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Feature Matching and Position Matching Between
Optical and SAR With Local Deep Feature Descriptor

Yun Liao, Yide Di , Hao Zhou, Anran Li, Junhui Liu, Mingyu Lu, and Qing Duan

Abstract—Image matching between the optical and synthetic
aperture radar (SAR) is one of the most fundamental problems
for earth observation. In recent years, many researchers have used
hand-made descriptors with their expertise to find matches be-
tween optical and SAR images. However, due to the large nonlinear
radiation difference between optical images and SAR images, the
image matching becomes very difficult. To deal with the problems,
the article proposes an efficient feature matching and position
matching algorithm (MatchosNet) based on local deep feature
descriptor. First, A new dataset is presented by collecting a large
number of corresponding SAR images and optical images. Then
a deep convolutional network with dense blocks and cross stage
partial networks is designed to generate deep feature descriptors.
Next, the hard L2 loss function and ARCpatch loss function are
designed to improve matching effect. In addition, on the basis of
feature matching, the two-dimensional (2-D) Gaussian function
voting algorithm is designed to further match the position of optical
images and SAR images of different sizes. Finally, a large number
of quantitative experiments show that MatchosNet has a excellent
matching effect in feature matching and position matching. The
code will be released at: https://github.com/LiaoYun0x0/Feature-
Matching-and-Position-Matching-between-Optical-and-SAR.

Index Terms—Deep learning, feature descriptor, feature
matching, image matching, optical images, position matching,
synthetic aperture radar (SAR) images.

I. INTRODUCTION

IN EARTH observations, optical and synthetic aperture radar
(SAR) images can be compared and analyzed to obtain

more valuable information by complementation. In recent years,
image segmentation [1], image classification [2], multimodal
manifold learning [3], and feature matching [4], [5] have been
widely used in jointly processing and analyzing SAR and optical
data. And in the fields of image registration [6], image fusion [7],
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Fig. 1. Example comparing the different size of optical and SAR images.

and change detection [8], feature matching between the SAR
images and optical images becomes very significant. However,
as shown in Fig. 1, due to the imaging mechanism of the optical
and SAR images are very different, it is difficult to match the
feature between the optical images and SAR images. Speckle
noise [9] that affects the performance of the features widely
exists in SAR images and makes them difficult to be recognized.
Also, the distance-dependence along the range axis and the
characteristics of radar signal wavelengths [10] result in the
geometric distortion in the SAR images.

Image matching methods can be divided into three categories:
area-based descriptors matching methods, handcrafted feature
descriptors matching methods, and learning-based feature de-
scriptors matching methods. Area-based methods [11]–[14] can
directly match the images at the pixel level through the ap-
propriate patch similarity measurement. However, appearance
changing, lighting changing, and image distortion can mislead
similarity measurement and match searching. Therefore, these
methods are usually only applicable in the following cases:
scaling, local deformation, and small rotation.

Experts and scholars deduce and design hand-crafted feature
descriptors by existing knowledge widely used in visual appli-
cations. For nonlinear brightness changes, due to the diversity
of gradient statistics around feature points, SIFT feature points
are not reliable in the calculation of the main direction, which
will produce fewer correct matching points and more wrong
matching points, resulting in false registration or registration
failure. In recent decades, many handcrafted feature descriptors
matching methods [15]–[20] have emerged, but due to nonlinear
radiometric difference, it is very difficult to extract sufficient
number of highly repetitive features from optical and SAR
images [21], [22].

Compared to the handcrafted descriptors, the learning-based
feature descriptors can discover more valuable information
hidden in the data. Learning-based feature descriptors also
have better performance and feature description capability.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3802-6620
https://github.com/LiaoYun0x0/Feature-Matching-and-Position-Matching-between-Optical-and-SAR
https://github.com/LiaoYun0x0/Feature-Matching-and-Position-Matching-between-Optical-and-SAR
mailto:676295641@qq.com
mailto:hanks@ynu.edu.cn
mailto:qduan@ynu.edu.cn
mailto:ghostdyd@126.com
mailto:ghostdyd@126.com
mailto:lumingyu@dlmu.edu.cn
mailto:1083480050@qq.com
mailto:1165071324@qq.com


LIAO et al.: FEATURE MATCHING AND POSITION MATCHING BETWEEN OPTICAL AND SAR WITH LOCAL DEEP FEATURE DESCRIPTOR 449

In many kinds of images, feature descriptors based on deep
learning [23]–[30] achieve better results in image patch com-
parison than traditional descriptors. However, the learning-based
feature descriptors face many difficulties too. For example, the
deep learning method usually extracts a large number of features
from the images, which often contain noise and outliers.

The above methods are all devoted to solve the problem of
feature matching for images of the same size, but in many cases
in real life, there are not enough data that fully meet the require-
ments. In this article, we work on solving the feature matching
problems for optical and SAR images of different sizes, and
based on this, the position matching is further implemented.
In order to better solve the problems between optical images
and SAR images, a novel and automatic method—MatchosNet
is proposed. A large number of experiments are conducted
to demonstrate that MatchosNet has very excellent effects in
processing the feature matching and position matching between
the optical and SAR images. Code will be publicly available.

