step 2 is running on Pytorch, so the Fig. 11 shows the results for Indian pines using RF classifier,
calculational time of which is calculated separately and added and the classification accuracy results are given in Table IV. Our
together. Nevertheless, our method is still much faster than method produces a better classification result, with the highest

FastHyDe. OA and kappa values of 80.86% and 0.7798, respectively.

To further verify the effectiveness of the algorithms, we use 2) GF-5 Data: This data was acquired over an area of Fujian
a random forest (RF) classifier [62] to classify the HSIs before Province, China in January 2020, by advanced hyper-
and after denoising by all comparing algorithms. The overall spectral imager loaded by GF-5 satellite. It provides 330-
accuracy (OA) and the kappa coefficient are given as evaluation bands visible/near-infrared and shortwave infrared data,
indexes. A total of 16 ground-truth classes were employed for covering from 400 to 2500 nm. Because the atmospheric

testing the classification accuracy. The training sets included absorption affection, 313 spectral bands were remained
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CLASSIFICATION ACCURACY RESULTS FOR INDIAN PINES
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Method Original BM3D DRUNet HSID-CNN NAILRMA FastHyDe Sub+DnCNN Ours
OA 74.19% 76.62% 78.66% 80.50% 79.94% 79.67% 80.41% 80.86%
Kappa 0.7021 0.7306 0.7540 0.7773 0.7697 0.7657 0.7754 0.7798

Spectral vector of one pixel and its denoising results in Pavia dataset. Case 1: Gaussian i.i.d. noise ¢ = 0.1. Case 2: Gaussian non-i.i.d. noise.
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Fig. 8.  PSNR and SSIM values of each band of denoised dc Mall images. Case 1: Gaussian i.i.d. noise. Case 2: Gaussian non-i.i.d. noise. Case 3: Poissonian
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Fig. 9.

PSNR and SSIM values of each band of denoised Pavia images. Case 1: Gaussian i.i.d. noise. Case 2: Gaussian non-i.i.d. noise. Case 3: Poissonian noise.
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Band 1 Band 1 Band 1 Band 1

Band 1 Band 1 Band 1 Band 1
Observed BM3D DRUNet HSID-CNN NAILRMA FastHyDe Subspace+DnCNN Ours
Band 2 Band 2 Band 2 Band 2 Band 2 Band 2 Band 2 Band 2

Observed BM3D DRUNet HSID-CNN NAILRMA FastHyDe Subspace+DnCNN Ours

Band 61 Band 61  Bandol Band 61 Band 61
Observed BM3D DRUNet HSID-CNN NAILRMA FastHyDe Subspace+DnCNN Ours

Fig. 10.  Denoised results of different methods in Indian pines.

Groud truth
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Viheat
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16 classes

NAILRMA FastHyDe Subspace+DnCNN

Fig. 11.  Classification results for the Indian pines images.

Band 1 Band 1 Band 1 Band 1 Band 1 Band 1 Band 1 Band 1
Observed BM3D DRUNet HSID-CNN NAILRMA FastHyDe Subspace+DnCNN Ours

Band 128 Band 128 Band 128 Band 128 Band 128 Band 128 Band 128 Band 128

Observed BM3D DRUNet HSID-CNN NAILRMA FastHyDe Subspace+DnCNN Ours
Band (1, 2, 308) Band (1, 2, 308) Band (1, 2, 308) Band (1, 2, 308) Band (1, 2, 308) Band (1, 2, 308) Band (1, 2, 308) Band (1, 2, 308)

Observed BM3D DRUNet HSID-CNN NAILRMA FastHyDe Subspace+DnCNN Ours

Fig. 12.  Denoised results of different methods for GF-5 subregion image.
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with 17 bands discarded. A subregion image of size
300 x 300 pixels was tested for our experiment.

The first column of Fig. 12 shows band 1, band 128 and the
pseudocolor image with bands (1, 2, 308) separately, which all
display strong noise and obvious stripes. Our method exhibits
a good denoising effect. Although there are still rare and slight
stripes in band 1, it retains more details than NAILRMA whose
results display over smooth. For example, it can be seen from the
zoomed area of pseudocolor images that our results preserved
the “fishing ground” while denoising effectively.

V. CONCLUSION

In this article, we proposed a PnP framework to address HSI
denoising task. A low-rank and sparse representation method
is used to model the spatial-spectral low-rank prior of HSIs
and derive subspace representation coefficients images (termed
eigen-images), while eigen-images are denoised with CNN de-
noiser that is DRUNet. We embed them into the PnP frame-
work to propose the PnP HSI denoising model with low-rank
representation and CNN denoiser prior, which is user-friendly,
requiring no retraining and utilizes the powerful performance
of denoising CNN. Compared with other advanced denoising
methods, the proposed method has better performance for both
additive Gaussian noise and Poissonian noise. The simulated and
real data experimental results also show that our model could
more effectively maintain the details, the main structure and
texture information of HSIs.
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