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Mission Replanning for Multiple Agile Earth
Observation Satellites Based on Cloud

Coverage Forecasting
Yi Gu , Chao Han , Yuhan Chen, and Wei W. Xing

Abstract—Recent decades have witnessed a tremendous growth
in the number of Earth observation satellites (EOSs), which
presents a huge challenge for mission planning. For the EOSs with
optical sensors particularly, the observation mission is significantly
influenced by the uncertainty of cloud coverage, which has been
identified as the most dominant factor for the invalidation of re-
mote sensing images. To overcome this uncertainty, uncertainty
programming methods, namely, chance constraint programming
(CCP), stochastic expectation model, and robust optimization, are
put forth. Despite their success, these approaches are limited in
that they simplified the complex cloud coverage uncertainty, which
may be different from the true cloud conditions, and they did
not take the true cloud information into consideration. Motivated
by these recent trends toward Big Data of satellite cloud images
and machine learning for spatiotemporal prediction, this article
explores a dynamic replanning scheme for multiple EOSs based on
cloud forecasting. Specifically, we propose a new approach mainly
in the following three steps: first, proactive scheduling based on
a CCP is implemented and uploaded via ground control; second,
cloud forecasting can be continuously conducted relying on the
predictive recurrent neural network and the latest satellite cloud
image; and third, mission replanning can be conducted according
to the initial schedule and relatively accurate cloud information.
Simulation results show that the cloud forecasting method is ef-
fective, and the replanning approach presents highly efficient and
accurate scheduling results.

Index Terms—Agile Earth observation satellite (AEOS),
artificial neural network, cloud forecasting, mission replanning,
uncertainty programming.

I. INTRODUCTION

THE last decades have seen the rapid increase of Earth
observation satellites (EOSs). The EOS, with its space-

based advantage not restricted by geographical conditions, could
collect images of the Earth’s surface by remote sensors. Corre-
sponding image products have been extensively applied for Earth
resource exploration, weather forecasting, disaster monitoring,
crop survey, and other areas [1]–[3].
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In practical satellite mission planning, uncertainty always
exists, which mainly origins from the cloud occlusion, dy-
namic observation tasks, and the partial failure of the satellite
equipment [4], [5]. According to the observation data of the
International Satellite Cloud Climatology Project and Moderate
Resolution Imaging Spectroradiometer, the overall global cloud
fraction is approximately 67% [6], [7], which reveals that cloud
occlusion is extremely serious and almost ubiquitous. Compared
to cloud coverage uncertainty, the emergency situations of dy-
namic observation tasks and equipment failure is more occasion-
ally and unpredictable. Therefore, it is necessary for managers
to develop urgent tasks according to the emergency situation. A
great deal of research has focused on the mission planning for
emergency situations [5], [8]–[11], in which assuming that the
dynamic tasks have been generated in advance. On the contrary,
the predictable characteristic of cloud coverage provides the
potential for EOSs to actively avoid clouds during the mission
replanning procedure [5].

Cloud occlusion could cause a considerable negative impact
on the optical EOSs mission planning because optical sensors
equipped on satellites cannot penetrate clouds for imaging [12].
The statistical data provided by the Union of Concerned Sci-
entists reveal that there were 954 EOSs orbiting the Earth on
May 1, 2021 [13], where the number of the optical EOS is 414,
accounted for the largest proportion of the EOS. Ju et al. [14]
reported that about 35% of the images collected by the Landsat-7
sensors were blocked by cloudiness. Beaumet et al. [12] pointed
out that roughly 80% of the Earth observation of SPOT satellite
failed due to cloud occlusion. He et al. [15] also reported
that nearly 60% of Earth observation images would be trashed
owing to excessive cloud covers. The aforementioned studies
have assessed the effect of cloud cover and demonstrated the
necessity of considering the cloud coverage uncertainty in the
EOS mission planning. However, there exist two difficulties
in this problem. A real-time and accurate cloud forecasting
method is required as a fundamental support. If the result of
cloud forecasting deviates seriously from the real situation,
the predicted cloud information would mislead the replanning
procedure; in the meanwhile, the predicted cloud information
would be antiquated if accurate cloud forecasting is delayed,
leaving no time for conducting replanning and attitude maneuver
operations. Besides, a practical-oriented replanning algorithm
framework brings another difficulty to this study, which should
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brilliantly combine the cloud forecasting method and rapid
mission replanning.

Therefore, the main goal of this study is to investigate the
mission planning problem of multiple EOSs based on cloud
coverage forecasting. In line with [16], proactive mission plan-
ning for multiple agile EOSs (AEOSs) based on the CCP model
has been initially implemented. Subsequently, the true cloud
information is introduced to the mission planning framework,
which could help train the cloud forecasting model and evaluate
the result of mission planning. The predictive recurrent neural
network (PredRNN) [17] is then adopted to perform accurate
cloud forecasting to support the replanning procedure. A rolling
horizon-based replanning algorithm (RHRA) based on a rapid
insertion strategy is proposed to solve the mission replanning
problem effectively.

The main contributions of this study are as follows.
1) To the best of our knowledge, this is the first work to

substantially enhance the EOSs mission replanning by
harnessing the state-of-the-art deep learning-based cloud
forecasting technique. Based on the visibility conditions
provided by the predicted cloud information, the effect of
mission planning can be significantly improved. The supe-
riority of the proposed method is validated by experiments
with comparison to the classic uncertain mission planning
method specifically for cloud uncertainty.

2) We present a novel replanning algorithm RHRA, which
combines a rapid insertion method and an interval
shrinking-based moving strategy to efficiently address
the rolling constrained optimization problem induced by
combining cloud forecasting and mission replanning. The
efficiency and effectiveness of the RHRA are demon-
strated with extensive experiments in comparison to other
heuristic methods.

The rest of this article is organized as follows. Section II
describes a review of the previous studies of satellite mis-
sion planning and cloud forecasting. In Section III, the over-
all algorithm framework and the proactive mission planning
model are described. Section IV begins with introducing a deep
learning-based cloud forecasting model and looks at the detailed
replanning method. In Section V, a series of experiments are
conducted to verify the effectiveness of the cloud forecasting
and replanning algorithm. Finally, Section VI concludes this
article.

