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Abstract—Recently, the semi-supervised graph convolutional
network (SSGCN) has been verified effective for hyperspectral
image (HSI) classification. However, constrained by the limited
training data and spectral uncertainty, the classification perfor-
mance is remained to be further improved. Moreover, attribute to
the massive data, the SSGCN with complex computation is gener-
ally too time- and resource-consuming to be applicable in real-time
needs. To conquer these issues, we propose an efficient symmet-
ric graph metric learning (SGML) framework by incorporating
metric learning into the SSGCN paradigm. Specifically, we first
conduct multilevel pixel-to-superpixel projection (P-SP) on the HSI
to investigate the multiscale spatial information, where the suitable
superpixel numbers are adaptively determined. Then, to extract
more expressive representations, we design a new structure denoted
as GSvolution, comprising the graph convolution (G-Conv) and
a novel self-channel-enhanced convolution (S-Conv), to propagate
the labeled and unlabeled graph node information and simulta-
neously enhance the critical intranode channel features. Finally,
the superpixel node features are reprojected to the pixel level
(SP-P) so that the distilled multistream features can be integrated
to obtain the final decision. Noticeably, this ingenious symmetric
mechanism (P-SP and SP-P) can alleviate the spectral variability
and facilitate the framework to be an efficient model. Furthermore,
in the metric learning module, we propose an innovative metric loss
function to enhance the discrimination of the embedding features,
i.e., inter class far apart and intraclass close. In the experiments, we
demonstrate that the classification capacity of the proposed SGML
can surpass the comparators on three benchmark data sets.
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I. INTRODUCTION

HYPERSPECTRAL image (HSI) can distinguish various
land-covers owing to its refined reflection/radiation in-

formation, attracting momentous vast industry and agriculture
applications, such as medical diagnosis, mineral exploration,
and environmental monitoring, to name a few [1]–[6]. Notably,
HSI classification (HSIC), identifying the pixel-level attributes
over the whole scenario, is a significant scene parsing task in
HSI processing [7], [8].

Recently, the HSIC approaches based on deep learning (DL)
have flourished, which implement deep feature extraction and
classification in an end-to-end configuration [9]–[11]. For in-
stance, Li et al. [12] presented a three-dimensional convolu-
tional neural network (3-D-CNN), which can explore the spec-
tral and spatial features synchronously and obtain promising
classification results. Similarly, the patch-based spectral–spatial
models, mitigating the spectral uncertainty problem by taking
the spatially neighbored pixels into the calculation, have be-
come the mainstream in HSIC. For example, Zhong et al. [13]
introduced the shortcut connection architecture into HSIC and
proposed a spectral–spatial residual network (SSRN). Moreover,
a fast dense spectral–spatial convolutional (FDSSC) network
was presented to further enhance the representations by dense
skip-connections of low-level and high-level features [14]. No-
tably, a diverse region CNN (DR-CNN) [15] was proposed to
precisely exploit the wealthy spatial context features by utilizing
various neighborhoods of the central target pixel.

Nonetheless, the generalization capability of these supervised
deep models dramatically downgrades with insufficient labeled
samples. To alleviate this issue, novel DL architectures like
squeeze-and-excitation network (SENet) were introduced to
extract more significant features leveraging the attention mech-
anism [16]–[18]. In addition, Haut et al. [19] presented an active
learning (AL) approach associated with a Bayesian CNN, which
is reinforced by the acquisition of new hard unlabeled samples
to obtain robust identification results. Chen et al. [20] realized
heterogeneous transfer learning by utilizing the model pretrained
on the ImageNet data set to perform the HSIC tasks. Moreover,
Liu et al. adopted the prototypical network to achieve deep
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few-shot learning for HSIC, which accomplishes knowledge
transformation through the episode-based training strategy and
the meta-learning paradigm [21], [22].

On the other hand, more and more research focuses on
semi-supervised learning (SSL), which can not only make full
use of the labeled data, but also take the information of the
unlabeled samples into account as an auxiliary. Remarkably,
the semi-supervised graph convolutional network (SSGCN) has
been demonstrated to be one of the most effective SSL methods
for HSIC, due to that the filter parameters are approximated by
the truncated Chebyshev polynomials and can be trained in an
end-to-end manner [23]. For instance, concerning the specific
application of HSIC, a spectral–spatial GCN (S2GCN) was
proposed in Ref. [24], which obtains improved classification
performance than that of naive GCN [23]. Furthermore, Mou
et al. [25] proposed a special nonlocal GCN, which incorporates
the self-attention mechanism into constructing the adjacency
matrix to acquire more compact classification maps.

However, two problems remain to be resolved.
1) In the small sample size (SSS) regime for HSIC, the above

GCN-based models would not effectively propagate the labels
to the entire topological graph, which likely leads to inferior
classification results. The reason can be inferred as follows:
Labels are generally harnessed as “anchors” to force the learning
models to fit the labeled samples with certain confidence [26].
By this means, the information extracted from them can be
reliably propagated to the unlabeled samples. However, when
the labeled samples are insufficient, the models tend to exhibit
a significant test variance even though the training bias is slight,
i.e., overfitting phenomenon. Additionally, the high intraclass
and low interclass variability, i.e., spectral uncertainty inherent
to HSI data [7], may produce that semantically identical pixels
may be differently grouped and consequently mislabeled.

2) Attribute to the large amount of pixel-level data, the adja-
cency matrix of the graph has a relatively massive size. Thus,
the completion of the above methods demands too much time
and computing resources, which is typically unacceptable in
real-time applications [27]. Therefore, the efficient GCN-based
model is worthy of further exploration.

