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Estimating Tree Structural Parameters via Automatic
Tree Segmentation From LiDAR Point Cloud Data

Kenta Itakura , Satoshi Miyatani, and Fumiki Hosoi

Abstract—In this article, we proposed an automated tree
segmentation method using light detection and ranging (LiDAR)
point cloud data. Tree segmentation was performed accurately even
with bumpy ground, and was validated on more than 1000 samples.
For example, 371 out of 374 trees were detected from dataset 2, and
the error was caused by the trees with low point densities located
in the area far from the LiDAR. Segmentation was accurately
performed, including the branches, leading to the retrieval of
high-level parameters such as the leaf areas. To obtain the param-
eters regarding the leaf area from the segmented trees, a method
for classifying the leaf and branch points in the three-dimensional
point clouds obtained using a terrestrial LiDAR method was
proposed. After preprocessing the input point cloud, such as by
voxelization, the fast point feature histogram (FPFH) features were
calculated. Then, the classifier for classification into leaves and
branches was trained using the training dataset to calculate the test
accuracy with the test data. Moreover, an unsupervised method
for classification using the FPFH feature and k-means algorithm
was also performed. Consequently, the recall and precision values
of the classification were determined as 98.14% and 96.03%,
respectively, with the supervised approach.

Index Terms—Instance segmentation, light detection and
ranging (LiDAR), point cloud, tree segmentation.

I. INTRODUCTION

MONITORING vegetation plays an important role in eval-
uating forest resources, environmental protection, and

disaster surveillance. Further, the monitoring of vegetation is
required in other fields, such as construction and insurance. For
example, we must estimate the cost of cutting down trees before
constructing a facility. In this case, it is necessary to estimate the
number of trees and their density. In the monitoring of vegeta-
tion, tree structural parameters such as the tree trunk diameter,
tree height, and leaf area density are important. Conventionally,
the necessary measurements are performed manually, which is
time-consuming and labor-intensive. One alternative is the use
of a three-dimensional (3-D) scanner called light detection and
ranging (LiDAR). LiDAR emits a laser beam to a region of
interest, and 3-D information is obtained by calculating the time
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for the laser beam to return. Previous studies have reported on
tree trunk diameters, tree heights, and leaf area densities using
LiDAR [1]–[5]. The ability to measure plant structural parame-
ters can contribute to many fields other than forest monitoring.
For example, detecting changes between a LiDAR point cloud
before and after a typhoon can be efficient for estimating the area
of a corresponding landslide. Omasa et al. used LiDAR for the
visualization of an urban park and for the quantification of the
biophysical variables of trees in the park. A digital canopy height
model and digital terrain models were generated using airborne
scanning [6]. Holopainen et al. [7] evaluated the accuracy and
efficiency of airborne laser-scanning (ALS), terrestrial laser-
scanning (TLS), and mobile laser-scanning methods for use in
urban tree mapping and monitoring. Their results showed the
potential of ALS for updating existing tree maps and monitoring
the urban forest environment. The laser scanners for airborne
LiDAR are mounted on helicopters, aircraft, and drones.

After the LiDAR measurement for tree monitoring, seg-
menting each tree in the LiDAR point cloud is necessary to
automatically acquire the information of each tree, such as
the number of trees, tree trunk diameters, and heights. Some
methods are available for the tree segmentation of point clouds
obtained mainly by airborne LiDAR. Many efforts have been
made toward tree segmentation, mainly using airborne LiDAR
data. As the data from airborne LiDAR can record the top of
a tree canopy, the treetop method is popular. Hosoi et al. [8]
performed crown-extraction filtering to accurately determine
tree apex positions. Luo et al. [9] used a top-to-bottom region
growing algorithm to segment individual trees from a LiDAR
point cloud. Prieditis et al. [10] used a local maximum method
with a Gaussian filter for the ALS. Another example is a method
using a watershed algorithm or its updated version [11].

However, when LiDAR data are obtained on the ground using
terrestrial LiDAR or mobile LiDAR, the laser beam emitted
from the LiDAR cannot reach the treetop; accordingly, the point
cloud data tends to lack data for the treetop. As a result, the
corresponding tree detection method, as previously mentioned,
does not work well. For tree segmentation in LiDAR point
cloud data obtained on the ground, Lovell et al. [12] utilized
the characteristics of trunks, i.e., they are solid targets with
spatial continuity in the vertical direction (and to some extent
in the horizontal direction). Then, the tree stems were detected
using the intensity information of the point cloud. However,
the intensity information may not be available depending on the
LiDAR used, and the intensity values located far from the LiDAR
tend to be lower than closer ones. Itakura and Hosoi [13] focused
on the tree trunk part; the tree trunk part was detected after
noise filtering and was expanded upward to segment the trees.
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A method of segmenting trees using the tree trunk part was also
reported in [14]. However, methods focusing on the tree trunk
do not work well when there are many understories or shrubs
around the tree trunk. Other studies developed an algorithm to
adapt to a more complex environment involving many nontree
objects [15], [16]. However, when nontree objects were included
in the target point cloud data, many objects were misdetected as
trees using the methods mentioned above. For example, a utility
pole was detected as a tree, resulting in a false positive. For
example, one method first detected the candidate trees, and then
reduced the nontrees from the candidates in urban environments.
Each of the detected objects was projected onto a 2-D image and
classified as trees or nontrees. The trees in the cities were then
detected. Although these methods are effective, including for
scenes with nontree objects, detection cannot be performed if the
tree trunk is not observed in the point cloud. Further, they should
be tested with bumpy grounds and with a larger amount of data.