II. LITERATURE REVIEW

A. EOS Mission Planning Under Cloud Coverage Uncertainty

Up to now, several researchers have attempted to solve the
EOS mission planning problem under cloud coverage uncer-
tainty. We classified the EOS scheduling into the conventional
EOS (CEOS) and AEOS mission planning problems in Table I.
The main difference between the CEOS and AEOS is the attitude
maneuverability [18]. The CEOS has only roll maneuverability,
whereas the AEOS is capable of the maneuver of roll, pitch,
and yaw axes simultaneously, which will introduce notorious
difficulty in AEOS mission planning [19], [20].

TABLE I
OVERVIEW OF EOS MISSION PLANNING MODEL CONSIDERING CLOUD

COVERAGE UNCERTAINTY

As shown in Table I, the mathematical models proposed
for mission planning under cloud coverage uncertainty can be
summarized as four categories. Liao et al. [21] described the
uncertain cloud coverage as stochastic events and constructed
a model containing the objective of maximizing the expected
number of accomplished tasks. Wang et al. [22] formulated a
stochastic expectation model for CEOS scheduling problems
under the impact of the cloud. The profit of a target is sim-
plified depicted as a 0–1 distribution model corresponding
to be observed successfully or not under the cloud coverage
uncertainty. A branch-and-price (B&P) algorithm including a
Dantzig–Wolfe decomposition was proposed to solve the prob-
lem efficiently. Though the stochastic expectation model is
suitable for the EOS mission planning problem under cloud
coverage uncertainty, it lacks the ability to assess the risks
of mission planning results. To overcome this shortcoming, a
chance constraint programming (CCP) model was introduced to
the uncertain CEOS mission planning problem [23]. A param-
eter indicating the confidence level can be chosen according to
the risk control standard in order to reduce the risk of mission
planning results. Considering the complexity of the CCP model,
a sample approximation method was adopted to transfer the
CCP model into the mixed-integer programming (MIP) model.
A branch-and-cut (B&C) algorithm was proposed subsequently
to solve the converted MIP model. Han et al. [16] popularized
the CCP model into the more difficult AEOS mission planning
problem under cloud coverage uncertainty. Relying on the con-
cept of time slack, an optimization subproblem was established
to determine the start time for each observation. Subsequently,
an improved simulated annealing-based heuristic consisting of
two stages was proposed to solve the problem efficiently.

In line with [23], Xiao et al. [24] formulated the cloud cover-
age for observations as stochastic events with 0–1 distribution.
Besides, the confidence level in [23] was maintained to constrain
the probability of a successful observation being not less than
a minimum threshold. Multiple observations for a target were
allowed and the weighted probability of successful observation
was established in [24]. An MIP model was later developed for
the multiple satellite observation and data-downlink schedul-
ing problem, and a commercial solver was utilized to solve
the problem. Valicka et al. [25] established several stochastic
MIP models for AEOS scheduling to maximize the expected
collection quality across a set of sample scenarios representing
the cloud coverage uncertainty. The commercial MIP solver
CPLEX was used to solve the proposed models and provably
optimal or near-optimal schedules can be obtained. However,
the engineering constraints of the AEOS were not considered in
Valicka’s model, which would result in difficulties in application.
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The expectation model [22] and the CCP model [23]
hold the assumption that one task can only be observed on
a single orbit while scheduling one task on several orbits
would improve the probability of successful observation. Wang
et al. [26] established a nonlinear robust mathematical model
that could schedule each task on different orbits and proposed
three heuristics to solve the large-scale problems. On the basis
of the concept of the budgeted uncertainty set, Wang et al. [27]
provided a robust formulation of the CEOS scheduling problem.
The observation profit under cloud coverage uncertainty varies
in a bounded profit range discretely, which could ensure an
observation image partly covered by the cloud can be awarded.
A column-generation-based heuristic was developed to obtain
a high-quality feasible solution. Subsequently, Wang et al. [28]
extended the robust formulation to the AEOS scheduling prob-
lem and designed a hybrid heuristic including column generation
and simulated annealing to solve the problem.

However, for all of the aforementioned reviewed studies, three
defects still exist, which we will now address. First, the complex
cloud coverage uncertainty has been simplified, which may be
different from the true cloud conditions. The cloud coverage
uncertainty model based on 0–1 distribution has been widely
used in the expectation and CCP models. This modeling method
adopts a simplified observation profit model, no profit assigned
under partial cloud cover, which is relatively different from the
actual benefit. The robust formulations based on the budgeted
uncertainty set [27], [28] could award the images partially ob-
scured by clouds. Nevertheless, only one deviation observation
profit has been added considering the computational complexity
of the model. Second, the true cloud information has not been
utilized in the aforementioned literature. He et al. [5] proposed
a hierarchical scheduling framework for agile optical satellites,
assuming that the dynamic real-time cloud information has been
provided. Unfortunately, cloud information has also not been
adopted. However, due to the absence of cloud information,
the multiple AEOSs mission replanning problem under cloud
coverage uncertainty has not been especially studied. Wang
et al. [29] proposed a reactive scheduling model and algorithm
for multiple CEOSs with cloud cover uncertainty, while not
applicable for the AEOS mission planning problem owing to
the greater attitude maneuverability of the AEOS.

B. Cloud Forecasting Method

When the observation target is blocked by cloud, not only the
imaging quality is greatly affected, but the imaging observation
of the target will consume resources such as observation time
window, satellite storage space, and energy, thereby reduc-
ing the observation opportunities for other targets. Therefore,
cloud forecasting performs a significant role in EOSs mission
planning.

To date, several methods have been adopted to solve the
cloud forecasting problem, mainly including numerical weather
prediction (NWP) [30], [31] and optical flow method [31]–[34].
Kurzrock et al. [30] reviewed the literature for short-term cloud
forecasting using the NWP method and pointed that the cloud
forecast performance in the first 12–24 h would be strongly

influenced by the initial information. Shi et al. [35] pointed out
that the NWP model is more suitable for long-term forecasting
when studying the problem of the precipitation nowcasting
problem. Roussel et al. [31] reported that the NWP model is
computationally intensive and often takes several hours to get the
forecasting results. In the light of [31], [36], and[37], the NWP
method often consumes several hours to obtain the forecasting
results and is not suitable for short-term forecasting, which is
difficult to be merged into the replanning framework.