Concerning the first issue, note that humans are exceptional
learners with a solid capability to generalize their learned knowl-
edge even to novel concepts and learn from very few examples
through contrastive analysis [21]. Motivated by this founding,
we skillfully incorporate the metric learning paradigm into the
GCN framework. Namely, apart from exploiting the connectivity
patterns between the labeled and unlabeled samples, we seek
to transfer as much valuable knowledge as possible from the
limited labeled samples to the excessive unlabeled ones in the
embedding space. Specifically, we devise a metric loss function
to enhance the discrimination of the embedding features, which
can push the interclass features apart and pull the intraclass
features close.

To alleviate the second deficiency, Wan et al. [28] presented
a multiscale dynamic GCN (MDGCN), which involves super-
pixels into the multihop graph learning to reduce the computa-
tional complexity and save the elapsed training time. However,
utilizing the spatially multihop graph structure to integrate the

multiscale spatial information may bias the classifier. It is be-
cause that the superpixel segmentation method is essentially
based on the assumption that one superpixel belongs to the same
material, implying that the multihop (two- or three-hop) adjacent
distant superpixels have a great possibility to be the different
land-cover types. To overcome this drawback, we propose to
directly impose multilevel superpixel segmentation on the HSI
data set. After that, the pixel-level data is projected to the
superpixel level (P-SP), and only the adjacent SPs (one-hop)
are connected at each level. Compared to MDGCN, the consis-
tency probability of the connected nodes in the initial adjacency
matrices is promoted in this manner. Correspondingly, before
the decision phase, the deep node features extracted from the
multilevel superpixels are reprojected to the pixel level (SP-P)
so that they can be assembled in the same dimension. Due to this
intelligent symmetric structure, the calculation of the network is
sharply decreased, thus achieving high-precise HSIC efficiently.

Prominently, owing to the multiscale contextual information
contained in the multilevel from undersegmentation to overseg-
mentation superpixels, the problems resulted from the spectral
uncertainty can be commendably conquered. Moreover, it is
superior to the aforementioned patch-based scheme because the
spatial context feature is aggregated adaptive to the physical
land-cover content. Furthermore, to extract more representative
deep spectral–spatial features in each scale, we present a new
GSvolution structure comprising successive graph convolution
and a novel self-channel-enhanced convolution. The latter can
automatically emphasize the vital channel information and boost
the classification performance.

Specifically, the contributions of this study can be summarized
in the following.

1) A novel SGML network is presented for HSIC. The cal-
culation amount is compressed dramatically due to the
innovative symmetric framework involving P-SP projec-
tion and SP-P reprojection. Thus, the training and test
processes can be accomplished efficiently.

2) To precisely investigate the multiscale spatial information,
we impose multilevel superpixel segmentation on the HSI
data leveraging its inherent attributes to determine the
superpixel numbers heuristically.

3) Unlike the general GCN, we devise a GSvolution struc-
ture comprising graph and self-channel-enhanced convo-
lutions to extract the deep representative spectral–spatial
features, which can not only propagate various labeled and
unlabeled node features, but also explicitly strengthen the
informative intranode channel characteristics.

4) In the decision stage of the metric learning module, a
special metric loss function is designed, which can force
the model to distill more discriminative features, i.e., inter-
class separable and intraclass compact. Abundant experi-
ment results show that the proposed SGML can perform
better than some prevalent and advanced classification
methods.

The rest of this article is organized as follows. Section II
presents the related works. Section III details our proposed
method. Section IV shows the experiment results and analysis.
Finally, Section V concludes this article.
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II. RELATED WORKS

A. Superpixel Segmentation

The most intuitive explanation for superpixel is to aggre-
gate several pixels with similar properties into a more promi-
nent and representative element [29]. This new element will
serve as the basic unit for the subsequent image processing
algorithms. In this way, the feature dimension is remarkably
reduced to decrease the calculation burden. Hence, there have
been abundant HSIC methods utilizing the superpixel segmen-
tation as a pre-processing technique, which has been demon-
strated effective [7]. For instance, Li et al. [30] presented a
subpixel–pixel–superpixel-based multiview network combined
with the AL strategy, which jointly exploits the characteristics
of HSI, such as the spectral mixture, spectral discrimination,
and spectral–spatial structure. Jia et al. [31] incorporated the
superpixel into the label propagation method for HSIC, which
also obtains encouraging classification performance and saves
the computational time. Specifically, in all these algorithms,
entropy rate segmentation (ERS) [32] is adopted to generate
superpixels from an image due to its effectiveness. Concisely,
as a graph-based method, the ERS can be translated into solving
the following objective function:

argmax
P

E(P ) + γA(P ) (1)

where E(P ) represents the entropy rate restriction to generate
homogeneous clusters. A(P ) refers to the balance constraint to
force the clusters to have a similar spatial size and decrease the
number of unbalanced superpixels. γ ≥ 0 is a weight coefficient
of the balance term.