Recently, a method based on deep learning for point clouds
has been studied. In a well-known network called PointNet
[17], a pointwise classification called semantic segmentation is
performed. After semantic segmentation, each point is classified
into categories such as vegetation, building, wires, and car.
However, this has mainly been tested in urban areas, and the
feasibility of these deep learning-based methods in areas where
trees are densely planted, such as in forests, remains unknown.
Notably, additional postprocessing steps are needed after seman-
tic segmentation to segment the trees; because semantic segmen-
tation makes a pointwise classification, but it does not segment
each tree. Another method combines an image-processing algo-
rithm and PointNet for tree detection [18]. In the corresponding
study, a candidate tree was selected using an image processing
algorithm (i.e., the watershed algorithm), and then the nontree
objects were removed using PointNet. However, as this method
separated each tree using the watershed algorithm, it was difficult
to find densely planted trees, such as those in forests. A method
utilizing stereo vision and object detection based on deep learn-
ing has also been reported [19]. In this study, tree trunks were
recorded by using a stereo camera to reconstruct 3-D information
using stereo vision. Then, the tree trunk was detected using the
“You Only Look Once” (YOLO) v2 network [20] to estimate the
tree trunk diameter and tree species. However, the stereo camera
could scan only trees located close to the camera, and was very
unstable outdoors. Therefore, a tree segmentation method that
can be used for tree point clouds even when the tree trunk is not
scanned or when understories exist around the tree trunks should
be tested, and it should be validated with a greater number of
tree samples to confirm the feasibility of the method. After this
segmentation, tree structural parameters such as the tree trunk
diameter and tree height can be estimated automatically.

Furthermore, accurate tree segmentation leads to the retrieval
of richer information, such as branching patterns and leaf areas.
The separation of the leaf and branch areas is helpful when
comparing tree growth under different conditions. For example,
the differences in growth owing to different growth conditions
can be reflected by the rates of increase in the leaf areas. When a
difference is observed, it results in an understanding of the inter-
actions between the environmental conditions and tree structure.
The leaf area is also an important parameter for evaluating health
conditions and growth stages. To improve the accuracy of the

estimation of parameters such as leaf area, separating the leaf and
branch points is necessary. For example, if the branches are not
excluded from the leaf area estimation, the parameters regarding
the leaf area will be overestimated. In addition to the estimation
of the plant structural parameters, separation is preferable
for other tasks, such as for calculating the radiative transfer
model and evaluating the green landscape. Because leaves
and branches have different spectral properties, distinguishing
between leaves and branches is better for the model calculations.

In prior studies for extracting branches from point cloud data,
several initial voxels corresponding to stems were selected, and
branches were picked up from the voxelized 3-D tree model.
Then, voxels adjacent to the initial voxels were searched for, and
the neighboring voxels were categorized as stems and branches
[21]. However, this method required the manual selection of
the initial points. Iida et al. [22] separated leaf and branch
points on the 3-D point cloud data of two evergreen trees
obtained using a dual-wavelength portable scanning LiDAR
system by considering the reflection intensity of the red and
near-infrared spectra. Béland et al. [23] used the absorptance
at 1535 nm for thresholding to separate leaves and branches.
However, the LiDAR-based methods able to record the spec-
tra of near-infrared waves are limited. In other approaches,
hand-crafted geometric features such as the density have been
calculated and fed into a classifier, such as a random forest,
to classify the points into leaves and branches [24], [25]. Su
et al. [26] combined classification and segmentation methods
based on the spatial distribution of the point clouds of trees,
and on the differences in the structures of the wood and leaf
components of the trees. However, the classification accuracy
using these methods was tested with only a few trees, or the
training and test data were derived from the same tree. To
expand the application of the method, training the classifier
with several trees and validating the classifier with other trees is
required.

Depending on the target tree, type of LiDAR system, mea-
surement conditions, and parameters, the pattern of points of
the target trees varies, even for identical trees. This implies
that a pretrained classifier is difficult to apply to a new dataset
in such cases and that the training dataset should be prepared
under each experimental condition. Therefore, it is preferable
if the classifier is not required to conduct training with the
training data, i.e., that the classification can be performed using
an unsupervised approach that does not require preparation for
the training dataset. If a good feature for describing the 3-D
geometry of the points is defined to represent the relationship
among neighboring points, the classification of the branch and
leaf can be performed. After classification of the leaf and branch
points in the 3-D point clouds, a more detailed analysis can
be performed if each branch can be segmented. In a previous
study, an approach was presented for extracting a branching
architecture from leafless apple trees [27]. As different trees
have individual leaf types, as a next step, a branch extraction
with leaf points should be tested.

