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Abstract—Airborne laser scanning point cloud semantic label-
ing, which aims to identify the category of each point, plays a
significant role in many applications, such as forest observing,
powerline extraction, etc. Under the guidance of deep learning tech-
nology, the interpretation thought of point clouds has also greatly
changed. However, owing to the irregular and unordered natures
of point clouds, it is relatively difficult for classification model to
distinguish some objects with similar geometry by single-modal
data only. Fortunately, additional gain information, e.g., color
spectrum which can be complementary to geometric information,
is able to effectively promote the classification effect. Therefore, the
design of fusion strategy is a critical part in model construction. In
this article, aiming to capture more abstract semantic information
for color spectrum data, we elaborate a color spectrum fusion
(CSF) module. It can be flexibly integrated into a classification
pipeline with just negligible parameters. Then, we expand data
fusion thoughts for point clouds and color spectrum and investigate
three possible fusion strategies. Accordingly, we develop three ar-
chitectures to construct CSF-Nets. Ultimately, by taking a weighted
cross entropy loss, we can train our CSF-Nets in an end-to-end
manner. Experiments on two extensively used datasets: Vaihingen
3D and LASDU show that the presented three fusion approaches
all can improve the performance, while the earlier fusion strategy
performs the best. Besides, compared with other well-performed
methods, CSF-Net is still able to achieve satisfactory performance
on overall accuracy and mF1-score indicator. This also validates
the effectiveness of our multimodal fusion network.

Index Terms—Airborne laser scanning (ALS) point cloud, color
spectrum information, deep learning, multimodal fusion, semantic
labeling.
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I. INTRODUCTION

IN THE past few decades, great progress has been achieved
in the aspect of sensor technology, making it easier to ac-

cess remote sensing data, like hyperspectral image [1], [2] and
synthetic aperture radar image [3], [4]. In particular, with the
increasing maturity of light detection and ranging (LiDAR)
sensor technology, 3-D data have gradually attracted more and
more attention, especially for airborne laser scanning (ALS)
point cloud data which have been broadly applied in daily
life and production, such as powerline extraction [5]–[7], city
reconstruction [8]–[10], vegetation detection [11]–[13], and for-
est observing [14]–[16]. This prosperity also brings a growing
requirement of automatic interpretation for point cloud data. It
deeply fascinates a considerable number of scholars and experts
to actively involve themselves in this study as well.

Point cloud semantic labeling, also referred to as point cloud
classification, is intended to distinguish the category of each
point, according to the semantic information of the scene. In
recent years, deep learning technology significantly promotes
the rapid development of 2-D remote sensing image interpreta-
tion [17], [18] due to its powerful capability of feature extraction
and feature expression. Meanwhile, the thrive of it also gives
rise to a substantial shift for point cloud data processing. Many
traditional methods, such as support vector machine [19] and
Bayesian discriminant classifiers [20], are gradually replaced by
deep learning based methods with more superior performance,
including PointNet [21], PointNet++ [22], PointConv [23], etc.
The design thought has also been shifting from artificial fea-
ture extraction to deep network architecture construction. Com-
monly, ALS point clouds contain rich geometric information
and are able to express a more detailed structural character-
istic of different objects in complex scenes, compared to 2-D
image data. Nevertheless, due to the irregular and unordered
properties of ALS point clouds, deep learning networks just for
single-modal data still face great challenges in large scene point
cloud semantic labeling task. From Fig. 1, we can find that there
occurs serious misclassification phenomenon in the joint part of
roof and tree for the performance achieved only by point cloud
data. Because the height of these two categories are relatively
close and both of them appear similar in geometric structure
(a tip-like shape), it is relatively difficult for classification model
to identify them. Fortunately, several recent studies [24]–[28]
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Fig. 1. Visualization results obtained by (b) single-modal data and (c) multimodal data, respectively. We can see that it is easier to distinguish roof and tree by
the aid of color spectrum, compared to point cloud only. And the qualitative results obtained by point cloud and color spectrum data (c) are also obviously better
than that of point cloud (b). Best viewed in color. (a) Color spectrum information. (b) Point cloud data. (c) Point cloud and color spectrum.

have convincingly implied that fusing information of other
modal data is able to effectively boost the classification effect.
Although roof and tree are about the same height, the colors of
the two categories are quite different (the roof exhibits brown,
while the tree presents red.). As shown in Fig. 1(c), in addition to
the geometric information, color information is also introduced
by fusing color spectrum data, which expands the discrimination
of different objects. The visualization results have been signif-
icantly promoted. Therefore, the design of fusion strategy for
point cloud and color spectrum data is an extremely critical part
in neural network construction procedure.