B. Graph Convolutional Network

In addition to the non-Euclidean data domain, the semi-
supervised GCN has been demonstrated to be one of the most
effective SSL methods for processing the Euclidean image
data [33]. Especially, Kipf et al. [23] utilized the Chebyshev
polynomials to approximate the graph convolution (G-Conv)
kernels and designed an efficient layer-wise propagation rule,
which can simultaneously encode the local graph structure and
node features to achieve a more stable state. Supposing to
utilize the Chebyshev polynomial Ck(x) up to Kth order to
approximate the convolutional filter parameterized by θ, i.e., gθ,
the G-Conv can be expressed as

gθ � xg ≈
K∑

k=0

θkCk(L̂)xg (2)

where xg refers to the graph signal and θk represents the
kth Chebyshev coefficients. The shifted L̂ = 2

λmax
L− I, where

L = I−D− 1
2AD− 1

2 = UΛUT means the normalized graph
Laplacian [34] and λmax denotes the maximum eigenvalue of
L. Besides, I refers to the identity matrix with the suitable size.
D is the degree matrix of the graph and A is the corresponding
adjacency matrix. Λ is a diagonal matrix filled with the eigen-
values of L and U is the eigenvector matrix of L, respectively.

Based on (2), Ref. [23] further approximated λmax to 2 and
constrained the layer-wise convolution operation to K = 1.
Then, the calculation can be represented as

gθ′ � xg ≈ θ′0xg + θ′1 (L− I)xg = θ′0xg − θ′1D
− 1

2AD− 1
2xg

(3)
where θ′0 and θ′1 are two free parameters shared throughout
the whole graph. After constraining θ = θ′0 = −θ′1, (3) can be
simplified as

gθ � xg ≈ θ
(
I+D− 1

2AD− 1
2

)
xg. (4)

Additionally, to get rid of the numerical instabilities and gra-
dients exploding/vanishing, renormalization is carried out by
I+D− 1

2AD− 1
2 → D̂− 1

2 ÂD̂− 1
2 , where Â = A+ I and D̂ii =∑

j Âij . Finally, for the graph signalX ∈ RN×C (N nodes), the
G-Conv is expressed as

Go = D̂− 1
2 ÂD̂− 1

2XΘ (5)

whereΘ ∈ RC×F represents the trainable convolutional param-
eters, and F is the kernel number. Go ∈ RN×F denotes the
output result of the G-Conv. According to (5), it can be ratio-
cinated that the GCN propagates the node information between
the labeled and unlabeled samples to obtain the distinguishing
features. However, the intranode information is not explicitly
explored. Therefore, to further enhance the representativeness
of the node features, we devise a novel self-channel-enhanced
convolution (S-Conv), which can adaptively model the intranode
dependence and promote the classification performance. In brief,
the G-Conv and S-Conv operations are together abbreviated as
GSvolution for the embedding feature extraction.

C. Deep Metric Learning

Metric learning methods aim to optimize the embedding
features through learning a distance-based prediction rule over
the low-dimensional latent space. With the increasingly mature
applications of DL to HSIC, deep metric learning (DML) also
comes into being for HSIC, which generates the discriminative
embedding space by deep neural networks [35]. For exam-
ple, Liu et al. [36] introduced the Siamese network to extract
the spectral–spatial underlying features, which obtains better
classification performance than the conventional manner. Deng
et al. [37] proposed a DML method based on the triplet loss for
HSIC, achieving impressive classification results under the SSS
conditions. However, in the above methods, only limited labeled
samples are exploited in the embedding network, restricting the
potential utility of the abundant unlabeled data. Thus, in this
work, we introduce the semi-supervised GCN to serve as the
deep embedding network for the DML and hence named a graph
metric learning framework. To the best of our knowledge, we are
the first to incorporate the DML into GCN for the HSIC task. In
this way, both the labeled and unlabeled data can be put to good
utilization, and the model decision boundaries that reflect the
data distribution more closely can be determined by using the
data itself [38]. Notably, a new loss function, which comprises
a joint cross-entropy and metric term, is devised to optimize the
proposed model to address the within-class spectral variance
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Fig. 1. Structural schematic diagram of the proposed SGML. The framework is composed of three parts: adaptive multilevel superpixel segmentation, feature
extraction with a novel GSvolution, and a metric learning module.

and between-class spectral similarity, i.e., spectral uncertainty
inherent to HSI scenes.

III. PROPOSED METHOD

A. Architecture of the Proposed SGML

As can be seen in Fig. 1, the proposed SGML mainly com-
prises three portions, including adaptive multilevel superpixel
segmentation, feature extraction with a novel GSvolution, and
a metric learning module. First, we segment the original HSI
into multilevel superpixels by combining the Principal Compo-
nent Analysis (PCA) and ERS methods, where the superpixel
numbers are adaptively determined. Then, after projecting the
pixel into the superpixel pattern (P-SP), we investigate the rep-
resentative SP feature with a novel GSvolution, detailed in Sec-
tion III-C. Next, the obtained in-depth features are reprojected
to the pixel level (SP-P) and then aggregated by the summation
operation. Finally, the assembled information is parsed by the
metric learning module into the semantic category space. In the
following, the above three parts are described minutely.

B. Multilevel Superpixel Segmentation

Compared with superpixel segmentation at a specific level,
multilevel segmentation can better exploit different information
of various shapes and sizes for the land-covers. In detail, we
first apply PCA to the HSI and then perform the superpixel
segmentation on the first PC. In this way, the calculation amount

is substantially decreased, and the segmentation result will be
more compact because of the more discriminative features in
the first PC. Here, we employ the ERS method to realize the
superpixel segmentation at each level due to its ease of use.
Most importantly, the correct number of superpixels should be
set for multilevel superpixel segmentation to avoid inappropriate
undersegmentation or redundant oversegmentation. This work
adopts a heuristic approach to adaptively compute the number
of superpixels Pm by using the spatial resolution res and spatial
size H ×W of the data set. In the formula, the method can be
depicted as

Pm = floor

(
H ×W

floor(100× 0.7
√
res)× 2m−1

)
(6)

where m = {1, 2, . . .,M} and M represents the number of the
scales. floor diminishes the value to the nearest integer. This
strategy has been validated effective in Refs. [39] and [40].
For instance, Fig. 2 shows the multilevel superpixel segmen-
tation maps obtained from the public Pavia University1 data set
(PaviaU) via this method. The superpixel numbers at multilevel
are 3142, 1571, and 785, respectively.