To conduct such a detailed analysis, approaches for tree
segmentation from LiDAR point clouds with high accuracy and
robust leaf and branch separation algorithms are required. There-
fore, in this study, an accurate method for tree segmentation from
LiDAR point clouds was proposed, and the feasibility of the
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method was validated over 1000 samples. Then, a method was
proposed for separating the leaf and branch points on the 3-D
point cloud data of the trees with supervised and unsupervised
approaches, aiming to enable the extraction of high-level tree
structural parameters from the isolated tree point clouds.

II. MATERIALS AND METHOD

A. Materials

We used five study sites for the LiDAR measurements to
validate the tree segmentation method. Seven datasets were
obtained from the study sites. The first study site was a study plot
in a forest research center where Japanese cypress was planted
(Chamaecyparis obtuse) in Okuono, Kochi prefecture, Japan.
This measurement was performed with a TLS for three areas to
obtain three datasets (datasets 1–3). The laser scanner used in
the TLS was a UTM-30LX-EW (Hokuyo Automatic Co., Ltd.,
Japan). The LiDAR was installed on the ground at intervals of
10 m in x and y directions. The details of the study site and
data acquisition are provided in [28]. Next, a part of a mountain
was used for tree measurement for dataset 4. The mountain was
located in the southern part of the Tokushima prefecture, Japan.
The LiDAR used was a GLS2000 (Tokyo, Japan). The TLS
measurement was conducted several times, both on the ground
and hills; then, these point clouds were registered into a single
point cloud. Such a registration allowed for the recording of
points even on the building roofs. The study site where dataset 5
was obtained was the Shinjuku Gyoen National Park in Tokyo,
Japan. The target tree species was cherry blossom (Cerasus
Mill.). The LiDAR used was a Velodyne VLP16 (Velodyne Li-
dar, Inc., USA), and the LiDAR measurements were performed
while walking. This LiDAR scanned the target at 10 Hz to obtain
a sparse point cloud. We used a method called simultaneous
localization and mapping (SLAM) to build dense point cloud
data [29]. Part of this dataset was used in a previous study
[15]. Dataset 6 was acquired from a mountain in Izunokuni city,
Japan. The LiDAR used was a GLS2000 (Tokyo, Japan). The
trees were planted on a steep ground. Dataset 7 was obtained
from Kawakami Park, Tsukuba City, Ibaraki, Japan, where
the dominant tree species were Japanese cedar (Cryptomeria
japonica [L.f.] D. Don), Japanese red pine (Pinus densiflora
Siebold & Zuccarini), ginkgo (Ginkgo biloba Linnaeus), and
Japanese zelkova (Zelkova serrata [Thunberg] Makino) [30].
The LiDAR used was the same as in the third dataset, and this
data was also taken while walking. In this area, an understory
and shrubs existed on the ground.

B. Dataset for Branch and Leaf Segmentation

In this section, the dataset used for the branch and leaf sepa-
ration is explained. To evaluate the performance of the branch
and leaf separation, another dataset with branch/leaf label infor-
mation (other than the LiDAR data mentioned in the previous
section) was used. The accuracy assessment was performed with
the dataset to confirm the feasibility, and the method was adopted
for the tree segmentation result with the dataset, as shown in the
last section. The first dataset used was the LeWos dataset [31],
[32]. This dataset was derived from the tress in the eastern part of
Cameroon and includes 15 tropical species, such as Terminalia

Fig. 1. Normalization of the height. The input point cloud is shown in panel.
(a) The normalization process transforms the input point cloud into the one in
panel. (b) The nearest ground point was found to each nonground points. Then,
by subtracting the z-value of the nearest ground, the height information was
normalized.

superba Engl. et Diels and Triplochiton scleroxylon K. Schum.
For details, please refer to [31]. This dataset contains 61 LiDAR
data points from a single tree, without color information. The
label information of the branch or leaf was provided for each
point. For the accuracy assessment of the leaf/branch separation
and to compare with prior studies, the dataset was used in this
study, not for tree segmentation (into single wood).

The second dataset we used was the LiDAR data of the
American tulip tree (Liriodendron tulipifera), as measured using
a terrestrial LiDAR system (LPM-25HA, RIEGL, Australia).
The height and diameter at breast height were 30 and 1.5 m,
respectively. The measurements were performed in February and
June 2005, corresponding to the deciduous and leafy seasons,
respectively. The two 3-D point clouds measured during the dif-
ferent seasons were registered so that the points corresponding
to the leaf and branches were distinguished by differentiating
between the two LiDAR data with and without leaves. These
data were also used in [21].