In general, existing approaches for the fusion processing
of 3-D point clouds and their color spectrum can be roughly
divided into two types. The first one is projection fusion method
[29]–[32]. It first projects 3-D point cloud data to 2-D space
and then establishes the corresponding relationship between
projection point cloud data and color spectrum. After that,
it leverages powerful and effective 2-D convolutional neural
networks (CNNs) to extract key features of fusion data and
output the prediction results. Such a method fully exerts the
effect of the existing technology; however, it cannot be ignored
that the dimensionality reduction process necessarily leads to
the information loss of raw 3-D data. The other is attribute
attachment fusion method [23], [33]–[36]. This kind of practice
finds the RGB color spectrum value of each point, and it takes
the color values as attributes of the point cloud data. Then,
a deep learning based semantic labeling model is carefully
constructed to process the fused multimodal data. Such a method
is relatively straightforward and easy to implement, but simply
attaching colors to point clouds in the input layer of the network

does not fully exploit the specificity and relationship of het-
erogeneous data. For color spectrum data, merely taking them
as attributes of point clouds lacks abstract feature perception
in high-dimensional space. Consequently, there is still much
to do on how to effectively utilize color spectrum data and
how to fuse the information of position modal data and color
modal data.

In this article, to investigate a more feasible and effective
fusion approach and further boost the ALS point cloud semantic
labeling performance, we propose a novel color spectrum fusion
network (CSF-Net). In particular terms, aiming to obtain more
abstract feature description and deeper feature perception for
color spectrum information, a color spectrum fusion (CSF)
branch is elaborated. This module is simple yet effective and
is able to extract deep semantic information. In addition, it can
be flexibly introduced in a symmetric encoder–decoder network
architecture with just negligible extra parameters. Additionally,
on the basis of the CSF module, we widen the fusion thoughts
for different modal data and explore three possible fusion strate-
gies. Accordingly, we develop three network architectures, i.e.,
fusion in encoder [CSF-Net (E)], fusion in decoder [CSF-Net
(D)], and fusion in both encoder and decoder [CSF-Net (ED)].
The difference between previous attribute attachment fusion
strategy and our method is briefly illustrated in Fig. 2. Ulti-
mately, taking the weighted cross entropy (WCE) loss as the
optimization objective, we train the designed CSF-Nets in an
end-to-end way. Extensive experiments on Vaihingen 3D and
LASDU indicate the feasibility and availability of our CSF-Nets.
Furthermore, compared with other well-performed methods, our
proposed approach shows the superiority as well.
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Fig. 2. Comparison between previous attribute attachment fusion method and
the presented CSF-Net. We propose a CSF module to mine the information con-
tained in color spectrum. Additionally, we also explore several fusion strategies
to integrate different modal data. Best viewed in color.

The main contributions of this article are briefly summarized
as follows.

1) This article reveals that it is relatively difficult for the
classification model to distinguish some objects with sim-
ilar geometry by point cloud modality only. However,
additional gain information (e.g., color spectrum) can
supplement this deficiency. Thus, we propose a CSF-Net
framework to better fuse different modal data.

2) To obtain more abstract feature perception for color spec-
trum data, instead of just using low-level information,
we carefully design a CSF module. It can be flexibly
integrated into a classification pipeline with just negli-
gible parameters. And the whole model is also able to be
optimized in an end-to-end fashion.

3) Based on the CSF module, we expand previous fusion
thoughts and explore in detail three possible fusion strate-
gies. Moreover, we further construct three network archi-
tectures, i.e., fusion in encoder [CSF-Net (E)], fusion in
decoder [CSF-Net (D)], and fusion in both encoder and
decoder [CSF-Net (ED)].

4) Experimental results show that all CSF-Nets can ob-
tain competitive performance on two challenging ALS
datasets: Vaihingen 3D and LASDU, especially for CSF-
Net (E) which reaches the highest mF1. More importantly,
our model also achieves excellent effect compared with
various state-of-the-art (SOTA) methods.