In summary, our main contributions are as follows.
1) A complex deep convolutional neural network consisting

of multiple dense convolutional blocks and cross stage
partial networks is designed to generate deep feature
descriptors. The network achieves feature reuse in the
channel dimension and obtains better performance with
fewer parameters. In addition, a new dataset is proposed by
collecting a large number of corresponding SAR images
and optical images.

2) In the model training, the ARCpatch loss function and
hard L2 loss function are designed. The ARCpatch loss
function uses classification strategy to maximize the dis-
tance between positive and negative samples. The hard
L2 loss function uses the strategy of actively mining the
“hardest samples.” Finally, the two different loss functions
are assigned with the most suitable weights to form an
effective composite loss function.

3) The trained feature descriptors are used to achieve feature
matching between optical images and SAR images. In
addition, a 2-D Gaussian function voting algorithm is
designed to achieve position matching of SAR images and
optical images with different sizes.

The rest of this article is organized as follows: Section II
introduces the related work of Image matching. Section III
describes our method in detail. The qualitative and quantitative
experiments are described in Section IV. The conclusions and
the future directions are drawn in Section V.

II. RELATED WORK

With the development of computer vision technology and
deep learning technology, more and more methods have been
proposed to jointly process and analyze SAR and optical data.
In 2019, Tochon et al. [1] presented a novel methodology for the
hierarchical representation and segmentation of multimodal im-
ages. Hong et al. [2] proposed a general MDL framework to deal
with the pixel-level RS image classification tasks in 2021. The
framework consists of two subnetworks: Ex-Net and Fu-Net and
they were used to extract features and fuse features, respectively.
In 2021, Pournemat et al. [3] proposed a model to simultaneously

learn the underlying low-dimensional manifold in each modality,
and locally align these manifolds across different modalities.
In general, feature matching is the most widely used method
in optical image and SAR image processing and analysis. The
methods can be categorized as area-based descriptors matching
methods, handcrafted feature descriptors matching methods, and
learning-based feature descriptors matching methods.

Area-Based Descriptors Matching Methods: In recent years,
some area-based descriptors have been proposed for image
matching between optical and SAR images. Area-based descrip-
tors are mainly divided into two types: phase congruency (PC)-
based descriptors [31] and local self-similarity (LSS)-based
descriptors [32]. For descriptors based on phase consistency, Ye
et al. [22] proposed the histogram of orientated phase
congruency (HOPC). They extended the phase congruency
model to generate the direction representation, and then
designed the HOPCncc which could well solve the complex
nonlinear radiation difference. Fan et al. [33] proposed the
phase congruency structural descriptor (PCSD). They designed
a Harris (Und-Harris) feature extraction method based on
uniform nonlinear diffusion to reduce the adverse effect of
speckle noise on feature extraction and proposed a PCSD that
was constructed in a grouping manner on PC structure images.
For descriptors based on LSS, Ye et al. [21] developed the dense
local self-similarity (DLSS) in 2017. They proposed DLSS
and defined a similarity measure DLCS by integrating multiple
small LSS descriptors, and then used template matching strategy
for image matching detection. Xiong et al. [12] presented RLSS
for optical-to-SAR image template matching in 2020. The
RLSS described the local shape properties of the images in a
discriminable manner, and it could be integrated into a dense
sampling grid to obtain the DRLSS descriptor, thereby further
improving the discriminability. Gao et al. [34] introduced
a novel discrete cosine transform-based feature (DCTF)
descriptor in 2021. It preserved local structure more compactly
in the frequency domain by utilizing the mathematical properties
of the discrete cosine transform (DCT).

Handcrafted Feature Descriptors Matching Methods: Dong
et al. [17] proposed DSP-SIFT descriptor by integrating pooling
gradient directions of different domain sizes on the basis of SIFT.
Aguilera et al. [35] proposed the edge-oriented histogram (EOH)
that represents the image features by the edge point distribution
between far-infrared and visible images. Nunes et al. [36] devel-
oped the multispectral feature descriptor (MFD). They used the
log-Gabor filter to get the image data at different frequencies
of the electromagnetic spectrum. Fu et al. [37] proposed the
directional response maps (DMs) and the directional response
binary maps (DBMs). They used DMS and DBMS to capture
the common structure and texture attributes of multispectral
images, and combined the corresponding normalized feature
vectors to obtain the histogram of the directional image. Qian
et al. [38] presented the extraction of phase consistency fea-
ture points based on low-contrast nonsuppressed SAR-Harris
multiscale space in 2020. Jiang et al. [39] proposed a simple
yet efficient method termed LAF for both rigid and nonrigid
feature matching of remote sensing images and apply it to the
image registration task in 2021. Handcrafted feature descriptors
have made great contributions to the image matching. However,
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Fig. 2. Procedure of the MatchosNet.

due to the nonlinear radiometric difference, handcrafted feature
descriptors cannot optimally account for all variations in the
appearance of the image and extract sufficient number of highly
repetitive features from optical and SAR images.