C. Feature Extraction With a Novel GSvolution

Next, we introduce how to explore the spectral–spatial fea-
tures involved in the multilevel superpixels. For a brief, we will

1[Online]. Available: https://rslab.ut.ac.ir/data
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Fig. 2. First PC and adaptive multilevel superpixel segmentation maps ob-
tained from the Pavia University data set. The figures are the superpxiel numbers
at different levels. (a) first PC (b) 3142 (c) 1571 (d) 785

describe the procedure of one stream of the network and the
others keep consistent.

1) P-SP: As described in Section II-B, superpixels can offer
a good description of the land-covers since their shapes and
sizes can be automatically adjusted according to the HSI content;
thus, we employ SP to facilitate the subsequent graph learning.
Here, the SPs are obtained by weighted averaging the pixels
included in one superpixel Vsp = {v1,v2, . . . ,vJ}, which can
be formulated as

xsp =

J∑
j=1

wvj
,vc

∗ vj (7)

wvj
,vc

=
exp(−ε ‖vj−vc‖22)∑J
j=1 exp(−ε ‖vj−vc‖22)

(8)

where vc =
1
J

∑J
j=1 vj denotes the average pixel of Vsp along

the spatial dimension and ε is a scalar factor. exp(·) means the
exponential function.

2) Deep SP Feature Extraction: After P-SP, suppose
that the labeled and unlabeled SPs are Xsp

l ∈ RS1×L =

{x1
l ,x

2
l , . . . ,x

S1

l } and Xsp
ul ∈ RS2×L = {x1

ul,x
2
ul, . . . ,x

S2

ul },
respectively, where L denotes the length of each SP. S1 and
S2 denote the number of superpixels containing the labeled and
unlabeled samples, respectively, and S1 + S2 = S. Addition-
ally, the corresponding labels ofXsp

l are determined by majority
voting of the contained pixels. Then, all SPs are adopted to
construct the graphG = (X,A), where X ∈ RS×L denotes the
SP features of the graph nodes.A is the adjacency matrix, which
is calculated by

Ai,j =

{
e−β‖xi−xj‖2

2 , if xi adj xj

0, else
(9)

where adj means the two SPs are adjacent and β represents a
steepness hyperparameter affecting the weights.

Next, the graph signal is deeply exploited by the proposed
GSvolution, which is fundamentally comprised of two G-Convs
interacting with a novel S-Conv. In the G-Conv layer, we set
K to 2 in (2) as same as Ref. [24]. Then, the operation can be
represented as

gφ � xg ≈ φ

(
I+D− 1

2AD− 1
2 +

(
D− 1

2AD− 1
2

)2
)
xg (10)

Fig. 3. Implementation of the proposed efficient self-channel-enhanced con-
volution (S-Conv).

where the graph signal xg is the feature in the same dimension
overall the graph, differing from one arbitrary node feature x
(one SP vector in the first G-Conv). And then, the output of the
first G-Conv layer can be expressed as

H1 =

(
I+D− 1

2AD− 1
2 +

(
D− 1

2AD− 1
2

)2
)
XΦ1 (11)

where Φ1 ∈ RL×F1 represents the learnable filter parameters
and H1 ∈ RS×F1 .

Inspired by the effective structured CNNs, i.e., convolution,
batch normalization [41], and ReLU [42] activation function,
we design a unified structure for our SGML, i.e., G-Conv, graph
normalization (G-Norm), and ReLU. That means, the obtained
H1 is further processed by

Ĥ1 = ψ(G-Norm(H1)) (12)

where ψ denotes the ReLU function, and G-Norm can be for-
mulated as

ĥ1 g =
h1 g − μ1 g

σ1 g
(13)

μ1 g =
1

S

S∑
i=1

h
(i)
1 g, σ1 g =

√
1

S

∑S

i=1
(h

(i)
1 g − μ1 g)

2
(14)

where h1 g ∈ RS×1 denotes one graph signal after the first G-
Conv. Similar to CNN, the G-Norm can decrease the internal
covariance shift of the graph signal, accelerate the convergence,
and shorten the training procedure.

Considering the GCN theory, the G-Conv primarily propa-
gates the information across different node features, regardless
of the importance of the intranode relationships. However, espe-
cially for the HSI, the local and nonlocal characteristic spectrum
corresponding to the graph node plays an essential role in dis-
crimination. Thus, we devise a novel S-Conv in the GSvolution
structure. Visually, the implementation of the proposed S-Conv
is illustrated in Fig. 3.

Assuming that ĥ1 ∈ RF1×1 is an arbitrary hidden graph node,
we first operate the light-weight 1-D-Conv on it and utilize the
sigmoid function to scale the output into the scope of 0 and
1. This result is regarded as the importance factor of different
channels of the graph node, and then it is imposed on the input
graph node feature by element-wise product. Besides, to avoid
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undesired information loss, we sum the original feature with the
above result. In this self-supervised manner, the important chan-
nels are enhanced while the insignificant features are relatively
constrained. In the formula, the S-Conv can be represented as

h2 = ĥ1 
 (σ(w ∗ ĥ1) + 1) (15)

where w is the weight of the 1-D-Conv. 
 means the element-
wise product operation. Afterward, we adopt ReLU to promote
the nonlinear fitting ability of GSvolution and G-Norm to regu-
larize the obtained features.