The rest of this article is organized as follows. Section II
introduces a brief review of some related researches about the
fusion for point clouds and color spectrum data. In Section III,
we provide a fully detailed description of the proposed CSF-Net.
Section IV shows the experiments we conduct to confirm the
effectiveness of our method. Moreover, the analysis of the exper-
imental results is also presented. Then, we further compare with
other excellent methods in Section V. Ultimately, Section VI
gives a summary of the full thesis and puts forward some
suggestions for future consideration.

II. RELATED WORK

In order to better understand the proposed approach, in
this section, we have a brief review of some recent research
achievements with respect to the fusion of point cloud and color
spectrum. Section II-A describes the projection-based fusion
method which projects LiDAR data into 2-D space to realize the
fusion of different modal data. Furthermore, attribute attachment
fusion method that attaches color spectrum information to 3-D
point clouds as the additional attributes is briefly introduced in
Section II-B.

A. Projection Fusion Method

Generally, point clouds are obtained by a LiDAR system.
They are in 3-D data space, while RGB color information is
commonly stored in the form of 2-D images. Different from other
multimodal fusion methods, such as [27], [28], [37], and [38],
that integrate hyperspectral image and elevation information
without alignment preprocessing, there may not exist obvious
corresponding relationship between points and pixels. Hence,
aiming to align these two types of data, some academics attempt
to utilize projection technique to transfer point cloud data to 2-D
domain. Caltagirone et al. [29] project point clouds onto cam-
era image plane and upsample the obtained projection images.
Then, the authors fuse multimodal information through a fully
convolutional network (FCN) [39] to conduct road extraction
task. FCN with cross fusion pattern reaches the SOTA in KITTI
benchmark [40], [41] at that time. Besides, SqueezeSeg [30]
is a great lightweight and high real-time method. It adopts
spherical projection technique to achieve LiDAR data conver-
sion. Next, proven 2-D CNN technology can be directly applied
to reduced-dimension data and spectrum data, and then the
model can extract critical features from these CNN-friendly data.
Also, a conditional random field (CRF), following the output
of CNN, can further optimize the segmentation results. After
SqueezeSeg achieved outstanding results, Wu et al. [31] did
not stop the steps for exploration and proposed SqueezeSegV2.
It inserts a novel context aggregation module (CAM) between
two FireModules [42] and leverages focal loss [43] to modulate
the attention of the model. After taking several measures, there
exists a significant improvement in the aspect of segmentation
accuracy for SqueezeSegV2, compared to original SqueezeSeg
model. Subsequently, based on SqueezeSeg and SqueezeSegV2,
Krispel et al. [32] elaborate a simple but effective approach,
called FuseSeg. It fully utilizes RGB/LiDAR calibration to
establish the corresponding relationship between RGB spectrum
data and projection data. After that, FuseSeg fuses the high-
dimensional abstract features of the two modal data output by
two independent network branches. Experimental results show
that this method not only reaches a relatively good segmentation
performance but also possesses a fast processing speed.

B. Attribute Attachment Fusion Method

Although projection fusion method is able to appropriately
leverage powerful 2-D CNN, it inevitably leads to the informa-
tion loss of 3-D point cloud data. Meanwhile, with the advent of
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PointNet [21], a pioneering work in 3-D point cloud processing
on the basis of deep learning technology, it has gradually become
a popular practice to apply deep neural network directly to
point clouds. Regarding the fusion of point cloud and spectrum
data, Yousefhussien et al. [33] cleverly extract spectrum features
corresponding to 3-D point clouds from 2-D geo-referenced
optical remote sensing imagery and fuse them in the point
clouds. Then, they extend classical PointNet architecture and
employ a multiscale method to cope with complex fusion data.
Full and reliable experiments verify the superiority and feasi-
bility of this method. Moreover, Wang et al. [34] develop a
graph-based model, dubbed dynamic graph CNN (DGCNN).
It attaches RGB spectrum data to point clouds as the additional
attributes and exploit k-nearest-neighbor (k-NN) graph to model
the relationship between unstructured data. Then, a novel edge
convolution (EdgeConv) operator is presented to learn point
cloud features. Wu et al. [23] also fuse colors and point clouds
directly and propose PointConv. This approach can flexibly
and dramatically learn a convolution kernel through several
multilayer perceptrons (MLPs) to handle the fusion data with a
relatively high computational efficiency. Extensive experiments
conducted by authors demonstrate the effectiveness and superior
performance of these two approaches. In addition, different from
the aforementioned methods, Su et al. [35] present a SParse
LATtice Network which projects both multiview images and
the point clouds into a lattice space and draws support from the
sparse bilateral convolution layer [44], [45] to directly process
fused data. Jaritz et al. [36] introduce a multiview PointNet.
This method first selects several RGB images from critical
2-D perspectives. Next, it aggregates them into point clouds
by using a 2-D–3-D feature lifting network. Then, the authors
leverage a point cloud based pipeline to process the aggregated
features and produce predicted labels. Validated by experiments,
these methods compare favorably against some top-performing
methods in semantic labeling task as well.