Relying on the cloud motion vector extraction technique,
Roussel developed a short-term cloud forecasting method to
predict the cloud coverage in the next 6 h. The experimental
results show that the proposed method outperforms the NWP in
the first 3.5 h. Cros et al. [32] proposed correlation phase and
optical flow methods to perform cloud forecasting on the six-day
image dataset of Meteosat-10. By comparing the predicted cloud
image and the true image within 15 min to 4 h, the optical flow
method outperforms other methods with satisfactory computing
performance. Overall, the optical flow method can be applied for
short-term forecasting but abandoning using enormous histori-
cal data information. Shi et al. [36] proposed the convolutional
LSTM (ConvLSTM) and demonstrated that ConvLSTM out-
performs the optical flow method in precipitation nowcasting.
Unfortunately, the deep learning method for the spatiotemporal
sequence prediction that emerged recently [38] has not been
adopted in cloud forecasting. ConvLSTM was further improved
to build a PredRNN [17], which is utilized to conduct cloud
forecasting in our study.

III. PROACTIVE MISSION PLANNING METHOD

This section starts with an overview of the primary structure of
the proactive-and-reactive algorithm, followed by the proactive
mission planning method.

A. Algorithm Framework

The primary framework of the proactive-and-reactive mission
planning algorithm is summarized in Fig. 1. First, proactive
mission planning is performed for the AEOSs scheduling prob-
lem under cloud coverage uncertainty, and the model will be
introduced later in this section. With the help of the latest satellite
cloud images and deep learning methods, cloud forecasting can
be rapidly conducted to generate the predicted cloud informa-
tion. Subsequently, the profit of each task would be updated
relying on the cloud forecasting information, and the replanning
horizon can be determined according to the length of time for
the short-term cloud forecasting. The proposed RHRA would
be implemented for each replanning horizon. During the current
horizon, tasks that are severely obscured by the cloud will be
removed and the available tasks for the same target will be
trying to insert in the order of decreasing profit. Moreover,
other available tasks on each orbit will also be arranged to
observe in the same insertion way to make full use of observation
resources. With the time step in, cloud forecasting would be
carried out periodically, while the RHRA would improve the
mission planning result steadily. If the stopping criterion is met,
the final solution can be output, and then, the whole observation
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Fig. 1. Structure of the proactive-and-reactive mission planning method.

profit will be calculated. The detailed implementation of each
step will be illustrated in the following subsections.

B. Assumptions

This study focuses on solving the mission replanning prob-
lem of multiple AEOSs based on cloud forecasting. Thus, the
following assumptions and simplifications can be made in order
to simply the problem.

1) This study considers the point target exclusively because
the polygon target can be decomposed into multiple point
targets in line with the field of view of the satellite payload.
A point target can be observed in one imaging of satellite
and further division of point targets is not considered.

2) At most one observation mission can be conducted by each
satellite at one time.

3) Each target cannot be observed more than once owing to
the fact that observation resources are relatively limited.

4) Supposing that there are enough ground stations and relay
satellites in the scenario, regardless of the data downlink
and instruction upload constraints.

C. Notations

In line with [16] and [23], we adopt the CCP model to im-
plement proactive uncertain mission planning. Some notations
in this study are summarized in Table II. Let T and O be the
set of tasks and orbits, respectively. The set O contains all
orbital cycles of satellites in the order of the orbital epoch.
A sample approximation method [39] is adopted to solve the

TABLE II
NOTATIONS

chance constraint and W indicates the set of sample scenarios.
For each task i ∈ T , odi denotes the observation duration and ωi

represents the observation profit. If task i can be observed on the
orbit k, binary variable bik is set as 1, otherwise bik = 0. Each
orbit k ∈ O is defined with a memory capacity Mk, an energy
capacity Ek, a memory consumption mo

k and an energy cost eok
for unit time observation, and an energy consumption etk for unit
angle of attitude transformation. Time intervals [OSik, OEik]
and [V Sik, V Eik], respectively, denote the observation time
window and visible time window of task i on orbit k.

After observing one task, the AEOS requires an attitude
transformation operation to accomplish the next task. The energy
consumed during the transformation from task i to j on orbit k
can be formulated as

sekij =
(|θPitch

ik − θPitch
jk |+ |θRoll

ik − θRoll
jk |

) · etk (1)

where θPitch
ik and θRoll

ik denote the pitch and roll angles for observ-
ing task i, respectively.

Let Δg be the total angle change during the transformation,
that is Δg = |θPitch

ik − θPitch
jk |+ |θRoll

ik − θRoll
jk |. The attitude trans-

formation time including an attitude stabilization procedure can
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be indicated as stkij , which is described as

stkij = max

(
|θPitch

ik − θPitch
jk |/vPitch

k |θRoll
ik − θRoll

jk |/vRoll
k

)

+

⎧⎨
⎩

5 Δg ≤ 15◦

10 15◦ < Δg ≤ 40◦

15 40◦ < Δg ≤ 60◦
(2)

where vPitch
k and vRoll

k represent the attitude maneuvering angle
velocity of pitch and roll axes, respectively.

The binary decision variable xik represents whether task i
would be arranged to be observed on orbit k. TPik is a continu-
ous decision variable within [0, 1], which can be formulated as
follows:

OSik = TPik · (V Eik − odi − V Sik) + V Sik (3)

OEik = OSik + odi. (4)

Taking the cloud uncertainty into account, the cloud occlusion
for each observation is formulated as a stochastic event, denoted
by 0–1 random variable λik, i ∈ T, k ∈ O. Binary variable λik

represent whether task ion the orbitk is occluded by cloud or not.
The probability that task i can be successfully observed on orbit
k is denoted as pik. Then, we can obtain that p{λik = 1} = pik
and p{λik = 0} = 1− pik.

D. CCP Model for AEOS Mission Planning

With the parameters described previously, the CCP model of
the multi-AEOS mission planning problem can be constructed
as

max f (5)

subject to

P

{∑
i∈T

∑
k∈O

ωi · λik · xik ≥ f

}
≥ 1− α (6)

∑
k∈O

xik ≤ 1 ∀i ∈ T (7)

xik ≤ bik ∀i ∈ T, k ∈ O (8)∑
i∈T

xik · odi ·mo
k ≤Mk ∀k ∈ O (9)

∑
i∈T

xik

(
sekij + odi · eok

) ≤ Ek

j is the successor task of i on orbit k ∀k ∈ O (10)

{xik + xjk ≤ 1|if i is the pre-task of j on orbit

k and OEik + stkij > OSjk} ∀i, j ∈ T, k ∈ O (11)

xik ∈ {0, 1} ∀i ∈ T, k ∈ O. (12)

The objective function (5) is to maximize the variablef , which
is constrained by the chance constraint (6), where (1− α) indi-
cates the predefined confidence level. The chance constraint (6)
denotes that the probability that the observation profit under
cloud coverage uncertainty should be at least f , is not less

than the confidence level 1− α. Constraints (7) and (8) indicate
that each task cannot be observed repeatedly and should meet
the visibility condition. Memory constraints (9) and energy
constraints (10) represent the resource constraints of each orbit.
Constraints (11) indicate that when the sum of the observation
end time of task i and the attitude transformation time stkij is
greater than the observation start time of task j, adjacent tasks
i and j cannot be observed simultaneously.