After getting the output Ĥ2 of the S-Conv, the second G-Conv
equipped with the G-Norm is carried out to produce the deep SP
feature, which is denoted as Ĥ3 ∈ RS×N and N equals to the
number of the classes.

3) SP-P: As illustrated in Fig. 1, the numbers of the graph
nodes for the SP feature are varying for different streams since
the superpixels are in multiscale. Thus, to aggregate the extracted
deep SP features, we reproject the SP in each scale into the pixel
level and then sum them up to obtain the assembled information.
Finally, the softmax function is utilized to transfer the output
to the probability vectors H4 ∈ RS×N reflecting the semantic
attributes.

D. Metric Learning Module

In the last stage, deep representative features are encouraged
into the low-dimensional manifolds. However, the features may
be less discriminative if we only adopt the naive cross-entropy
(CE) loss. The softmax-based CE loss mainly focuses on en-
larging the interclass distance, but less concerning the intraclass
variance, which may result in inevitable misclassifications [43]–
[45].

To conquer this deficiency, we design a metric learning mod-
ule to restrict the discrepancy between each node representation
and the centroid of each class. Specifically, the class-specified
centroid in the semantic space can be computed by averaging
the labeled embedding features of each class

ck =
1

|Vk|
∑

(xk,yk)∈Vk

H
(xk,yk)
4 (16)

where Vk is the collection of the kth class labeled samples.
H

(xk,yk)
4 means the corresponding embedding features. Based

on the centroids, the proposed metric loss can be formulated as

Lme = −
∑

(xl,yl)∈Vl

log
exp[−dis(hl, cyl

)]∑N
n=1,n�=l exp[−dis(hl, cyl

)]
(17)

where dis calculates the distance of the latent features and
the centers. We can observe that, through minimizing Lme, the
interclass distance can be enlarged while the intraclass distance
is encouraged to be compact. Thus, the embedding features
can be separated into the accurate category. Finally, we can
summarize that the loss function in our proposed SGML is

L = Lce + αLme (18)

where Lce is the commonly used CE loss function. α is a
hyperparameter influencing the weight of the metric loss. For

Algorithm 1: Pseudo-Code of Proposed SGML.
Input: The HSI (D), true labels of the labeled data,
locations of the labeled and unlabeled data.

Parameters: H,W, res; the number of the scales
(M), ε, α, β; epoch number, learning rate.

Output: Predicted labels of the unlabeled data.
Step1: Perform PCA on D to obtain the first PC;
Step2: Conduct ERS on the first PC to obtain the mth
(m = 1, 2...M)-level superpixel maps by using (6);

Step3: Project the pixel-level data to the mth level
superpixels according to (7) and (8);

Step4: Construct multiscale adjacency matrices by (9);
bf for i = 1 to epoch number do

Step5: Calculate the embedding features Ĥ3 of the mth
level superpixels according to (10)–(15);

Step6: Reproject Ĥ3 to the pixel-level and then obtain
the probability vectors Ĥ4;

Step7: Compute the class centroid ck by (16);
Step8: Optimize the network parameters driven by the
loss function (18);

Step9: i = i+ 1
end

better understanding, the pseudo-code of the proposed SGML
is depicted in Algorithm 1.

IV. EXPERIMENT RESULTS AND ANALYSIS

To demonstrate the effectiveness and high-efficiency of
the proposed SGML, we conduct sufficient experiments on
three benchmark HSIC data sets, such as Indian Pines (In-
dianP), PaviaU, and Kennedy Space Center (KSC). Specifi-
cally, some prevalent and state-of-the-art DL networks based
on CNN and GCN are taken as the comparisons, i.e., 3-D-
CNN [12], SSRN [13], FDSSC [14], DR-CNN [15], GCN [23],
S2 GCN [24], and MDGCN [28]. All the algorithms are con-
ducted on the NVIDIA GeForce GTX 1080 Ti GPU and com-
pleted with TensorFlow DL framework. For the quantitative
evaluation of the performance, we adopt the widely used class-
specific accuracy (CA), average accuracy (AA), overall accuracy
(OA), and Kappa coefficient (Kappa). Additionally, we depict
the corresponding classification maps for visual and qualitative
analysis.

A. Experiment Data Sets

1) Indian Pines: The first benchmark HSI data set named
IndianP was captured by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) over Northwestern Indiana. The spatial
resolution is 20 m and the spatial size is 145 × 145. In the
spectral view, it recorded the reflection values of 220 bands
from 0.4 to 2.5 μm. In our experiments, 200 bands are preserved
after removing the noisy and water-absorbed ones. The R-G-B
composite image is shown in Fig. 4(a). Besides, Fig. 4(b) and
(c) depicts the train and test samples, respectively. The specific
numbers of the train, test, and total samples for each class are
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Fig. 4. Indian Pines. (a) R-G-B composite image (R-50th, G-27th, and B-17th
bands). (b) Standard train samples. (c) Test samples. Best zoomed-in view.

TABLE I
LABELED LAND-COVER TYPES AND NUMBERS OF THE TRAIN, TEST,

AND TOTAL SAMPLES FOR INDIANP DATA SET

Fig. 5. Pavia University. (a) R-G-B composite image (R-30th, G-25th, and
B-18th bands). (b) Standard train samples. (c) Test samples. Best zoomed-in
view.

listed in Table I. Since IndianP has much noise and spectral
variability, it is challenging and widely used to evaluate the
newly proposed methods in the HSIC community.