Attribute attachment fusion method is relatively simple and
effective; yet, we argue that there is still much room for further
investigation in the fusion of different modal data. Motivated by
this, we propose a novel model for the fusion of point clouds
and color spectrum data and explore the impact of different
fusion strategies on semantic labeling performance. A series
of experiments verify the availability and superiority of the
proposed method.

III. METHODOLOGY

In this section, we introduce the proposed CSF-Net in detail.
Section III-A gives a specific description of the CSF module.
In Section III-B, we expand three possible fusion strategies.
Ultimately, the whole CSF-Net pipeline is expounded in Sec-
tion III-C.

A. Color Spectrum Fusion Module

Aiming to additionally exploit relatively deep semantic infor-
mation of color spectrum data and further enhance the perfor-
mance of point cloud semantic labeling task, we introduce a CSF
module. The structure of the presented CSF module is illustrated

Fig. 3. Structure of the CSF module. It integrates the local information and
global expression of color spectrum data. di and do are the input dimension and
output dimension of CSF module, respectively. Best viewed in color.

in detail in Fig. 3. This module is able to aggregate color
spectrum features from high-dimensional space. Furthermore,
it can be flexibly attached to the whole pipeline with negligible
extra model parameters and the network architecture can still
be optimized in an end-to-end way. The concrete integration
measure for the proposed CSF module will be provided in detail
in the next subsection.

The workflow of the CSF module is as follows. First, CSF
takes the color spectrum information as input. Here, we let
x = {x1, x2, . . . , xk} ⊂ Rdi to represent the color spectrum
data. Then, two consecutive calculation units map x into a
high-dimensional abstract space. The calculation unit consists
of a convolution layer, a batch normalization (BN) layer and a
rectified linear unit (ReLU) layer. We express the result at this
time as f ⊂ Rd, which can be written as

f = T (x) (1)

where T stands for the mapping process for the color spectrum
data. After that, in order to obtain a global expression of auxiliary
color spectrum features, a max pooling operation with a non-
linear activation function Sigmoid is applied to the generated f .
Meanwhile, f propagates along the other branch unmodified and
it is integrated with the global information through an elemen-
twise multiplication or known as Hadamard product. Note that
these values are broadcasted during the forward propagation.
In summary, we can formulate the calculation procedure of the
proposed CSF module as

h = f � σ(M(f)) (2)

where σ and M separately denote Sigmoid function and max
pooling operation.

B. Fusion Strategy

Based on the CSF module, we further explore fusion strate-
gies for point cloud and abstract semantic information of color
spectrum. Previous deep learning based researches commonly
extend additional attributes for point clouds and fuse color
spectrum information into the point clouds at the input layer
of the neural network, as illustrated in Fig. 4(a). The data of
different modal are concatenated together and then fed into a
symmetric encoder–decoder architecture. The details of this
architecture will be presented in Section III-C. This fusion
pattern is relatively uncomplicated and its implementation is
not difficult as well. Whereas, inspired by [46] that broadens the
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Fig. 4. Four fusion patterns of color spectrum information. CSF module is the abbreviation of color spectrum fusion module. All circular icons in this figure with
letter C indicate concatenation. (a) Color information and point cloud are directly fused in the input layer. (b) Color information is first fed into the CSF module
and then fused with the point cloud features in the encoder part. (c) Color information is first fed into the CSF module and then fused with the point cloud features
in the decoder part. (d) Color information is first fed into the CSF module and then fused with the point cloud features in both the encoder part and decoder part.
Best viewed in color. (a) Fusion in the input layer. (b) Fusion in encoder. (c) Fusion in decoder. (d) Fusion in both encoder and decoder.

fusion thinking for digital surface model and high-resolution
remote sensing imagery, we also hope to expand more fusion
strategies, as shown in Fig. 4(b)–(d), to further investigate the
impact of different fusion approaches on point cloud semantic
labeling performance. Here, we name the network exhibited in
Fig. 4(b)–(d) as CSF-Net (E), CSF-Net (D), and CSF-Net (ED),
respectively.