Owing to the difficulty in calculating the probability in the
chance constraint (6), a sample approximation method [39] is
introduced to determine the observation profit approximately.
The Monte Carlo simulation [40] is adopted to create a set
of sample scenarios {w1, . . ., w|W |} for the random variable
λik, i ∈ T, k ∈ O. The basic idea of sample approximation re-
formulation is to solve the problem and obtain a solution, which
is infeasible for at most |W | · ε scenarios. Then, the confidence
level of the solution for the sample approximation problem will
be at least (1− ε). Let yl, l ∈ {1, . . ., |W |} be binary variables,
yl = 1 if current solution is infeasible in scenariowl ∈W , other-
wise yl = 0. The chance constraint (6) can then be reformulated
as follows.

∑
i∈T

∑
k∈O

ωi · λl
ik · xik ≥ −yl · Z + f ∀wl ∈W (13)

∑
wl∈W

yl ≤ |W | · ε (14)

yl ∈ {0, 1} ∀wl ∈W. (15)

In constraints (13), λl
ik represents the sample value of λik under

scenario wl and Z denotes a large number. Constraints (13)
indicate that the objective function f should not be greater than
the observation profit for scenario wl when yl = 0. The number
of scenarios where the solution is infeasible, at most be |W | · ε,
is restricted by constraints (14). The infeasible solution where
yl equals 1 means that the observation profit

∑
i∈T

∑
k∈O ωi ·

λl
ik · xik could be less than f . Thus, the reformulation of the

original CCP model is: maximize f , subject to constraints (7)–
(12) and (13)–(15).

The value of the sample size |W | is inherited from [16],
and the used parameters are set as: 1− α = 0.90, 1− ε = 0.99,
and Z = 106. The detailed algorithm for solving the proactive
mission planning problem can be found in [16]. The proactive
mission planning result is the basis of the replanning procedure
in this research. In previous studies [16], [23], the uncertain
mission planning results have not been evaluated according to
the true cloud information, which has prompted this research to
introduce the cloud data and make a comparison between the
proactive and reactive mission planning results.

IV. MISSION REPLANNING BASED ON CLOUD FORECASTING

To clearly express the proposed method, this section begins
with the introduction of the cloud forecasting method, and then,
describes the replanning method exhaustively.
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Fig. 2. PredRNN framework for short-term cloud forecasting.

A. Deep-Learning-Based Cloud Forecasting Model

To perform an effective mission replanning, valid cloud fore-
casting should be conducted at first. The NWP method fails to
make fast and reliable short-term forecasts, and we adopt Pre-
dRNN to conduct the cloud forecasting. The traditional LSTM
focuses more on modeling temporal variations, while a new spa-
tiotemporal LSTM (ST-LSTM) unit is presented in PredRNN.
The LSTM unit only contains a standard temporal memory,
while the ST-LSTM also records and utilizes the spatiotemporal
memory for predictive output, which is detailed in [17]. The spa-
tiotemporal memory is memorized in a unified memory pool and
could be shared with all ST-LSTMs by the PredRNN network.
As shown in Fig. 2, stacked ST-LSTMs could extract abstract
features layer-by-layer and conduct predictions by mapping
them back to the gray value space. The gray arrows denote
the temporal memory transfer across states in the traditional
LSTM. The orange zigzag arrows represent the transition path
of the spatiotemporal memory, which achieves the transmission
of memory vertically across layers. In this way, the PredRNN can
take into account both spatial and temporal memory and convey
it both vertically across layers and horizontally over states.

The FY-2 satellite cloud image is utilized in this study, which
can be obtained from the website of the national satellite meteo-
rological center [41]. The background of each image is removed
by subtracting the base image. The gray-scale images containing
cloud information are then acquired through the brightness
extraction method based on the HSV color space [42]. Sub-
sequently, the moving cloud sequence dataset can be generated
by arranging a large number of gray-scale images containing
time information together. The cloud image dataset consists
of optical observations of FY-2 recorded every 30 min, which
varies from September 2017 to April 2018. After the cloud

extraction, each original image can be transformed to a 300 ×
300 gray-scale image, which represents the cloud distribution of
the interest area. Then, the consecutive images are sliced with
a 12-frame-wide sliding window and 8000 sequences can be
obtained. Thus, each sequence consists of 12 frames, 6 for the
input and 6 for forecasting. The total 8000 sequences are divided
into a training set of 6400 samples, a valid set of 800 samples,
and a test set of 800 samples.

B. Initialization of Replanning

In order to execute the replanning algorithm, the predicted
cloud information should be adopted for each task to determine
the observation profit under cloud coverage. Since intermittent
2-D cloud images of a certain area of the next few hours can
be generated, it is necessary to analyze the spatial and temporal
characteristics of images. We would neglect the influence of the
cloud height because of its huge gap compared to the altitude
of the EOS. Generally, the altitude of the EOS can vary from
500 to 1000 km [43], while the cloud base height mainly varies
from 60 to 12km [44]. For the sake of fairness, the altitude of
the EOS is fixed as 700 km and the cloud base height is set
as 10 km for the following analysis. As shown in Fig. 3, the
schematic of cloud occlusion when a satellite is observing a
target is presented on the left, while the satellite-to-site view
geometry is provided on the right. In the subplot (a), the size
of the ground point target is set as 50 km×50 km, which is
related to the field of view of the satellite payload. Then, the
maximum visible elevation angle that can avoid the cloud cover
can be calculated as β = arctan(10/25) ≈ 21.801◦. Namely,
the cloud above this target would no longer cause an impact if
the elevation angle of sight from target to satellite is less than β.
The Earth is simplified as a sphere with a diameter of 6400 km in
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Fig. 3. Schematic of the cloud occlusion and satellite-to-site view geometry.

subplot (b), and γ indicates the satellite pitch angle. According
to the law of sines of triangles, we have

6400

sin γ
=

7100

sin(90◦ + β)
. (16)

Then, γ ≈ 56.818◦ can be obtained. However, it is difficult
for an AEOS to own such a strong pitching maneuverability.
Meanwhile, the photo captured with a large pitch angle is likely
to be useless owing to its poor quality. Note that if the cloud base
height is lower than the value set in Fig. 3, these constraints
will be more stringent. If there exist clouds above a ground
target, therefore, we assume that the partial cloud occlusion is
almost inevitable no matter what look angles of the AEOS while
imaging the target. The cloud coverage percentage, denoted
as δ, is introduced to represent the effect of cloud occlusion.
The cloud coverage when observing task i is indicated as δi,
which can be determined by the predicted cloud information.
The cloud images above the concerned area, namely where task
i is located, have been predicted at a few specific moments, then
the corresponding cloud coverage percentage can be determined.
Considering that the cloud coverage will not change drastically
during the period of the visible time window, the value of δi
can be calculated by the linear interpolation of several cloud
coverage percentages.