Learning-Based Feature Descriptors Matching Methods: Han
et al. [23] proposed a patch matching system called MatchNet
in 2015. The twin network structure and measurement network
adopted by MatchNet are typical practices in matching algo-
rithms, which lay a foundation for the following research work.
Balntas et al. [40] implemented TFeat in 2016. TFeat utilizes
three sets of training samples, which can obtain better descriptors
and faster learning speed. Mishchuk et al. [41] proposed the
HardNet in 2017. The loss function for learning a local image
descriptor maximizes the distance between the closest positive
and closest negative examples in a batch. Du et al. [42] proposed
FM-CycleGAN for enforcing the feature matching consistency
of unsupervised-image-synthesis by introducing feature match-
ing loss to CycleGAN in 2021. Ma et al. [4] introduced a new
method based on image transfer and local feature for multi-
spectral image matching in 2021. A new regularized conditional
generative adversarial network (GAN) was proposed for image
transfer to preprocess the multispectral images.

Although great progress has been made in the field of feature
matching, there is still very large room for improvement. There-
fore, MatchosNet is proposed to further improve the effect of
feature matching and expand the ability of position matching.
Unlike the above research, MatchosNet not only generates deep
convolution descriptors for optical images and SAR images, but
also applies them to the position matching. The method designs
a special network with dense blocks and cross stage partial
networks to generate deep feature descriptors and a compound
loss function composed of the ARCpatch loss function and
hard L2 loss function to get a better match. The experiment
uses the SEN1-2 dataset [43], SARptical [44] dataset, and an
image dataset composed of the corresponding optical images
and SAR images, which are collected by us to objectively show
the superiority of feature matching and position matching of
MatchosNet.

III. METHODOLOGY

A. The Procedure of the Proposed Method

As shown in Fig. 2, the method proposed in this project mainly
consists of five sections. These are image pretreatment, image

patch extraction, deep feature descriptor generation, feature
matching, and position matching.

First, the image is preprocessed to generate the center point
of image patch. Since the optical image is larger than the SAR
image and contains more content, the optical image and SAR
image cannot be directly input into the model for feature detec-
tion. The differential Gaussian operator (DoG) [45] is used to
extract feature points from optical and SAR images, and then
image patches of the same size are extracted with these feature
points as the center points. The DoG function is described as

D o G � Gσ1
−Gσ2

=
1√
2π

(
1

σ1
e−(x

2+y2)/2σ2
1 − 1

σ2
e−(x

2+y2)/2σ2
2

)
(1)

where Gσ1
and Gσ2

represent the Gaussian filtering of two
images, respectively.

During image pretreatment, we detect the DOG value for all
pixel points in the image. If the DOG value of a pixel is the
maximum or minimum value of all adjacent pixel points, it can
be considered as a feature point.

During image patch extraction, we extract the surrounding
area based on the detected feature points of optical images and
SAR images, and reconstruct them into 64× 64 pixel patches.
These reconstructed patches can be used as training data of
deep convolutional neural network to solve the problem of size
difference between optical images and SAR images.

Next, a effective deep convolutional neural network is de-
signed by referring to DenseNet and CSPNet. The deep convo-
lutional neural network can achieve better results and generate
fewer parameters by improving the utilization of feature. The
architecture will be described in Section III-B. A compound loss
function composed of the hard L2 loss function and ARCpatch
loss function is designed to get a better match. The loss function
will be described in Section III-C. The network model is trained
to generate descriptors for the feature points of the optical and
SAR images.

When performing feature matching, the feature points are
matched by the feature descriptors. The horizontal offset, verti-
cal offset, total offset, and the correct number of the matching
points are further calculated by different methods.

Finally, the position matching of SAR images and optical
images is implemented. The 2-D Gaussian function voting algo-
rithm is designed to further match the position of optical images
and SAR images of different sizes. The voting algorithm will
be described in detail in Section III-D. The horizontal offset,
vertical offset, total offset, and the correct number of the position
matching are calculated to analysis results.

B. Architecture of the Proposed Framework

The traditional convolutional neural network [46] simply
connects the upper and lower layers, and the output of the ith
layer is the input of the (i+ 1)th layer. Its function can be defined
as

Xi = Hi (Xi−1) (2)
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Fig. 3. Architecture of the deep neutral network.

where Xi represents the output of the ith layer, Hi() denotes a
composite function of operations such as Batch Normalization,
ReLU, pooling, and convolution.

He et al. [47] proposed ResNet and add a skip-connection
to bypass the nonlinear transformations. The function of the
ResNet can be presented as

Xi = Hi (Xi−1) +Xi−1. (3)

Huang et al. [48] proposed DenseNet and introduced direct
connections from any layer to all subsequent layers. The function
of the DenseNet can be presented as

Xi = Hi ([X0, X1, . . . , Xi−1]) . (4)

Compared with the traditional convolutional network and
ResNet, DenseNet can achieve better results because it makes
more effective use of features, enhances the transmission of
features, reduces the gradient disappearance, and reduces the
number of parameters.