C. Tree Detection

The first step in tree segmentation was to extract the ground.
The input point cloud was voxelized at intervals of 5 cm.
In this process, each xyz value of the points was rounded off to
the nearest integer. Next, a simple morphological filter [33] was
used to exclude the ground. Initially, the input point clouds were
converted into a regularly spaced grid in the xy coordinate plane
as if the input point cloud was divided from the top view, so as
to calculate the minimum z-value in each grid. Morphological
opening operations were then conducted to detect the outliers
and objects. The missing value, which we called the NAN value,
was interpolated using an image inpainting method [34]. The
ground was identified based on height information, considering
the thresholds of the tree height and terrain slope. The thresholds
were set at approximately 1.0 and 0.5 m, respectively. The grid
resolution was set at 1.0 m. The input point cloud was separated
into ground and nonground points.

After the ground extraction, the height of each point was
normalized based on the ground information, as shown in Fig. 1.
In this step, the baseline of each tree was normalized. For this
purpose, the following process was performed: each nonground
point was selected, and the nearest point belonging to the ground
was searched. The difference between the z-value of the point of
interest and the nearest ground point represented the tree height.
The baseline of each tree was normalized by subtracting the
z-value of the ground point. By repeating this process for all
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nonground points, the trees similar to those on the flat ground
were obtained, as shown in Fig. 1(b).

Then, the region whose height ranged from 1.0 to 2.0 m
was selected, the points were clustered based on the Euclidian
distance, and the regions were expanded upward. This process
was performed according to previous studies [13], [15]. In this
process, the points whose distances were less than 1 m were
assigned to the same cluster. By repeating this process, clusters
corresponding to tree trunks were created. In this process, the
tree trunk region appeared to grow upward to segment each tree.

Moreover, postprocessing proceeded as shown in the follow-
ing. After the tree segmentation process as previously men-
tioned, the watershed algorithm was applied to a certain region.
If there were excessive understories or noise around the tree
trunks, a collection of the tree trunks could be recognized
as a single cluster, leading to a failure to detect the trees.
Accordingly, the condition for which this postprocessing of
the watershed algorithm was performed was as follows. Each
segmented tree in the last step was selected, and the length of the
crown diameter was calculated. Then, if the length was greater
than the threshold, such as 30 m, the watershed algorithm was
performed. This postprocessing was performed only when the
length corresponding to the crown diameter was comparatively
large. In the postprocessing, first, the 3-D point cloud was
projected onto a 2-D space, such as in a depth image. Next, the
input image was segmented based on the local minimum. The
watershed algorithm was used for the tree crown segmentation.
For comparison with our method, the watershed method was
used to segment the trees. Notably, our method is a hybrid of
tree detection and watershed algorithms. Here, we attempt to
compare the hybrid method with the watershed algorithm itself.

D. Estimation of Tree Trunk Diameter

After tree segmentation, the tree trunk diameter estimation
was performed for the segmented trees.

This experiment was conducted with datasets 1–3, as men-
tioned in Section II-A. Each tree trunk diameter was measured
using a tree caliper. For the estimation, the points of the tree
trunks whose heights were between 0.8 and 1.6 m (meaning
the average height of the points was approximately 1.2 m) were
collected, and the points were projected onto a 2-D space to
perform ellipse fitting. A total of 237 trees were randomly
selected for the tree trunk diameter estimation. Samples with
fewer points were not chosen.

As a preprocessing step prior to the fitting, the input point
clouds corresponding to the tree trunks were clustered based on
the Euclidian distance to create a group of close points. The
neighboring points whose Euclidian distances were less than 3
cm were clustered into the same group. Then, ellipse fitting was
performed for the largest group. The minor axis of the ellipse
after fitting was used to estimate the tree trunk diameter. After
the calculation, the estimated and actual values of the tree trunk
diameter were compared for evaluation.

E. Classification of Leaf and Branch Points in the LiDAR
Point Clouds

As a preprocessing step, the LiDAR point clouds of the tree
were downsampled to a resolution of 1 cm. After preprocessing,

Fig. 2. Workflow of the leave/branch separation with FPFH.

a fast point feature histogram (FPFH) [35] was calculated for
each point. The 3-D feature called the FPFH is known for its
effectiveness in object detection and classification. It can be
defined as the location of the point of interest and the locations of
the neighboring points and is used to describe the local geometry.
The FPFHs of 33 dimensions were input to a classifier to return
the class of the point. The number of samples was equal to the
number of points after the downsampling. The data were divided
into training and test datasets at a ratio of 8:2. For classification,
a discrimination analysis was performed. Other classifiers such
as support vector machines were also tested, but the performance
of the discrimination analysis was better. The workflow of this
study is illustrated in Fig. 2.

For the parameter setting of the classifier, the training data
were divided at a ratio of 7:1, and the greater portion was used for
training. A smaller portion was used for validation, i.e., to check
the classification accuracy. The training and validation datasets
were combined after optimizing the training parameters. The
classification accuracy was then calculated using the test dataset.