Owing to the difficulty of model solving, the observation
profit is simplified as 0–1 mode in the CCP model [23], which
does not take the reward of images with partial cloud cover into
consideration. The introduction of cloud forecast information
makes it possible to consider the partial revenue. As illustrated
in Fig. 4, a linear profit model is proposed in order to depict
the observation profit under cloud coverage, where δ0 indicates
the cloud coverage threshold. The objective function of the
replanning procedure can be described as

max
∑
i∈T

∑
k∈O

(1− δi) · ωi · xik. (17)

Fig. 4. Linear function for the observation profit of each task under the cloud
coverage.

The function (17) is to maximize the total observation profit
under the predicted cloud information. Then, the mathematical
model of the reactive mission planning is formulated as: maxi-
mize objective function (17), and subject to constraints (7)–(12).

C. Rolling Horizon-Based Replanning Algorithm (RHRA)

Previous studies have proved that the AEOS mission planning
problem is NP-hard, namely that it is difficult to find the optimal
solution within polynomial time [19]. Mission replanning based
on the real cloud information is highly required for operating
efficiency. Therefore, the RHRA based on the rapid insertion
strategy is developed in this article to improve the proactive
mission planning result while satisfying engineering constraints.

1) Main Procedure: The rolling horizon (RH) approach con-
sists in dividing the entire time horizon into shorter time in-
tervals according to the length of cloud forecasting. Fig. 5
concisely illustrates the RH-based replanning procedure. The
RH approach replans the observation mission every fixed time
interval, which is possible because the uncertain cloud coverage
can be forecasted relying on the real cloud images arriving
periodically. As depicted in Fig. 5, axis T ime contains a part
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Fig. 5. Schematic of the RH-based replanning procedure.

of the scenario time and the green square indicates the input
sequence of real cloud images. The total reactive mission plan-
ning horizon is divided into several replanning horizons based on
the forecasting time intervals. Satellite icons are located above
the replanning horizon, which indicates that mission replanning
should be conducted for these satellites owing to the existing
visible time windows during this time interval. The red arrow
represents the procedure of cloud forecasting and the mission
replanning. Considering the algorithm running and data trans-
mission time in engineering applications, the fixed time interval
between real images arriving and the replanning horizon is
reserved.

Algorithm 1 shows the pseudocode of the framework of
the RHRA. Briefly, for each replanning horizon, the current
solution Sc is improved to a better one Sp, where the task
pool containing the information of missions performs a signif-
icant role. ArrTaskPool stores the task information, which
has been scheduled for observation, and it will be updated at
the end of each replanning horizon. CurrTaskPool contains
the task information, which is consistent with Sc in the cur-
rent replanning horizon. For the current replanning horizon,
tasks corresponding to targets that have not been arranged to
observe are collected in AvaTaskPool, providing alternative
resources for task insertion. Meanwhile, AvaTaskPool would
be updated immediately when a task is removed or inserted
successfully. Besides, the removed task pool RemTaskPool
and the substitute task pool SubTaskPool will be initialized
in the program. First, we remove the target, which has been
observed inArrTaskPool from the current task pool, as well as
tasks related to this target in AvaTaskPool. This operation will
ensure each task would not be observed redundantly under the
condition of scarce resources. If the predicted cloud coverage
δi exceeds the threshold δ0, the corresponding task i will be
removed from CurrTaskPool to RemTaskPool owing to
the encouragement of the higher observation profit. After the
removing step, we search the task j ∈ AvaTaskPool with the
same observation target of each task in RemTaskPool and
build up the SubTaskPool in descending order of profit. Then,
a rapid insertion of task j to the current solution Sc will be
conducted. Once inserted successfully, CurrTaskPool and
AvaTaskPool will be renewed, as well as out of the loop.
Subsequently, we obtain available tasks for each orbit k in

the current replanning horizon and make up AvaTaskPoolk.
Relying on the linear profit model under the predicted cloud
information, tasks are attempted to be inserted to Sc in the
order of revenue from highest to lowest. The insertion will be
successful if constraints (9)–(11) are satisfied. When all horizons
within the reactive mission planning have been replanned, the
RHRA ends and output the replanning result Sp.

2) Rapid Insertion: Attitude transformation constraints (11)
associated with the observation start time are coupled with
visible time constraints (8) and resource constraints (9) and (10),
which will increase the difficulty and complexity of an insertion
procedure enormously. On the one hand, it should be verified
that the attitude transformation constraints are satisfied when
inserting an unarranged task. The moving forward and backward
strategies along the time axis contribute to search a suitable po-
sition for the insertion. On the other hand, the energy constraint
which is related to the insert position should be checked. Note
that this key constraint for the AEOS mission planning has not
been taken into consideration in several related studies [18],
[45], [46].

The pseudocode of the rapid insert procedure is presented
in Algorithm 2. The current solution Sc and the task i to be
inserted are required. For the current result Sk on the orbit
k where task i locates, a task sequence {ip, i, is} is utilized
to execute the insertion procedure. As an illustration, notation
{i, is} indicates the continuous task sequence of i and is. The
real variable TPik ∈ [0, 1], denoting the position of observation
start time, is initialized as 0.5 and the logical variable Label is
set as False. To begin the insertion process, it is necessary to
determine whether adjacent tasks are empty. Then, the insertion
procedure will be on a different track according to the judgment
result. Generally, once the attitude transformation constraint is
verified, following the check for memory and energy constraints.
If the attitude transformation constraint of {i, is} is violated, we
will attempt to move OSik to an earlier time through decreasing
the value of TPik. Movement operation in the opposite direction
would be conducted when the attitude transformation constraint
of {ip, i} is violated. A detailed description of the movement
can be found in Algorithms 3 and 4.