Wang et al. [49] proposed CSPNet and introduced transition
layer to remove computational bottlenecks and strengthen learn-
ing ability of the convolutional network. The function of the
transition layer of the CSPDenseNet can be presented as

xk = wk
∗ [x0,x1, . . . ,xk−1]

xT = w∗
T [x0, ,x1, . . . ,xk]

xU = w∗
U [x0,xT] . (5)

CSPDenseNet retains the advantages of the feature reuse of
DenseNet, while preventing excessive repetitive gradient infor-
mation by truncating the gradient flow.

Because there are so many features and parameters in optical
image and SAR image feature matching, it is very necessary
to design a model with strong learning ability. As shown in
Fig. 3, to make more effective use of features, enhance the
transmission of features and prevent excessive repetitive gra-
dient information, a dense convolutional network is designed.
The deep convolutional neural network consists of three dense
blocks and two transition layers. As shown in Table I, Matchos-
Net accepts the data of size 64× 64× 1 and output the final
result of size 256× 256× 1. Each dense block contains nine
layers, including six convolution layers, and three connection

Fig. 4. Sampling procedure of the Hard L2 method.

layers. Each transition layer contains a convolution layer and an
average pooling layer, receiving data ofh× w × c and exporting
data of h

2 × w
2 × c

4 . The classification layer contains a special
convolution layer whose convolution kernel size is 8×8, which
can convert the data of size 8× 8× 21 into the output data of
size 256× 256× 1. Compared with other methods, this network
has better feature transfer effect and can generate nice deep
convolution descriptors. Detailed experiments and comparison
results are described in Section IV.

C. Model Training and Loss

Next, two loss functions are designed to achieve back propa-
gation from matching to visual descriptors, thus optimizing the
whole deep learning model.

1) The Hard l2 Loss Function: Recently, Tian et al. [24] and
Mishchuk et al. [41] proposed two kinds of excellent loss func-
tions and they both required the minimum matching distance
between each row and each column to the ground truth. We
learned the ideas of their methods and designed the Hard L2
method. As shown in Fig. 4, for each positive sample, 2n-1
negative samples are generated, and L2 distance [24] is used to
select the first M negative samples with the smallest distance
to the ground truth to optimize the model and obtain powerful
feature descriptors.

According to the L2 distance formula, d(oi, sj) =√
2− 2oisj , i = 1 · · ·n, j = 1 · · ·n of size n× n is calcu-

lated, where oi and sj denote the optical descriptors and
SAR descriptors, respectively. sjmin and okmin are the first
M closest nonmatching descriptors to oi and si, respec-
tively, where j �= i and k �= i. Then, the triplets are formed:
(oi, si, sjmin1

), (oi, si, okmin2
), · · · (oi, si, sjminM

) from the de-
scriptors.

The goal is to minimize the distance between the matching
descriptor and the first M closest nonmatching descriptors.
These n distances are fed into the margin loss

Lhardl2 =
1

n

n∑
i=1

m∑
j=1

max (0, (1 + d (oi, sj)

− min (d (oi, Sjm i n) , d (Okmin
, si))) . (6)
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TABLE I
DESCRIPTION ON DEEP CONVOLUTIONAL NETWORKS STAGE

2) The ArcPatch Loss Function: A large part of previous
classification problems used Soft max as the loss layer of the
network. Experiments show that Soft max considers whether
the samples can be correctly classified, while there is a large
optimization space in the problem of expanding the interclass
distance between dissimilar samples and reducing the interclass
distance between similar samples.

Deng et al. [50] proposed the Angular Margin Loss in the
ArcFace. ArcFace is more “compact” in convergence compared
to other losses, which compresses the same class into a tighter
space. It is more dense than other losses, making the features
learned by the network have a more pronounced angular distri-
bution.

ArcFace is a loss function used for face recognition and
it maximizes the classification boundary in the Angle space
and has a very good effect in dealing with the classification
problem. However, ArcFace loss function is not applicable in
this project due to the great difference between face matching
problem and key point feature matching problem. ArcFace
maximizes the classification boundary, but the feature matching
problem that we are dealing with does not have any classification
information.

Therefore, as shown in Fig. 5, a new loss function called
ARCpatch is designed. Different from ArcFace method, AR-
Cpatch does not have a center vector matrix and cannot form an
accurate number of categories. A special classification method is
designed according to the sample matching situation of feature

Fig. 5. ARCpatch loss function schematic.

matching problem. For each batch of samples, 2batchsize-1
categories are generated to calculate the loss, which include a
positive sample matching category and 2batchsize-2 negative
sample matching categories. The loss for the ith sample can be
presented as

− log
efii

efii +
∑n

j=1,j �=i (e
fij + efji)

. (7)

ARCpatch algorithm maximizes the distance between the
positive samples and the negative samples of feature points in
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Fig. 6. Example of position matching.

Fig. 7. Candidate position coordinates.

Fig. 8. Gaussian weighted template and the distribution. (a) Gaussian
weighted template (b) The distribution of Gaussian weights.

angular space and its overall formula can be presented as

LARCpatch =

− 1
n

n∑
i=1

log
es(cos(θii+m))

es(cos(θii+m))+
∑n

j=1,j �=i

(
es(cos θij)+es(cos θji)

)
(8)

where n represents the value of batch size, cos θii represents
the distance between the positive samples, cos θij and cos θji
represent the distance between the negative samples. we add
an additive angular margin penalty m between oi and si to

Fig. 9. Voting strategy and the function. (a) Voting strategy image (b) The
graph of the function.