An identical classifier was applied to the second dataset, as
explained in the previous section; this classifier was significantly
different from the training data. For the tulip tree in dataset 2, the
FPFH feature was calculated, and classification was performed
using the training dataset called dataset 1. The classification
accuracy was then examined.

In addition to the supervised learning method for the tulip
tree, unsupervised learning was performed for the classification
of the leaves and branches. The FPFH features were extracted
as discussed in the previous section. The k-means algorithm
was then used to separate them into two clusters. As the target
classes were leaves and branches, the class number was two.
The distance used was the squared Euclidean distance. The
MATLAB 2020b software (MathWorks, USA) was used for the
analysis.

F. Separation of Each Branch With the Branching Points

Next, each branch was segmented from the point cloud data of
the tree. In this step, the leaves and branches in the 3-D LiDAR
point cloud were already separated, as explained in the previous
section. The branch segmentation method is shown in Fig. 3(a).
After the voxelization of the input point cloud, as shown in
Fig. 3(a), thinning of the branches was performed using the
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Fig. 3. Workflow for the branch segmentation.

Fig. 4. Tree segmentation result. Each tree was illustrated by different colors
as shown in panel. (a) Panel (b) shows the close-up view of the segmentation
result under the canopy.

method proposed by Lee et al. [36] and Kerschnitzki et al. [37],
as shown in Fig. 3(b). Then, the number of voxels at each level in
the vertical direction was calculated after thinning. Forty percent
of the maximum number was set as a threshold, and the number
of voxels at each level was scanned from top to bottom. When the
number of voxels was lower than the threshold, this procedure
was terminated, and the part above was used for the analysis.
Then, each voxel whose number of neighboring voxels was more
than three was considered as a branching point, as shown in
Fig. 3(c). Finally, the branch point determined in the previous
step was deleted, and each branch was separated by expanding
each region if there were neighboring voxels (region-growing
algorithm). In Fig. 3(d), the branching and end points of the
branch are colored red and cyan, respectively.

After segmenting the branches, the inclination angle of each
branch was calculated using principal component analysis. The
angle with the z-axis was calculated, implying that the inclina-
tion angle of the branch parallel to the ground was 90°. The
centroid of the target tree was calculated, and if the branch was
inclined to the ground from the centroid, the inclination angle
was expected to be between 90° and 180°.

III. RESULTS

A. Tree Segmentation

Fig. 4(a) shows a typical example of the tree segmentation.
Each tree is illustrated by different colors. Fig. 4(b) denotes a

TABLE I
TREE SEGMENTATION RESULT

Fig. 5. Tree segmentation result when the ground is bumpy.

close-up view under the tree canopy. As shown, each tree is
segmented accurately, including the branches. Both high and
low trees can be detected using our method, even when the trees
are planted densely.

Table I presents the validation results for tree segmentation.
Omission and commission refer to the number of cases where
the tree could not be detected and where the object rather than
a tree, such as a part of the tree canopy, was detected as a single
tree. The accuracy varies according to the dataset. Overall, tree
segmentation can be performed accurately.

Tree detection can be performed even when the tree trunk is
not clearly observed, as shown in Fig. 5. Fig. 5(a) represents the
cross section of the tree segmentation result. The tree segmenta-
tion is performed in the densely planted areas; simultaneously,
the ground extraction is also accurately conducted. Fig. 5(a)
and (b) shows that the ground is bumpy, but the ground is suc-
cessfully segmented and colored as brown. Moreover, the trees
whose trunks were not scanned are also successfully detected,
as shown in panel (a).

Conventionally, tree segmentation is performed using a wa-
tershed algorithm, where the input point cloud is converted
into a bird’s eye view. The validation result with the watershed
algorithm with dataset 1 is as follows. The total number of trees
correctly segmented is 161 out of 181 trees, and 56 objects (such
as parts of tree crowns) are incorrectly detected as trees. Because
the LiDAR data in this study were obtained by TLS, the points
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Fig. 6. Result of the ellipse fitting for tree trunk diameter estimation. Panels
(a) and (b) show the result without and with preprocessing prior to the fitting (a
clustering based on the Euclidian distance).

Fig. 7. Result of the leaf and branch classification. Panels (a) and (c) represent
the input point cloud. Panels (b) and (d) show the results of the automatic
classification. The leaf and branch points are shown in green and brown,
respectively.

on the treetops are difficult to scan; accordingly, some trees are
detected as a single tree, owing to the local maximum tree height
of the neighboring trees.

B. Estimation of Tree Trunk Diameter

The mean absolute error of the tree diameter estimation via
ellipse fitting is 2.4 cm (N = 237). Other metrics of relative bias,
root-mean-square error (RMSE), and coefficient of variation
of RMSE were –0.026, 0.031, and 8.6%, respectively. Fig. 6
shows the results from the ellipse fitting for the tree trunk
diameter estimation. Panels (a) and (b) show the results without
and with preprocessing prior to fitting, respectively. A small
cluster can be found at the bottom left of panel (a). This is a
noise or a fragment of the understory. A clustering based on the
Euclidian distance was performed to reduce this noise, and only
the main part of the trunk was used for ellipse fitting, as shown in
panel (b).