2) Pavia University: The second PaviaU scene was obtained
by the Reflective Optics System Imaging Spectrometer (ROSIS)
facility over an urban region. It comprises 610× 430 pixels with
the spatial resolution of 1.3 m. In the spectral dimension, 103
bands are remained in the wavelength from 0.43 to 0.86 μm
after abandoning the noisy bands. Fig. 5(a)–(c) shows its R-G-B
composite image, train map, and test map, respectively. In detail,
the numbers of the train, test, and total samples for each class
are detailed in Table II.

3) Kennedy Space Center: The last data set, KSC, is also
collected by the AVIRIS sensor over Kennedy Space Center,

TABLE II
LABELED LAND-COVER TYPES AND NUMBERS OF THE TRAIN, TEST,

AND TOTAL SAMPLES FOR PAVIAU DATA SET

Fig. 6. Kennedy Space Center. (a) R-G-B composite image (R-50th, G-30th,
and B-20th bands). (b) Controlled random sampling train samples. (c) Test
samples. Best zoomed-in view.

TABLE III
LABELED LAND-COVER TYPES AND NUMBERS OF THE TRAIN, TEST,

AND TOTAL SAMPLES FOR KSC DATA SET

Florida. It includes 224 bands in the wavelength from 0.4
to 2.5 μm. In the experiments, 176 bands are utilized after
discarding the low SNR and water absorption channels. For
the spatial dimension, the image comprises 614 × 512 pixels
with a geographic resolution of 18 m. The R-G-B composite
image, train, and test samples are demonstrated from Fig. 6(a)
to (c), respectively, while the numbers of the train, test, and total
samples for each class are displayed in Table III.

Noticeably, to ensure fair comparisons and reliable conclu-
sion, the train and test samples are consistent with the recent
HSIC works for the first two data sets, which is regarded as
a standard data split manner [25], [46]. For the KSC data
set, different from the random sampling way, we utilize the
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Fig. 7. Influence of the edge weight of the adjacency matrices.

controlled random sampling strategy to acquire the training
data [47]–[49]. In this way, the training samples are gathered
locally and distributed globally, which is closer to the real appli-
cations, and more realistic performance of the spectral–spatial
classifier can be accessed [10]. Moreover, among the training
data, we randomly select 10% samples as the validation set to
tune the hyperparameters of the proposed frameworks.

B. Experimental Settings

To maximize the utility of the proposed SGML, we carry out
elaborate experimental settings.

1) Superpixel Segmentation: First, three levels of superpixel
segmentation are utilized, which correspond to three spatial
scales in the afterward feature extraction process.

2) Gsvolution: According to the validation accuracy, the
scale factor ε in (8) is set to 1 for the IndianP and KSC data set,
and 100 for the PaviaU scene. Then, we investigate the influence
of the edge weight parameter of the adjacency matrices on the
three data sets. The grid search strategy is adopted here and the
β varies in {0.01, 0.1, 1, 10, 100}. Fig. 7 depicts the obtained
OAs. We can find that the classification results achieve the best
when β equals to 0.1, 10, and 1 for the IndianP, PaviaU, and KSC
data sets, respectively. Thus, the β is experimentally assigned to
0.1, 10, and 1 for the three data sets, respectively.

Additionally, we analyze the influence of the output dimen-
sion of the first G-Conv. In detail, the number of the hidden nodes
varies in {16, 32, 64, 128} and the acquired OAs are shown in
Fig. 8. It can be observed that the classification performance
reaches the highest point when the output dimension is 32.
Thus, we set it to 32 in our experiments. Moreover, the kernel
size of the S-Conv is empirically set to 1× 3. Regarding the
parameter optimization, we adopt the efficient Adam algorithm
with the full-batch gradient descent method. The learning rate
is experimentally set to 5× e−4 for IndianP and KSC data sets,
and 5× e−5 for PaviaU. Besides, the epoch number is assigned
to 500.

3) Distance Metric: For the distance metric in the metric
learning module, we test the Euclidean and Cosine distance.
The classification accuracies for the experimental data sets are

Fig. 8. Influence by the number of the hidden nodes of the first G-Conv.

TABLE IV
CLASSIFICATION ACCURACY WITH DIFFERENT DISTANCE METRICS

IN THE METRIC LEARNING MODULE

TABLE V
CLASSIFICATION RESULTS OF THE ABLATION STUDIES ON PAVIAU DATA SET

detailed in Table IV. It can be observed that the classification
performance obtained by the Cosine distance is always slightly
better than that of the Euclidean distance. Thus, we choose
Cosine distance in the metric loss. Furthermore, the weight
parameter α is experimentally set to 1 for PaviaU and 0.1 for
the other two data sets, respectively.

C. Ablations Study

In this section, ablation studies are conducted to demonstrate
the contributions of the proposed S-Conv in the GSvolution and
metric loss in the metric learning module. In specific, there are
four variants in our experiment. Var.1 to Var.3 represent the
SGML without both, without metric loss, and without S-Conv,
respectively, while Var.4 denotes the SGML itself. Table V
provides the classification results on PaviaU data set. It can
be found that Var.4 can achieve the optimal performance, and
the accuracies decrease either S-Conv or metric loss is dis-
abled. Concretely, the AA of Var.4 surpasses Var.1 to Var.3 by
3.45%, 0.61%, and 2.81%, respectively; the OA of Var.4 exceeds
Var.1 to Var.3 by 2.37%, 0.36%, and 1.49%, respectively; the



LI et al.: SGML: A SYMMETRIC GRAPH METRIC LEARNING FRAMEWORK FOR EFFICIENT HYPERSPECTRAL IMAGE CLASSIFICATION 617

TABLE VI
CLASSIFICATION PERFORMANCE OF VARIOUS METHODS FOR INDIANP DATA SET

TABLE VII
CLASSIFICATION PERFORMANCE OF VARIOUS METHODS FOR PAVIAU DATA SET

Kappa of Var.4 surmounts Var.1 to Var.3 by 3.12%, 0.49%, and
1.96%, respectively. These results indicate that the S-Conv can
enhance the node feature representation by assigning different
importance to the channels while the metric loss can promote
the feature discrimination, which cooperatively improve the
classification performance.