Fig. 10. The normalization operation on the SAR image.

Algorithm 1:The Learning Algorithm for MatchosNet.

1: for sampled minibatch {imgopti , imgsari }Ni=1 do
2: for i ∈ {1, . . .N} do
3: opti = f(imgopti )

sari = f(imgsari )
4: end for
5: define d(opti, sarj) =

√
2− 2optisar

T
j

6: for i ∈ {1, . . . , n} and j ∈ {1, . . . , n} do
7: cos(θi,j) = opt i sar

T
j /(‖ opti ‖ ∗ ‖ sarj ‖)

8: si,i = s ∗ cos(θii +m)
9: si,ji�=j

= s ∗ cos(θij)
10: dpos

i = d(opti, sari)
11: {dneg

i,k | k = 1, . . . ,m} =
top− mmin{{d(opti, sarj), d(optj, sari)} | i �= j}

12: end for
13: define lArcPatch =

1
n

∑n
i=1 − log(

exp(si,i)
exp(si,i)+

∑n
j=1,i �=j(exp(si,j)+exp(sj,i))

)

14: define
lhardl 2

= 1
n

∑n
i=1

∑m
j=1 max(0, (1 + dposi − dnegi,j ))

15: L = λ1 ∗ lhardl 2
+ λ2 ∗ lArcPatch

16: end for

simultaneously enhance the compactness between the positive
samples and the negative samples.

3) The Compound Loss Function: Both of the two loss func-
tions calculate the error between the training set and the label
through angle, so they can be combined into a composite loss
function to further improve the training effect. As introduced in
Algorithm 1, the two loss functions are assigned by the most
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Fig. 11. The corresponding dataset of optical images and SAR images which were arranged by ourselves. (a) Port, (b) Urban area, (c) River system, (d) Airport,
(e) Island (f) Plain. The images above are SAR images, and the images below are the corresponding optical images.

Fig. 12. Detection of positive and negative sample distribution of the three datasets. (a) SEN1-2 dataset (b) SARptical dataset (c) Our proposed dataset.

Fig. 13. Images are processed by Gaussian noise and salt-and-pepper noise.
(a) Optical (b) Noise-Optical (c) SAR (d) Noise-SAR.

appropriate weights and combined to design the compound loss
function for MatchosNet. The loss function can be presented as

Loss = λ1LHard L2 + λ2LARCpatch . (9)

Through a large number of experiments, it can be found that it
is most effective to increase the distance difference first and then
increase the Angle difference in the training process. So, the loss
function sets λ1 = 1, λ2 = i2

500 , and i represents the number of
epochs. The compound loss function has a more distinct margin
than both ARCpatch-Loss and Hard L2-Loss.

D. Position Matching Algorithm

In real life, due to equipment and technology, SAR images
are very limited. In contrast, optical images are much easier
to obtain. Therefore, it is particularly important to locate the
specific position of the smaller SAR image on the larger optical
image. As shown in Fig. 6, on the basis of feature matching, a
2-D Gaussian function voting algorithm is designed to achieve
position matching between SAR images and optical images.

The matching of each pair of feature points can obtain a
coordinate of the pixel in the upper left corner of a SAR image
on the optical image. As shown in Fig. 7, due to each set of
images has many different feature matching points, it is possible
to obtain multiple candidate position coordinates.

The voting algorithm of position matching is designed by the
2-D Gaussian distribution. Since the random vectors X and Y in
this experiment are not correlated, the function sets ρ = 0. The
2-D Gaussian function can be shown as

f(x, y) =
1

2πσ1σ2
exp

[
−1

2

(
(x− μ1)

2

σ2
1

+
(x− μ2)

2

σ2
2

)]
.

(10)
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Fig. 14. Feature matching graphs generated by different methods. (a) TFeat (b) MatchNet (c) HardNet (d) MatchosNet.

As illustrated in Fig. 8(a), a Gaussian weight template is
designed with the size of 7× 7, and its 3-D distribution is shown
in Fig. 8(b). The function sets μ1 = 3.5, μ2 = 3.5, σ1 = 7, and
σ2 = 7. The weight of each position can be expressed as

Wij = f(i, j) f(i, j)

∼ N (μ1 = 3.5, μ2 = 3.5, σ1 = 7σ2 = 7) . (11)

As shown in Fig. 9(a), each candidate position can assign
certain weights to the pixels of the optical image through the
weight template, and the final voting value can be obtained after
multiple rounds of accumulation of these weights. The formula
can be expressed as follows:

Vij =
∑

wij . (12)

The distribution of the function can be roughly expressed in
Fig. 9(b). Finally, the coordinates of the position is selected
by the maximum V value, which is the final result of position
matching between the SAR image and optical image.