3) Interval Shrinkage-Based Moving Strategy: For the pur-
pose of stability of the engineering system, the replanning al-
gorithm should change the proactive mission planning result as
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Algorithm 1: Procedure of RHRA.
Input:

Current mission planning result Sc, the arranged task
pool ArrTaskPool, current task pool CurrTaskPool,
current available task pool AvaTaskPool, the removed
task pool RemTaskPool, the substitute task pool
SubTaskPool, cloud coverage threshold δ0 and the
predicted cloud coverage δi for each task i;

Output:
The re-planning result Sp

1: while existing the horizon has not been re-planned do
2: for i ∈ CurrTaskPool which has been observed in

ArrTaskPool do
3: Remove task i from CurrTaskPool and update

AvaTaskPool;
4: end for
5: RemTaskPool← ∅;
6: if i ∈ CurrTaskPool and δi > δ0 then
7: Remove task i from CurrTaskPool to

RemTaskPool;
8: Update Sc and AvaTaskPool;
9: end if

10: for i ∈ RemTaskPool do
11: SubTaskPool← ∅;
12: Search the task j ∈ AvaTaskPool with the same

observation target of i;
13: Make up the SubTaskPool in descending order

of (1− δj) · ωj ;
14: for j ∈ SubTaskPool and δj ≤ δ0 do
15: Sc ← RapidInsertion(Sc, j);
16: if Label is True then
17: CurrTaskPool← j;
18: Update the AvaTaskPool;
19: break;
20: end if
21: end for
22: end for
23: for each orbit k in current replanning horizon do
24: Make up AvaTaskPoolk in the descending order

of profit;
25: for j ∈ AvaTaskPoolk and δj ≤ δ0 do
26: Execute Steps 15–20;
27: end for
28: end for
29: Update ArrTaskPool according to Sc;
30: end while
31: Sp ← Sc

little as possible [29]. Peng et al. [46] proposed an insert pro-
cedure for the AEOS scheduling problem with time-dependent
profits, which will attempt to move all tasks on the orbit to be
inserted for the optimal solution. However, the change of all tasks
will cause greater difficulties to operation instruction generation
and algorithm robustness during the replanning procedure. An
interval shrinkage-based moving strategy specifically for the

Algorithm 2: RapidInsertion(Sc, i).

Input:
Current mission planning result Sc and task i to be

inserted;
Output:
Sc and logical variable Label indicating whether the
insertion is successful;

1: Initialization: TPik ← 0.5, Label← False;
2: Obtain the orbital solution Sk on the same orbit as task

i from Sc;
3: Determine the precursor task ip and the successor task

is of task i on current orbit k;
4: if ip = ∅ and is = ∅ then
5: Label← True;
6: else if ip = ∅ then
7: if Constraint (11) of {i, is} is satisfied then
8: if Constraints (9) and (10) are satisfied then
9: Label← True and update Sc;

10: end if
11: else
12: MoveForward(TPik);
13: if LabelF is True then
14: Execute Steps 8-10;
15: end if
16: end if
17: else if is = ∅ then
18: if Constraint (11) of {ip, i} is satisfied then
19: Execute Steps 8–10;
20: else
21: MoveBackward(TPik);
22: if LabelB is True then
23: Execute Steps 8–10;
24: end if
25: end if
26: else
27: if Constraints (11) of {ip, i} and {i, is} are satisfied

then
28: Execute Steps 8–10;
29: else if Constraint (11) of {i, is} is satisfied then
30: Execute Steps 21–24;
31: else if Constraint (11) of {ip, i} is satisfied then
32: Execute Steps 12–15;
33: end if
34: end if

insertion task, therefore, is proposed in the rapid insertion to
ensure stability and rapidity simultaneously.

Algorithm 3 moves the task i to an earlier observation time,
which should exceed the observation start time of task i and
the observation end time of task ip. When there remains a
time interval between OSik and max(V Sik, OEipk) exceeding
2 s, the observation start time of task i would be set at the
middle location. Following the move, the attitude transformation
constraint will be checked. The program will jump out of the loop
if corresponding constraints are satisfied. Similarly, Algorithm 4
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Algorithm 3: MoveForward(TPik).

Input:
Information of the task i to be inserted, the precursor

task ip and the successor task is
Output:

Logical variable LabelF indicating whether the forward
moving is successful;

1: Initialization: LabelF ← False and calculate OSik

according to (3);
2: if ip = ∅ then
3: OEipk ← V Sik

4: else
5: Calculate OEipk according to (4);
6: end if
7: while OSik −max(V Sik, OEipk) ≥ 2 do
8: OSik = 0.5 ∗ (OSik + max(V Sik, OEipk));
9: if ip = ∅ then

10: if Constraint (11) of {i, is} is satisfied then
11: LabelF ← True and break;
12: end if
13: else
14: if Constraints (11) of {ip, i} and {i, is} are

satisfied then
15: LabelF ← True and break;
16: end if
17: end if
18: end while

will conduct the movement in the opposite direction for the
insertion of task i. Finally, a logical variable indicating whether
the moving is successful will be output.

V. COMPUTATIONAL EXPERIMENTS

In this section, extensive numerical experiments are con-
ducted to evaluate the proposed model and algorithm. The
computational experiments have four goals: verify the accuracy
of the cloud forecasting method, evaluate the effectiveness of the
proposed replanning algorithm, make a comparison for results
with different forecast times, and conduct the sensitivity analysis
of parameters ε and δ0.

Since we are the first to solve the AEOS replanning problem,
which takes the true cloud information into account, we cannot
compare the performance of the proposed RHRA with other
approaches diametrically. Therefore, we mainly compare the
performance of our algorithm with the proactive mission plan-
ning result, as well as the replanning results with other heuristics.

A. Data Generation

The cloud forecasting algorithm is coded in Python based
on the PyTorch framework [47]. The proactive-and-reactive
mission planning program is implemented in MATLAB. The
replanning experiments are conducted on a desktop with Intel
Core i74790 K CPU at 4.00 GHz and 16.0 GB of RAM. Without a
benchmark dataset for the AEOSs replanning problems, several

Algorithm 4: MoveBackward(TPik).