C. Classification of Leaves and Branches

The overall accuracy of the classification into leaves and
branches is 94.83%, and a typical example is illustrated in Fig. 7.
Panels (a) and (c) show the point-cloud images of the input trees.
These point clouds are fed into the classifier. Panels (b) and
(d) show the results of the classification, in which the leaves
and branches are illustrated in green and brown, respectively.
The branches inside the canopy are classified accurately, and
consequently, the branch shapes are clearly observed. Table II
presents the confusion matrix of the classification results. The
recall and precision values are 98.14% and 96.03%, respectively,
when the leaf is considered as “positive.” Conversely, when the

TABLE II
EVALUATION METRICS OF THE LEAF AND BRANCH CLASSIFICATION

The recall and precision were calculated
when the leaf and branch were considered
as “positive” data.

Fig. 8. Result of the classification of leaves and branches of tulip tree
(Liriodendron tulipifera) in dataset 2 when the classifier was trained with
dataset 1.

TABLE III
EVALUATION METRICS OF THE LEAF AND BRANCH CLASSIFICATION FOR THE

TULIP TREE IMAGE WITH SUPERVISED AND UNSUPERVISED METHODS

The recall and precision were calculated when the leaf and branch were
considered as “positive” data.

branch is considered as “positive,” the recall and precision values
are 71.79% and 84.76%, respectively.

Fig. 8 represents the result of the classification of leaves and
branches of the tulip tree (Liriodendron tulipifera) in dataset 2.
Panel (a) shows the results when the classifier is trained using
different types of datasets. This result is listed in Table II under
the column titled “Supervised.” Panel (b) shows the results with
the FPFH feature and k-means algorithm. This is denoted as
“Unsupervised” in Table III. Panel (c) shows the separation
of leaves and branches after tree segmentation, as shown in
Section III-A. The tree segmentation and leaf/branch separation
can be simultaneously performed. In computer memory, after
each tree is divided, the leaf/branch separation is automatically
completed without human intervention or manual input of the
single tree point clouds, as shown in Fig. 8(c).

D. Branch Segmentation

After the classification of the branch and leaf points as shown
in Section III-A, the branches were segmented as shown in Fig. 9.
Each branch was illustrated randomly using different colors. The
xyz coordinates were extracted from each segmented branch to
calculate the inclination angle. Fig. 10 shows the distribution of
the inclination angles in the trees as illustrated in Fig. 9. The
histograms in Fig. 10(a) and (b) are derived from panels (a) and
(c) in Fig. 9, respectively.
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Fig. 9. Example of the branch segmentation. The leaf was automatically
separated using the classifier trained with dataset 1 and branch segmentation
was performed to the rest of the tree point cloud.

Fig. 10. Distribution of the inclination angle of the leaf branch. This distribu-
tion was calculated after the leaf/branch segmentation.

IV. DISCUSSION

A. Tree Detection

The following list outlines the different types of graphics
published in IEEE journals. They are categorized based on their
construction and use of color/shades of gray.

In general, the tree segmentation can be performed accurately.
As shown in Fig. 9(a), a tree whose tree trunks were not scanned
could be detected. This type of tree cannot be detected with other
widely used algorithms, such as cylinder fitting. Nevertheless,
a tree composed of fewer points, such as the one far from the
laser scanner, could potentially be dismissed and deleted, owing
to the thresholding based on the number of points for noise
reduction. This case would lead to an omission. To alleviate such
omissions, the input point cloud was downsampled by voxelizing
the point clouds. The voxelization of the input point clouds also
contributed to speeding up the tree segmentation. Points with
almost the same xyz value or duplicate points should be removed,
as they do not contribute to accurate tree detection. In addition,
noise such as the artifacts created by people moving through
LiDAR and a part of a canopy located near the ground could be
misrecognized as a tree trunk, leading to a commission. Another
case of commission was observed when the trees were over-
segmented with the watershed algorithm being performed as
the postprocessing. In this study, the segmentation result was
validated with more than 1000 trees, as presented in Table I,
indicating that the method is more reliable than those employed
in previous studies.

Without normalizing the heights of the trees as shown in
Fig. 1, the tree trunk detection and expansion process for the
segmentation would be difficult to perform, as each tree trunk has
a different z-value. Thus, this process enabled the segmentation
of the trees on bumpy ground. Moreover, the accurate ground
extraction contributed to an accurate tree segmentation, because
the height normalization could not be performed without an
accurate ground extraction.

The postprocessing using the watershed algorithm enabled
the segmentation of trees even if high understories existed
around trees of interest; it also allowed for the detection of trees
even when tree trunks could not be observed. In previous stud-
ies, methods using cylinder/circle fitting have been proposed.
Although these methods are simple and easy to understand,
tree trunks whose cross sections do not describe a complete
circle cannot be detected. We compared our method with the
watershed algorithm itself; then, the performance of our method
was significantly higher. The tree point clouds measured on the
ground tend to have stems and the segmentation utilizing the tree
stems was effective; then, the performance was greatly better.
We compared our method with the watershed algorithm, and
confirmed that the performance of our method was significantly
higher. The tree point clouds measured on the ground tend to
have stems, and the segmentation utilizing the tree stems was
effective; thus, the performance was considerably better.