IV. EXPERIMENTS AND ANALYSIS

A. Data Set

The experiment uses three different datasets, which are SEN1-
2 dataset [43], SARptical dataset [44], and the dataset of corre-
sponding optical images and SAR images, which are arranged
by us.

SEN1-2 dataset [43] was proposed by Schmitt et al. in 2017.
SEN1-2 compared 282,384 corresponding image blocks col-
lected from all parts of the globe and all weathers seasons. In
the experiment of this article, the summer and winter parts of
SEN1-2 dataset were used, with 48 158 images and 60 104
images, respectively.

SARptical dataset [44] was proposed by Wang et al. in 2018.
The dataset consists of over 10,000 pairs of corresponding SAR
and optical image patches extracted from TerraSAR-X high
resolution spotlight images and aerial UltraCAM optical images.

To improve the matching effect, the normalization operation
are performed on the SAR image. The normalization operation
can increase the detail of the image, especially the part that is too
bright or too dark. Fig. 10 shows the normalization operation of
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Fig. 15. Acquired number of matched points of each image pair for four
different methods from three different datasets.

the SAR image. (a) and (b) are two optical images from different
angles under the same key point, (c) represents the SAR image
without normalization, and (d) represents the SAR image with
normalization.

As shown in Fig. 11, a large number of corresponding optical
and SAR images of China are collected. Since the acquisition of
SAR images is much more difficult than that of optical images
in real life, the SAR images are randomly cut into 512*512 and
the optical images are cut into 800*800, including the content
of SAR images.

The datasets are divided into six categories: port, urban area,
river system, airport, island, and plains. The entire dataset has a
total of 192 000 images, of which 96 000 are optical images and
96 000 are SAR images. There are six categories in the dataset,
and each category has 16 000 optical images and 16 000 SAR
images, respectively.

In the training set of the above three datasets, the experiment
marked the specific position of the corresponding SAR image
on the optical image (the coordinate of the pixel in the upper
left corner), so as to use deep learning to learn the feature and

position later. In the test set, nothing is done to the position
coordinates.

To justify our proposed dataset, the three datasets are validated
by the L2 distance function. The positive and negative distance
of L2 represents the distribution of positive and negative
samples. In Fig. 12, the horizontal coordinate represents the L2
distance and the vertical coordinate represents the multiplicity
of the average [50]. The higher multiplicity of positive and
negative distance indicates the better distribution of positive and
negative samples of the images. It can be seen that the dataset
collected by us has the same good distribution of positive and
negative samples as the other two publicly available authoritative
datasets.

In addition, a large number of images are randomly selected
from different datasets and processed with Gaussian noise and
salt-and-pepper noise. As shown in Fig. 13, the optical image and
SAR image with the addition of two kinds of noise are obviously
more challenging in feature matching and position matching.

B. Baseline

The effectiveness of MatchosNet is compared with three
effective methods.

1) Mishchuk et al. [41] proposed the HardNet in 2017. The
loss they proposed in this article was better than complex
regularization methods, maximizing the distance between
the closest positive and closest negative examples in a
batch. The HardNet model worked well for both shallow
and deep convolutional network architectures.

2) Balntas et al. [40] implemented TFeat and proposed to
utilize triplets of training samples, together with in-triplet
mining of hard negatives. Experiments showed that this
method obtained excellent results compared to other meth-
ods, with lower complexity of the network structure of the
model and without the typical computational overhead as-
sociated with mining negation. The authors also examined
different loss functions associated with triplets and they
found that Margin ranking loss worked best. Therefore, we
used Margin ranking loss as the loss function of the TFeat
in this article, which made the comparative experiments
more objective and reasonable.

3) MatchNet was suggested by Han et al. [23]. A new ap-
proach using deep network architecture based on patch
matching was proposed to significantly improve the re-
sults, using fewer descriptors than other methods. It had
been experimentally proven that MatchNet was highly
competitive compared to other methods of the same type.
According to the authors of this article, MatchNet worked
best when it did not use a full connection layer. Therefore,
we used MatchNet without full connection layer in the
comparison experiment to make the comparative experi-
ment objective and fair.

4) Lowe [51] proposed SIFT. It was a traditional algorithm
that did not rely on deep learning and could be used
to achieve reliable matching between different views of
objects or scenes. Sift algorithm sought the extreme point
in the spatial scale, and extracted its location, scale and
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Fig. 16. ((False-match-rate)True-match-rate) curves and ((1-Precision) True-match-rate) curves with different methods. (a) No Noise FMR-TMR (b) With Noise
FMR-TMR (c) No Noise (1-P)-TMR (d) With Noise (1-P)-TMR.

Fig. 17. Position matching graph of MatchosNet in different datasets. (a) SEN1-2 SUMMER dataset (b) SEN1-2 WINTER dataset (c) Our proposed dataset.
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TABLE II
AVERAGE ERROR XRMSE,YRMSE, AND XYRMSE OF MATCHED POINTS FOR

FOUR DIFFERENT METHODS

TABLE III
POSITION FEATURE MATCHING RESULT IN DIFFERENT DATASETS

TABLE IV
PERFORMANCE OF THE DIFFERENT NETWORKS

TABLE V
COMPUTATIONAL COMPLEXITY AND TIME PERFORMANCE FOR FOUR

DIFFERENT METHODS IN THE TESTING PROCESS

other information. It provided a great reference value for
the following methods.