Input:
Information of the task i to be inserted, the precursor task
ip and the successor task is

Output:
Logical variable LabelB indicating whether the
backward moving is successful;

1: Initialization: LabelB ← False and calculate OSik

according to (3);
2: if is = ∅ then
3: OSisk ← V Eik

4: else
5: Calculate OSisk according to (3);
6: end if
7: while min(V Eik, OSisk)−OSik ≥ 2 do
8: OSik = 0.5 ∗ (OSik + min(V Eik, OSisk));
9: if is = ∅ then

10: if Constraint (11) of {ip, i} is satisfied then
11: LabelB ← True and break;
12: end if
13: else
14: if Constraints (11) of {ip, i} and {i, is} are

satisfied then
15: LabelB ← True and break;
16: end if
17: end if
18: end while

TABLE III
ORBITAL PARAMETERS OF THE AGILE SATELLITES

instances are designed in line with the satellite cloud image data.
The interest region within the field of view coverage of FY-2 is
predefined in a sea area (9◦ N-24◦ N and 126◦ E-141◦ E). Then,
several scenarios with a different number of observation targets
(50, 100, 150, and 200) are randomly generated in the area. The
observation profit for each target is uniformly distributed in [0,
10] and ωi of each task i inherits the profit of the corresponding
target. The observation duration for each target is fixed as 10 s.
To perform the visibility calculation, the minimum solar altitude
angle and the minimum elevation angle for each observation task
are set as 0◦ and 15◦, respectively.

The start time of the scenario is set as 2018/04/18 00:00:00
and the mission horizon is 24 h. The orbital parameters of
selected AEOSs in the scenario are shown in Table III, where
the column ID represents the name of each satellite, while other
columns denote the length of semimajor axis (a), eccentricity (e),
inclination (I), right ascension of the ascending node (Ω), the
argument of perigee (A), and mean anomaly (M ), respectively.
The largest roll and pitch degrees of each AEOS are all set as
30◦, while the angular velocities vPitch

k and vRoll
k can be designed
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Fig. 6. Schematic of the variation of MSE with the number of training
iterations.

as 3◦/s. The parameters for each orbit k ∈ O can be defined as:
Mk = 5000 MB, Ek = 80 kJ, mo

k = 100 MB/s, eok = 500 J/s,
and etk = 1000 J/◦. Besides, the value of the cloud coverage
threshold is initialized as δ0 = 70%.

B. Accuracy Analysis of Cloud Forecasting Results

As mentioned in Section IV-A, the forecasting method based
on the PredRNN is introduced to conduct cloud forecasting for
an arbitrary input image sequence. The effect of each training
model is tested on the validation set, where the mean square
error (MSE) between the predicted and true images is introduced
to conduct the evaluation. The calculation of the MSE can be
expressed as

MSE =
1

N

N∑
n=1

P∑
p=1

(gp − ĝp)
2 (18)

where N indicates the number of images used for verification
and P denotes the number of pixels in each image. Moreover, gp
represents the true gray value of the pixel p, while ĝp indicates
the predicted one.

Fig. 6 presents the change of the MSE with the number of
training at each forecast time step. It is apparent from the length
of the bar of different colors that the MSE will become larger as
the forecast time increase. This result may be explained by the
fact that the short-term forecasts based on real data are more
accurate. From the chart, it can be seen that the total MSE
achieves the lowest at the epoch of the 10000th iteration of
training. Then, the training error would increase sharply at the
11000th iterations, and a possible explanation for this might
be overfitting. Therefore, the training model generated by the
10000th iteration is adopted to conduct the cloud forecasting in
the following experiment.

To evaluate the performance of the PredRNN, a compara-
tive experiment with the optical flow method [36] has been

Fig. 7. Comparison of different cloud forecasting methods based on two
metrics over time.

conducted. For the optical flow method, we tune the differ-
ent initialization schemes of the optical flow and use the best
scheme, which initialized the flow velocity by the means of the
last two flow fields, to report the results. The comparison results
are shown in Fig. 7, where the SSIM indicates the structural
similarity [48] between the predicted and true image. A lower
value of the MSE and a higher value of SSIM represent a better
forecasting effect. It is apparent from the figure that the forecast
accuracy of both methods will decrease as the forecast time
increases. As can be seen from Fig. 7, the performance of the
PredRNN is better than the optical flow method. What is inter-
esting is the steady growth of the numerical gap as the forecast
time increases, which means a more significant advantage for the
PredRNN. The flow vector will be calculated in each step of the
forecast by the optical flow method, therefore, longer operation
time is also required compared to the PredRNN.

Owing to the fact that the cloud coverage ratio of each task
is utilized, we make statistics for the average results of the
cloud coverage error Ei to validate the feasibility of the cloud
forecasting. The formulation of Ei is as follows:

Ei = 100× 1

N

N∑
n=1

|δi − δ̂i| ∀i ∈ T (19)

where δ̂i represents the cloud coverage percentage of a square
area with 100 pixels in the forecast cloud image. The side length
of the area is about 50 km, which is principally consistent with
the width of the field of view for the payload of each AEOS.
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Fig. 8. Average value of cloud coverage error when the forecast time is 3 h.

Fig. 9. Comparison of observation profits of proactive-and-reactive mission
planning.

Fig. 10. Comparison experiment results with different algorithms.

As can be seen from Fig. 8, Ei within partial areas when the
forecast time equals 3 h is presented by way of the heat map,
where the value of the cloud coverage error is displayed on
each little square. Note the value of Ei would increase with the
forecast time, which means that Fig. 8 illustrates the largest error
within the forecast time. We can find that the forecast accuracy

Fig. 11. Comparison of the true observation profit and running time under
different forecast times.

owns the characteristics of regional differences, which may be
explained by the fact that the degree of cloud cover changes
varies in different regions. Data from this Figure show that the
percentage of the cloud coverage error at the third-hour forecast
is exclusively around 10%. This means the result of cloud
forecasting can provide valid guidance for mission replanning.

C. Effectiveness Verification of the Replanning Algorithm

To verify the feasibility of the proposed replanning algo-
rithm, comparative experiments between proactive and reactive
mission planning have been conducted. As shown in Fig. 9,
abbreviations Pro-True and Rea-True represent the observation
profit of the proactive and reactive mission planning respectively,
which are recalculated by the proposed linear profit model
utilizing the true cloud information. For each scenario with a
certain number of observation targets, ten runs have been con-
ducted. The average and the median of ten observation profits are
denoted as the green triangle symbol and the orange horizontal
line, respectively. The box plot represents the distribution of
the result, and different colors indicate the observation profit of
different circumstances, which can be determined by the legend.