For segmentation in a related topic, the leaf segmentation for
the point cloud was performed using the watershed algorithm
[13], [15]. Although point clouds contain more information than
2-D images in terms of structural and spatial aspects, simplified
approaches such as 2-D projection can sometimes work more
efficiently. In our case, the regions around the tree trunks can be
noisy owing to the presence of scan artifacts, shrubs, or understo-
ries. Postprocessing with the watershed algorithm was therefore
performed, utilizing the tree crown structure. A prior method
[38] used an omnidirectional camera to capture trees, and 3-D re-
construction was performed using a photogrammetric approach
called SfM-MVS. In this method, tree detection was performed
with an omnidirectional image using a deep learning-based ap-
proach of YOLOv2. Although such tree detection from an image
has a high accuracy compared to detection from a point cloud,
it entails a high computational cost for the 3-D reconstruction
of the SfM-MVS. Furthermore, 3-D reconstruction with LiDAR
is more precise than that using a photogrammetric approach. In
future work, we would like to construct a tree detection method
by combining tree detection from an omnidirectional camera
and 3-D reconstruction using LiDAR and SLAM.

A previous method called TreeSeg was reported as a method
of segmenting trees in point clouds [39]. Two key enablers in
this method are stem detection via cylinder fitting and ground
identification using the random sample consensus (RANSAC)
algorithm. However, stem detection is difficult when the stem
point clouds are not clearly scanned, and ground identification is
challenging when the ground is bumpy. In contrast, our method
is fully automated with high accuracy, as tested with many
datasets to demonstrate its feasibility, and can be used even
when the tree stems are not clearly scanned, as shown in Fig. 5.
In addition, trees on bumpy grounds can be successfully seg-
mented. Moreover, tree segmentation to leaf/branch separation
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can be performed accurately using our method, which shows the
effectiveness of our method for forest management.

Many efforts have been made for object detection in 2-D
images using, for example, YOLO and single-shot detector
algorithms. Some algorithms have utilized these object detection
methods and made it possible to detect objects in a point cloud.
For example, PointPillars [40] is famous for providing object
detection from point clouds. Although we tested the algorithm
for our dataset, accurate detection was difficult. It appeared that
the density of the target trees was high and that the canopies
of neighboring trees overlapped in many cases, resulting in
failures of tree detection when using deep learning methods for
object detection. Nevertheless, the methodology based on deep
learning with point clouds was rapidly developed. We would
like to continue testing such deep learning-based methods in
future studies. Because trees in forests are densely planted in
many cases, the annotation required as a preparation for the
training process takes a longer time, because annotation with
high-density point clouds is laborious and time-consuming. This
can be one of the drawbacks of deep learning methods.

As shown in Fig. 5(b), tree segmentation, even in the wild
forest, works. If there are several understories and shrubs around
tree stems, it is generally difficult to segment trees from point
clouds. However, our method performed a watershed algorithm
after tree segmentation as postprocessing, which enabled the
separation of the unsegmented trees. However, we need to
explore the feasibility of our algorithm for considerably wilder
forests, such as in [42], which we included as our future work.

B. Estimation of Tree Trunk Diameter

A few centimeters of fluctuation in the tree trunk diameter
measurement on site was inevitable, as the measurement result
was prone to change depending on the points on which the tree
caliper was touching. Therefore, the tree trunk diameter estima-
tion needed to be performed accurately in this study. Noises and
points of the understory were observed around the tree trunk, and
those points were included in the tree points. When performing
an ellipse fitting to the tree trunk area, the fitting result was
influenced by those points, resulting in the failure of the fitting,
as shown in Fig. 6(a). By reducing the noise with the Euclidian
distance, the ellipse fitting became more accurate, leading to a
highly accurate tree trunk diameter estimation. We validated the
accuracy of tree trunk diameter with many samples (N = 237) to
obtain higher reliability. For the tree trunk diameter estimation,
a method using RANSAC is also available. In this method, a
few points are randomly selected, and the fitting is performed.
If the number of points within the fitting result is more than a
certain point, the fitting is regarded as a correct detection. This
method is particularly useful for finding an object of interest
from a noisy environment including other objects. However, in
this study, RANSAC sampled a few points and performed the
fitting, i.e., all points were not used for the fitting, resulting
in a lower fitting to the model. The cross section of the tree
trunks was not always a complete circle, meaning that the circle
fitting did not work in those cases. Thus, an accurate tree trunk
diameter estimation was performed using the proposed method.
Tree trunk diameter estimation was accurately performed after
tree segmentation and leaf/branch separation. This parameter

Fig. 11. Tree segmentation result with the watershed algorithm. Subfigure (a)
represents the tree segmentation result using the watershed algorithm. Subfigure
(b) shows a typical example of incorrect segmentation where two adjacent trees
are detected as a single tree.

estimation leads to various applications, such as estimating
biomass, forest resources, and biodiversity. Furthermore, by
combining with the leaf/branch segmentation, the curvature of
tree stems can be calculated, which allows for a more precise
evaluation of the forest assets. As this study proposed an effective
method from tree segmentation to tree trunk diameter estimation
and leaf/branch separation, the LiDAR application in forests
should be further encouraged.