C. Contrast Feature Matching Tests of Different Methods

1) The Feature Matching Test: In the feature matching test,
the experiment evaluates the performance of MatchosNet, Hard-
Net, TFeat, and MatchNet trained with different training datasets
(SEN1-2 SUMMER dataset, SEN1-2 WINTER dataset and our
proposed dataset) to judge whether the two patches correspond
to each other. These four methods use the same dataset and are
trained in the batch of same size on the same server to ensure
the objectivity and fairness of the experiments. In the test of the
experiment, if the distance error of the corresponding matching
points in the optical image and SAR image is less than 2 pixels,
they will be regarded as a pair of correct matching points.

Fig. 14 compares the proposed MatchosNet with the state-of-
the-art methods. The top two sets of images are the results of the
SEN1-2 SUMMER dataset, the middle two sets of images are
the results of the SEN1-2 WINTER dataset, and the bottom two

TABLE VI
IMPACT OF NETWORK AND LOSS FUNCTION ON POSITION MATCHING

sets of images are the results of our proposed dataset. As can be
seen in Fig. 14, the MatchosNet method is able to obtain more
feature matching points on the same dataset compared to the
other three excellent methods, indicating that MatchosNet has a
very strong capability in solving the feature matching problem.

Fig. 15(a)–(c), respectively, show the number of correctly
matched feature points of different methods in the three dif-
ferent datasets. It can be seen that, under the same conditions,
MatchosNet can obtain more correctly matched feature points
than the other three excellent methods, which further proves
that MatchosNet has a strong ability of learning and matching
features.

Then, we calculate the final registration results of SAR-optics
using a variety of datasets including Gaussian noise and salt-and-
pepper noise. By calculating the matching results of Optical-
Patch and SAR-Patch, the experiment uses a criterion [52],
[53] calculated based on the number of true and false matches
obtained per image pair. Assume two detected key points, A,
and B, with their descriptors, DA, and DB, are selected from
reference and target images, respectively. If the distance between
descriptors DA and DB is below a threshold T and simultane-
ously, A and B are correct matches verified by ground-truth
(Correspondence regions data), A and B will be the true match.
If A and B are not the correct matches confirmed by ground
truth, but the distance between the descriptors DA and DB is
less than T, then A and B are false matches, and vice versa.

True-match-rate, False-match-rate, and 1-precision factors
are declared as follows:

True-match-rate =
Number of trueMatch

Number of Correspondence
(13)

False-match-rate =
Number of falseMatch

Number of non correspondence
(14)

1− precision

=
Number of falseMatch

Number of trueMatch + Number of falseMatch
. (15)

The threshold T is varied to obtain the curves. A perfect
descriptor would give a recall equal to 1 for any precision [52],
[53]. In another word, both the curve [(1-Precision) True-
match-rate] and the curve [(False-match-rate)True-match-rate]
are above and left, the efficiency of its algorithm is higher. As
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shown in Fig. 16, (a) is the [(False-match-rate) True-match-
rate] curve generated by the dataset without added noise;
(b) is the [(False-match-rate)True-match-rate] curve generated
by the dataset with Gaussian noise and salt-and-pepper noise;
(c) is the [(1-Precision) True-match-rate] curve generated by
the dataset without added noise; (d) is the [(1-Precision) True-
match-rate] curve generated by the dataset with Gaussian noise
and salt-and-pepper noise. The MatchosNet method performed
best on both measures regardless of the dataset and regardless
of whether noise was added, which proved the superiority of the
MatchosNet method.

2) Distance Error Test of Feature Matching: To prove the ac-
curacy of the matching points, the distance error of the matching
feature points are detected. The experiment uses Xrmse for error
in horizontal distance, Yrmse for error in vertical distance, and
XYrmse for error in distance on the image. The units of all the
error measurements are pixels. The functions of Xrmse,Yrmse,
and XYrmse are calculated as follows:

xr m s e =

√
1

N

∑
i

(x1
i − x2

i )
2 (16)

yr m s e =

√
1

N

∑
i

(y1i − y2i )
2 (17)

xyr m s e =

√
1

N

∑
i

(
(x1

i − x2
i )

2
+ (y1i − y2i )

2
)

(18)

where (x1
i , y

1
i ) denotes the coordinates of the matching points

in the SAR image, (x2
i , y

2
i ) indicates the coordinates of the

matching point in the optical image. N denotes the total number
of matched points.

Table II shows the average error Xrmse, Yrmse, and XYrmse
of the different methods. MatchosNet has the lowest average
error XYrmse in the three datasets and its Xrmse and Yrmse are
also very excellent. It indicates that MatchosNet has very high
precision of feature matching points and strong feature matching
ability.