In CSF-Net (E), we fuse color features into the encoder
part. Different from the approach of simple combination in the
model input, the symmetric encoder–decoder network and the
elaborated CSF module separately extract the features of point
clouds and color spectrum data. The way that two branches work
in parallel decouples the coupling of features between point
clouds and color spectrum, making the deep network capture
the critical and superior information of different modal data
more effectively. Particularly, for color spectrum, CSF module
provides more abstract semantic features, instead of low-level
color attributes only. Based on the strategy of CSF-Net (E), we
continue to explore other possible fusion approaches. We fuse
the point cloud features and color spectrum features generated by
CSF module in up-sampling procedure, as described in Fig. 4(c).
Furthermore, combining the aforementioned two approaches,
we also conduct fusion strategy in both the encoder and decoder
parts, which is depicted in Fig. 4(d).

In order to obtain the relatively well-behaved network archi-
tectures, we compare different fusion methods in Section IV. Ex-
perimental results reveal that all CSF-Nets can achieve promis-
ing performance, whereas CSF-Net (E) reaches a more superior
level. The relevant analysis for these models will be discussed
in Section IV-E.

C. Whole CSF-Net Architecture

The whole CSF-Net architecture pipeline is illustrated in
Fig. 5. It can be divided into two parts: encoder and decoder.
Note that, due to the limitation of graphics processing unit (GPU)
memory, the input is just a block of point clouds, and not the
whole scene. Specific division principle will be explicated in
Section IV-B. We set up four down-samplings in encoder, which
can generate more sparse and abstract features. Correspondingly,
we also utilize four up-samplings to restore the original point
clouds. The fusion of color spectrum modal data is at the fusion
point. Fig. 5 only indicates the possible locations where fusion
points are placed in the network. Nevertheless, for a certain
architecture, like CSF-Net (E) or CSF-Net (D), it may not
contain all these fusion points at the same time. Here, for the
purpose of keeping alignment of these two modal data, we also
apply the same sampling, which is synchronized with the point
clouds, to color spectrum data.

In the encoder part, the quantity of points after each down-
sampling operation is set to 2048, 512, 128, and 32, respectively.
We select the sampled points according to efficient farthest
point sampling [22], which iteratively picks the one with the
largest Euclidean distance from the remaining point cloud set.
Then, the sampled points and their features are grouped through
a k-NN algorithm to extract local information. Here, we gradu-
ally enlarge the search radius with the deepening of the neural
network, namely, 2, 4, 8, and 16, on account of the increasingly
sparse data points. Moreover, the number of nearest neighbors is
all set to 32 in the whole pipeline. After that, a three-layer MLP
maps the point cloud features into a high-dimensional space to
obtain the expressions that are more conducive to neural network
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Fig. 5. Overview of the whole CSF-Net architecture. The upper level is the encoder part, while the lower level is the decoder part. Best viewed in color.

perception. With regard to symmetric function, we adopt max
pooling which is akin to [21] and [22].

For the decoder part, we successively leverage a weighted
interpolation method to hierarchically reconstruct the input point
clouds. This algorithm first searches m (m = 3, in our network)
neighbor(s) of each data point in Euclidean space. Then, it
represents the interpolated feature of the up-sampling point as
the inverse Euclidean distance weighted mean of the m point(s).
In the up-sampling stage, a skip connection that integrates the
feature of convolution block and feature propagation at the same
height is employed to thicken features and remedy the informa-
tion lost during the sampling process as well. This technique
has been clearly proved that it can accelerate convergence and
improve the performance in 2-D and 3-D semantic segmentation
tasks [22], [47]–[49]. Considering the serious class imbalance
problem, we attach a WCE objective function to the output
layer of the neural network to minimize the margin between
the prediction values and ground truth labels. WCE loss can be
calculated as

L = − 1

N

N∑

i=1

C∑

j=1

ωj ∗ yj(xi) ∗ logpj(xi) (3)

where N and C denote the total quantity of samples and anno-
tated categories in a point cloud dataset, respectively. ωj stands
for the weight of the jth class. Relatively speaking, the category
with a small number of points is assigned a larger weight value.
In addition, yj(xi) andpj(xi) separately indicate the jth element
of ground truth (that is, one-hot vector) and predicted vector for
the ith sample xi.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to confirm
the effectiveness of our proposed CSF-Nets for point cloud se-
mantic labeling task. Experimental datasets and the correspond-
ing data preprocessing procedure are respectively introduced in
Sections IV-A and IV-B. Then, we present the evaluation metrics

utilized in our experiments in Section IV-C. Training parameters
and other setups are stated in Section IV-D. Finally, we list the
experimental results and provide a careful analysis of them in
Section IV-E.