C. Separation of Leaf and Branch Points

The leaves in the tree crown, as well as the leaves in the
middle part of the tree as shown in Fig. 7(d), could be accurately
classified. The overall accuracy was higher than that obtained in
a previous study [32]. The FPFH feature was calculated based
on the locations of neighboring points. For example, the points
corresponding to tree trunks tend to be arranged in a plane,
whereas the leaf points tend to exist randomly in the leaf regions.
Thus, the patterns of the points corresponding to the leaf and tree
trunk are significantly different, enabling classification with high
accuracy. We compared our method using FPFH with LeWos
and found that the accuracy of our method is higher than that
of LeWos. The article reported the result of a mean value of
0.91 ± 0.03 with a certain setting. Our method achieved an
accuracy of 94.83% with the same dataset. Furthermore, we
confirmed that the same classifier had a high accuracy with
different datasets of different species and taken by different
LiDAR, as presented in Table III. This suggests that our method
can be used across different datasets, and can be applied to
other point cloud files. When adding more training data to the
classifier, a higher classification can be obtained.

When using supervised learning, if the new data to apply
the classifier to are obtained from different research sites and
different sensors, it becomes much more difficult to utilize the
pretrained classifier. As we can observe from the result presented
in Fig. 8(a), the leaf/branch classification could be performed
accurately even for the point cloud data belonging to a different
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dataset from the training dataset, e.g., even when the classifier
was applied to the tulip tree image completely different from
the training dataset. This result shows the potential of applying
the classifier to a new dataset. As it is significantly tedious to
prepare a training dataset with labels for leaves and branches,
if the classifier can be applied to a new dataset, it can act as a
powerful tool for tree analysis.

Furthermore, the unsupervised learning for the leaf/branch
classification was successful, as shown in Fig. 8(b). Identical
classifiers are generally not applied to different species; thus, it
is significant if unsupervised learning suffices for classification.
The unsupervised method has the potential to be used for the new
data because the leaf/branch classification is conducted based
on the difference in the FPFH features within the target tree.
The accurate tree detection proposed in this study leads to the
retrieval of tree structural parameters such as tree trunk diameter
and leaf area density by using leaf/branch separation. This
method can also be combined with automatic tree segmentation.

Tree segmentation and branch leaf separation are important
links in forest LiDAR point-cloud processing. As for the ef-
fectiveness and efficiency, our algorithm does not require any
tree models to specify prior to the segmentation; moreover, the
process from the tree segmentation to the leaf/branch separation
and tree trunk diameter can be conducted at the same time
without any manual selection. Further, we tested both with
many datasets collected by TLS and mobile LiDAR to verify
the effectiveness of our method. Our method links the two pro-
cesses of tree segmentation and branch/leaf separation with high
accuracy. For example, in many countries, the number of people
managing forests has decreased, as the work of tree monitoring
and management is very tedious and time-consuming. One of
the hardest works is measuring tree properties individually, such
as measuring tree trunk diameter, height, and tree volume. Our
method can automate such work and demonstrate the feasibility
of various types of datasets. This means that our method has a
good potential for replacing such hard work. Furthermore, our
study also shows a method for extracting branches/leaves auto-
matically from the point cloud. This method can also contribute
to forest research, not only for tree management.

D. Branch Segmentation

As shown in Fig. 9, each branch could be segmented ac-
curately because the classification of branches and leaves was
performed accurately. This segmentation was performed based
on the fact that the branching point has multiple neighboring
points (voxels) after thinning. When the branching points are
reduced, the branches become isolated, and each branch can
be segmented using a region-growing algorithm. However, the
performance of this segmentation depends on parameters such
as the voxel size; therefore, the parameters should be optimized
based on the target trees.

As proposed above, this method automated the step from the
classification of the leaf and branch points to the segmentation of
the branches, and several applications can be considered based
on this. For example, the distribution of the branch inclination
angle can be calculated as shown in Fig. 11. After typhoons
and storms, detecting changes in the inclination distribution can
contribute to providing damage estimations for trees. This type

of analysis is difficult to perform using satellite images; hence,
this is an advantage of using LiDAR measurements in real time.
A study on estimating the biomass from the length, tree trunk
diameter, and inclination angle of each branch has also been
reported [41]. In addition to biomass monitoring, information
regarding branches and tree trunks can be used for regular tree
inspections. Our method can be used to reveal the relationships
between tree structures and properties.
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