D. Performance Evaluation

In this section, we evaluate the proposed SGML compared
with some advanced methods. In specific, the 3-D-CNN [12],
SSRN [13], FDSSC [14], and DR-CNN [15] are highly cited
approaches in the literature, which are all CNN-based spectral–
spatial classifiers, and the DR-CNN also involves multiscale
spatial features into a multistream fashion like the proposed
networks. Additionally, GCN [23] is the first work introducing
the convolutional operation directly on the graphs. Thus, we
employ it as one baseline method. As for other GCN-based
methods, S2GCN [24] first takes the spatial information of
the HSI into account; MDGCN [28] employs the superpixel
segmentation technique and utilizes dynamic graph construction
in different graph convolutional layers, which can represent the
state-of-the-art GCN-related algorithms. The hyperparameters
of these compared methods are assigned as the original papers.
In our experiments, all methods are tested 10 times on the three

benchmarks. Minutely, the average CA, AA, OA, and Kappa
with the standard deviations are exhibited in Tables VI–VIII.
The highest and the second-highest values of each line are
highlighted in bold and underline, respectively.

Table VI displays the classification results of the IndianP data
set, where the SGML achieves the best performance concerning
AA, OA, and Kappa. For the CA, the SGML ranks the first
and second for five and six categories, respectively. Among the
CNN-based methods, SSRN and FDSSC acquire better results
due to the residual and dense connections in the networks.
Although GCN only leverages the spectral features, it surpasses
3-D-CNN a lot in AA, OA, and Kappa, proving the potential of
the graph-related HSIC methods to some degree. Furthermore,
MDGCN acquires impressive classification performance, of
which seven classes are predicted perfectly. However, for all
the small categories with fewer training samples, i.e., the first,
seventh, and ninth classes, the proposed SGML achieves higher
accuracies than the competitive MDGCN. It implies that SGML
can effectively handle the SSS problem, which is much valuable
in practical applications.

From Table VII, it can be observed that the proposed SGML
acquires the optimal classification performance on PaviaU
data set. Different from the results on IndianP, the DR-CNN
achieves a relatively better performance here. The reason can be
speculated that PaviaU has more irregular boundaries and scatter
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TABLE VIII
CLASSIFICATION PERFORMANCE OF VARIOUS METHODS FOR KSC DATA SET

Fig. 9. Classification maps produced by different methods by using IndianP data set. Best zoomed-in view. (a) Composite image (b) Groundtruth (c) 3-D-CNN
(d) SSRN (e) FDSSC (f) DR-CNN (g) GCN (h) S2GCN (i) MDGCN (j) SGML

regions than IndianP scene, where the diverse region can play
a more critical role in exploring sophisticated spectral–spatial
features. Preferably, the multilevel superpixel segmentation in
SGML can work more effectively to perceive the complicated
spatial features. Besides, although the SGML acquires slightly
better OA and Kappa than the MDGCN, the AA of SGML
outperforms MDGCN by a substantial margin of 4.04%, which
explicitly demonstrates its advancement.

In Table VIII of the KSC data set, we can observe that the
presented SGML surmounts the second-best method MDGCN
by 3.97%, 1.45%, and 1.62% about AA, OA, and Kappa,
respectively. In addition, the SSRN obtains the competitive
results benefited from its powerful spectral–spatial feature
extraction capability. Furthermore, the MDGCN exhibits an
expressive classification performance on KSC for predicting
8/13 land-cover types perfectly. Most significantly, among
the graph-related methods, the accuracy of the fifth cate-
gory (Slash pine) is relatively low while the SGML achieves
the best. It indicates that the multilevel superpixel segmen-
tation, GSvolution, and metric learning module jointly make

the designed framework an outstanding and stable graph
model.

With respect to qualitative analysis, Figs. 9–11 draw the
classification maps produced by different methods by using
IndianP, PaviaU, and KSC data sets. For convenient compar-
isons, the R-G-B composite image and the groundtruth are
also delineated. From Figs. 9 to 11, we can observe that the
proposed SGML achieves the most excellent performance since
its classification maps are closest to the groundtruth, with fewer
misclassifications than the comparisons. Generally, the classi-
fication maps obtained by the 3-D-CNN, SSRN, FDSSC, and
DR-CNN are compact due to the utilized spatially neighborhood
samples, even oversmooth for several results, such as FDSSC
for IndianP shown in Fig. 9(e) and SSRN for PaviaU drawn in
Fig. 10(d). By contrast, many scattered salt-and-pepper noises
exist in the maps of GCN, which only exploits the spectral
characteristics. Particularly, it is observed that the proposed
SGML can achieve precise results at the edge of the regions,
where the boundary samples that are difficult to distinguish
are mainly distributed. It implies that the proposed SGML can
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Fig. 10. Classification maps produced by different methods by using PaviaU data set. Best zoomed-in view. (a) Composite image (b) Groundtruth (c) 3-D-CNN
(d) SSRN (e) FDSSC (f) DR-CNN (g) GCN (h) S2GCN (i) MDGCN (j) SGML

Fig. 11. Classification maps produced by different methods by using KSC data set. Best zoomed-in view. (a) Composite image (b) Groundtruth (c) 3-D-CNN
(d) SSRN (e) FDSSC (f) DR-CNN (g) GCN (h) S2GCN (i) MDGCN (j) SGML

effectively extract the expressive and discriminative features to
identify various land-covers even with similar spectral–spatial
information.