What stands out in the figure is that the average profits of the
replanning results are all higher than that of the corresponding
proactive mission planning result. These results confirm that the
proposed RHRA would improve the proactive mission planning
results. Besides, the observation profit of the replanning result
would increase as the number of observation targets increases. A
similar tendency cannot be observed obviously for the proactive
mission planning result, which may be explained by the fact that
the latest cloud information is not applied, resulting in uncer-
tainty in the scheduling process. In conclusion, the observation
profit of each scenario will be effectively improved after the
mission replanning, and the improvement will increase with the
number of tasks.

To verify the superiority of the proposed replanning heuristic,
one should compare it with other algorithms. Therefore, we in-
troduce genetic algorithm (GA), ant colony optimization (ACO),
particle swarm optimization (PSO) algorithms, and the reactive
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Fig. 12. Sensitivity analysis of ε with the different number of targets.

Fig. 13. Sensitivity analysis of cloud coverage threshold with the different
number of targets.

scheduling algorithm (denoted as RSA) proposed in [29] to solve
the problem for comparison. Standard algorithm procedures of
metaheuristics have been implemented and the RSA is modified
to fit the RH structure. For fairness, the same proactive mission
planning results have been provided. The results of the compar-
ative experiments are shown in Fig. 10, where the running time
for each run is represented by the purple square dot. As seen
from Fig. 10, the average value of the observation profit of each
scenario obtained by the RHRA is higher than that of GA, ACO,
PSO, and RSA. Moreover, the superiority of the RHRA becomes

more obvious as the number of observation targets increases. The
RSA performs better than GA, ACO, and PSO in all scenarios
while consuming the least time of these four. When the number
of observation targets increases from 150 to 200, the increase
of the observation profit obtained by the RSA is not obvious,
which indicates that the RSA performs badly in the case of a
large number of targets. Overall, these results suggest that the
RHRA outperforms GA, ACO, PSO, and RSA, which verifies
the superiority of the proposed algorithm.

D. Comparison Results With Different Forecasting Time

Simulation experiments with different forecast times have
been conducted to quantitatively evaluate the impact of the fore-
cast horizon, which could provide a reference for the selection
of the length of the forecast sequence. As shown in Fig. 11, the
forecast time is set as 1, 2, and 3 h, respectively. It is apparent
from this Figure that the true observation profit with the forecast
time set as 3 h holds the minimum for each scenario with a
different number of targets. This can be explained by the fact
that the forecast accuracy would decrease as the forecast time
increases, which has been detailedly explained in Section V-B.
Moreover, the bottom half of the figure shows that the replanning
algorithm consumes the longest computation time owing to the
more RHs that need to be replanned in this situation.

Further analysis shows that the longest running time of all runs
would not exceed 0.1 s, which provides significant support for
the resource-constrained replanning phase. Overall, the average
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observation profit difference under different forecast times is
not extraordinary, and the program running time for the forecast
time set as 3 h is relatively short. Considering the orbital period
of the low orbit EOS and the operation of the ground control
center, the forecast time of the mission replanning is chosen as
3 h in this study.

E. Sensitivity Analysis

As described in Section V-C, the observation profit of the CCP
model is conservative with ε = 0.01. The confidence level would
impact the observation profit significantly, and then, we conduct
the sensitivity analysis of ε in this section. Fig. 12 presents the
experimental results with ε varies from 0.01 to 0.09 under a
different number of targets. The Pro-Fore and Pro-True represent
the observation profit of the proactive mission planning results
calculated by the proposed continuous profit model under the
predicted and the true cloud information, respectively. As can be
seen from the figure, the difference between the CCP profit and
Pro-True would generally become smaller as the value of ε in-
creases. For the scenario with 50 targets, the difference becomes
minimum when ε equals 0.07, while a similar situation achieves
with ε set as 0.09 for the other three scenarios. Therefore, it is
still difficult to determine the value of ε ahead of time to decrease
the difference between the CCP profit and the true one, which is
one of the disadvantages of the pure proactive mission planning
method. Meanwhile, we can find that the average value and the
distribution under Pro-Fore and Pro-True stay relatively similar
in almost all scenarios, which reflects the effectiveness of cloud
forecasting utilizing the latest satellite cloud images.

The cloud coverage threshold δ0 may impact the replanning
results. According to Algorithm 1, a smaller δ0 would
correspond to a larger range of task removal and update. To
test the influence of δ0 and provide more guidance for practice,
the value of 1− δ0 is taken as 60%, 70%, and 80%, separately.
The corresponding result is reported in Fig. 13. On average, the
average observation profit with different values of 1− δ0 does
not show a noticeable difference. Interestingly, the program
running time decreases with the increase of the value of 1− δ0
owing to the fewer operation of task removal and task insertion.
Taking the observation profit under partial cloud occlusion into
account, it is reasonable to take the value of 1− δ0 as 30%.

VI. CONCLUSION

The AEOSs mission replanning problem based on cloud
coverage forecasting is addressed in this study. As mentioned in
the literature review, cloud coverage performs a serious negative
influence on the Earth observation mission. The latest satellite
cloud images are utilized to conduct the cloud forecasting,
and the forecasting method based on deep learning and Big
Data is introduced. The aim of the present research is to pre-
dict cloud information in the near future and conduct mission
replanning to avoid the influence of the cloud and improve
the observation profit. Relying on the forecast cloud image, a
continuous observation profit model is proposed to substitute
the 0–1 reward model of the CCP, which could provide a more
reasonable evaluation for the images with partial cloud cover.

Meanwhile, the utilization of cloud information could avoid the
difficulty of the selection for the confidence parameter ε. A novel
proactive-and-reactive mission planning framework has been
constructed, where the mission replanning is operated within
each RH. A replanning method RHRA combined with a rapid
insertion has been proposed, which could update the mission
planning result efficiently and improve the observation profit ef-
fectively. Computational results show that the cloud forecasting
method is suitable for mission replanning. Besides, extensive
experiments in comparison to proactive mission planning and
several heuristics illustrate the effectiveness of the proposed
algorithm.

This research has thrown up several questions for further
investigation. The observation target in this study is point target,
while the mission planning for the large area target observation
remains further research, where introducing true cloud informa-
tion would be very conducive to the improvement of observation
profit. In addition, the application of the distributed collaborative
optimization method for the AEOS mission planning problem
would be usefully explored in further research.
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