D. Position Matching Tests of MatchosNet

Fig. 17 shows the implementation of position matching be-
tween SAR images and optical images made by MatchosNet.
It can be seen that MatchosNet can achieve an accurate posi-
tion matching of SAR image in optical image under different
datasets. The experiment uses the same key point extraction
method to extract features from MatchosNet, MatchNet, TFeat,
and HardNet, and then uses the position matching algorithm pre-
sented in this article to conduct position matching test. Table III
shows the position feature matching result in different datasets.
We extracted a total of 850 optical and SAR images from
SEN1-2 SUMMER Dataset, SEN1-2 WINTER Dataset and our
proposed dataset and calculated their matching coordinates in
the upper left corner. In the position matching between SAR
image and optical image, when the distance error of image
position matching is less than 5.0 pixels, it is regarded as a pair
of correct matching images.

Fig. 18. Computational complexity and time performance of the testing pro-
cess.

Fig. 19. Impact of network on feature matching.

Fig. 20. Impact of loss function on feature matching.

As can be seen from Table III, compared with other methods,
MatchosNet matches the most images in the correct position
and also has the least XYrmse, Xrmse, and Yrmse. These
experimental results are sufficient to prove that MatchosNet’s
position matching capability is very competitive and has great
practical value.

E. Classification Benchmark Test

In the test dataset, the optical and SAR images are completely
scrambled. Through the classification experiment of this step, it
can be proved that MatchosNet has the ability of one-to-one
correspondence between optical images and SAR images.

The metrics of area under curve (AUC) and fpr80 (false
positive rate at point of 0.80 true positive recall) are reported
in the Table IV. The AUC ideal value is 1. The larger the AUC
is, the better the network performe. For the FPR80, the smaller
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Fig. 21. Angle distributions of all positive pairs and random negative pairs ( 0.5 M) from SEN1-2 dataset. Orange area indicates positive pairs while blue indicates
negative pairs. All angles are represented in degree. (a) LARCpatch (b) Lhardl2 (c) LARCpatch + Lhardl2.

it is, the better the network performe. The FPR80’s ideal value is
0. The Table IV shows the performance of the different networks
trained from SEN1-2 SUMMER dataset and SARptical dataset.
MatchosNet has the highest AUC value and the lowest FPR80
value in both datasets. It can prove that MatchosNet is very
competitive in terms of classification capability.

F. Evaluation of Computational Complexity and Time
Performance

As shown in in Algorithm 1 in Section III-C, the pseudocode
of MatchosNet in the training process is showed. It can be
concluded that the computational complexity of MatchosNet in
the training process is o(n2). In the testing process, as shown
in Table V and Fig. 18, MatchosNet is compared in detail with
several other comparison algorithms.

Obviously, the computational complexity and inference time
consume of MatchosNet are minimal, and the number of pa-
rameters is very small. Although TFeat has fewer parameters
than MatchosNet, it has the highest computational complexity
and inference time consume. Through the experiment, it can be
obviously found that the computational complexity and time
performance of MatchosNet algorithm is far better than the
comparison algorithm.

G. Ablation Studies and Analysis

Ablation studies are conducted to evaluate the effect of the
network and loss function. The results for the feature matching
with different networks are shown in Fig. 19, MatchosNet is
compared with the model without CSPNet and DenseNet. The
results for the feature matching with different loss functions
are shown in Fig. 20, MatchosNet is compared with the model
without ARCpatch loss and the model with only cross entropy
loss. It is clear that MatchosNet is able to obtain more feature
matches than the other methods when they are tested with
the same dataset under the same conditions. As illustrated in
Fig. 21, the distributions of all positive pairs and random negative
pairs are tested by ablating partial loss function. Obviously,
the compound loss function has a more distinct margin than
ARCpatch-Loss and hard l2-Loss.

Table VI shows the results of position matching for Matchos-
Net compared to the other methods. It is obvious that Matchos-
Net has the lowest Xrmse, Yrmse, and XYrmse and has more
correct images.

V. CONCLUSION

In this article, a new deep learning method—MatchosNet is
designed to implement the feature matching between optical
images and SAR images with size differences, and further im-
plemented the position matching of SAR images on the optical
images. A new dataset is proposed by collecting a large number
of corresponding SAR images and optical images. Then, we
created samples of training patches for optical and SAR images
and designed a special network with dense blocks and cross
stage partial networks to generate deep feature descriptors. In
addition, a compound loss function composed of the hard L2
loss function and ARCpatch loss function is designed. Finally,
a 2-D Gaussian function voting algorithm is designed to match
the position of the SAR images and optical images.

In the experiment, we first collected a large number of SAR
images and optical images of China, and put forward a dataset
of corresponding SAR images and optical images. The collated
dataset was compared with the SEN1-2 dataset and the SARpit-
cal dataset. It had been shown that the proposed dataset was
reasonable and useful. The MatchosNet was compared with
several other excellent methods on different datasets, and the
experimental results showed that the feature matching effect
of MatchosNet was obviously better than other methods. In
addition, MatchosNet was also compared with other methods
in the test of computational complexity and time performance,
which proved that MatchosNet had excellent computational
complexity and time performance.

In the future, we will further explore better networks and
loss functions by mathematical research in the field of feature
matching, so as to design better feature matching methods and
make more further applications.
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