E. Performance With Various Number of Training Samples

The classification performance under the SSS conditions is
critical in real applications for HSIC. Therefore, we exploit
the capacity of the SGML compared to the other methods with
smaller sizes of the training set. All experiments are executed
10 times with the training samples randomly generated from
Figs. 4(b) to 6(b) in the percentage from 20% to 100%, respec-
tively. Meanwhile, the test sets are kept same with Figs. 4(c) to
6(c). Concretely, the average OAs are delineated from Fig. 12(a)
to (c) for the three data sets.

From Fig. 12, it can be observed that the proposed SGML
always occupies the first place for different data sets with varying
training samples. The classification performance of 3-D-CNN,
SSRN, FDSSC, DR-CNN, GCN, and S2GCN dramatically
drops with the training sample decreases. By contrast, the
accuracies of the MDGCN and SGML downgrade slightly.
Especially for the PaviaU of SGML, the OA can reach 93.80%
with only 20% samples of the training set, while that is 94.99%
with the full training set. The results demonstrate the stability of
the proposed SGML. The reason can be inferred as two aspects:
First, the proposed GSvolution can facilitate the network to
distill more representative features contained in the small-size
training set, and second, the presented metric learning module
can force the features to be more discriminative, which further
enhances the prediction capability of the classifier.
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Fig. 12. Overall accuracy of 3-D-CNN, SSRN, FDSSC, DR-CNN, GCN, S 2 GCN, MDGCN, and the proposed SGML with different number of training samples.
(a) IndianP. (b) PaviaU. (c) KSC.

Fig. 13. Classification performance with different number of scales (M ). (a) IndianP. (b) PaviaU. (c) KSC.

F. Influence of Different Number of Scales

The adaptive multilevel superpixel segmentation contributes
to the afterward multiscale P-SP process, which assists the
SGML to precisely exploit the spatial information in various
scales. In this part, we validate the significance of different
number of considered scales. Specifically, we keep the network
settings fixed while only change the number of the streams
according to how many scales are adopted. The experiments are
repeated ten times on IndianP, PaviaU, and KSC data sets with
1–4 scales. The average classification accuracies and standard
deviations are depicted in Fig. 13. We can observe that the
classification performance is promoted as the scale increases,
and the accuracies reach the top when three scales are utilized.
It is attributed to that the spectral uncertainty is effectively sup-
pressed when the multiscale spatial relationship of the samples
is sufficiently exploited. However, when four scales are used,
the accuracy no longer improves and even decreases signifi-
cantly on IndianP and PaviaU data sets. The reason is that the
undersegmentation for the fourth scale is too coarse due to the
superpixel number being the smallest among these four scales.
Consequently, the large-size superpixels will bring unexpected
disturbance to the SPs, leading to undesired misclassifications.

G. Computational Cost

Benefiting from the symmetric P-SP and SP-P structure, the
multiscale training and test processes of the proposed SGML can
be efficiently done, which is one of the most important novelties
in this work. Therefore, we access the computational cost of the
SGML compared with other graph-based baseline methods, i.e.,
GCN, S2GCN, and MDGCN. In detail, the training and testing
time on the experimental data sets are detailed in Table IX.

TABLE IX
ELAPSED TIME (S) OF THE TRAINING AND TESTING PROCESSES OF THE

PROPOSED AND THE COMPARED GRAPH-RELATED METHODS

It can be observed that the S2GCN is time-consuming due to
the adjacency matrix construction searching for the K-nearest
neighbors [24]. Significantly, the SGML is the fastest approach.
Although the MDGCN obtains appropriate classification accu-
racies to the SGML, the SGML is almost 40 times faster than
the MDGCN on the PaviaU data set. It is mainly because the
training epoch number is 500 for SGML, while it is 5000 for
the MDGCN, implying the proposed framework is indeed an
efficient and rational model for HSIC.

V. CONCLUSION

In this work, a novel symmetric graph metric learning
(SGML) framework is designed for efficient HSIC. In the pre-
sented SGML, we first conduct adaptive multilevel superpixel
segmentation on the HSI data set to exploit the multiscale spatial
information. After projecting the pixels to the superpixel pattern
(P-SP), we propose a new GSvolution to sufficiently investigate
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the deep representative spectral–spatial features. In the GSvo-
lution, an innovative S-Conv is put forward to automatically
enhance the significant node features while suppressing the triv-
ial channels. Finally, the extracted features are reprojected to the
pixel-level (SP-P) and transferred into the metric learning mod-
ule to parse the semantic annotations. Notably, the symmetric P-
SP and SP-P structure can dramatically reduce the computational
costs and accelerate the training and test processes. Moreover,
the proposed metric loss in the metric learning module can
enhance the discrimination of the extracted features, namely,
pulling the same classes close and pushing the different classes
far away, which further promotes the classification performance.
Consequently, the experiment results on three benchmark data
sets verify that the proposed SGML outperforms the compared
prevalent and state-of-the-art HSIC algorithms in accuracy and
efficiency, even under the severe SSS conditions.
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