A. Datasets

The experiments are performed on two extensively used point
cloud datasets, i.e., Vaihingen 3D [50], [51] and LASDU [52],
[53]. A brief introduction about these two datasets are given
below.

1) Vaihingen 3D: Vaihingen 3D1 is a very classical ALS
point cloud dataset. It is provided by International Society for
Photogrammetry and Remote Sensing (ISPRS) and used to
be a benchmark for 3-D Semantic Labeling Challenge. The
point cloud data is collected in a small village of Vaihingen, in
Germany, by the use of a Leica ALS50 system with a 45◦ field
of view. All points are annotated into nine semantic categories,
namely, Powerline, Low vegetation, Impervious surfaces, Car,
Fence/Hedge, Roof, Facade, Shrub, and Tree. The annotated
Vaihingen 3D can be seen in Fig. 6. This dataset has an extremely
unbalanced category distribution (as recorded in Table I), which
makes it quite challenging. In addition, point clouds of Vaihingen
3D are also very sparse in space, merely about 8 points/m2. Ac-
cording to the statistics, there are 753 876 points in the training
scene and 411 722 points in the test scene. Each point totally
contains six attributes, that is, X–Y–Z values in space, intensity,
return number, and number of returns. The acquisition of RGB
color spectrum information will be depicted in Section IV-B.

2) LASDU: LASDU2 is published by Technical University
of Munich (TUM) and Tongji University in 2020. All the point
cloud data are collected from a Leica ALS70 system. The study

1[Online]. Available: https://www2.isprs.org/commissions/comm2/wg4/
benchmark/3d-semantic-labeling/

2[Online]. Available: https://github.com/Yusheng-Xu/LASDU-Semantic-
Labeling-Benchmark

https://www2.isprs.org/commissions/comm2/wg4/benchmark/3d-semantic-labeling/
https://www2.isprs.org/commissions/comm2/wg4/benchmark/3d-semantic-labeling/
https://github.com/Yusheng-Xu/LASDU-Semantic-Labeling-Benchmark
https://github.com/Yusheng-Xu/LASDU-Semantic-Labeling-Benchmark
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Fig. 6. Vaihingen 3D dataset. Left is the training set that is utilized for model training, while right is the test set that is for model evaluation. The label of each
point in Vaihingen 3D has been rendered as the legend shown at the bottom. Best viewed in color.

TABLE I
PROPORTION OF DIFFERENT CATEGORIES IN VAIHINGEN 3D DATASET

TABLE II
PROPORTION OF DIFFERENT CATEGORIES IN LASDU DATASET

region of LASDU is in a valley of Heihe River Basin, in the
Northwest of China, covering an area of about 1.02 km2. This
dataset has been divided into four parts by publisher in advance,
i.e., Sections I–IV. Each respectively consists of 0.77, 0.59, 1.10,
and 0.62 million colored point clouds. These points are divided
into five different categories, including Ground, Building, Tree,
Low vegetation, and Artifact. Each region in LASDU with
manual annotation is exhibited in Fig. 7. Akin to Vaihingen 3D
dataset, there also exists a serious class-imbalanced problem in
LASDU (as shown in Table II), which brings great difficulty
to segmentation algorithm. Besides, the density of these point

clouds is only about 3–4 points/m2. The relatively sparse space
distribution makes the interpretation more challenging. In line
with [52], we train the proposed model on Sections II and III
while validate its performance on Sections I and IV.

B. Data Preprocessing

Vaihingen 3D and LASDU both cover a relatively large ge-
ographical area. Each dataset contains an enormous number of
data points. It is easy to cause CUDA Out Of Memory problem
if we directly send the original point cloud data into the neural
network. As a result, we divide the whole dataset into many
blocks. The division method for the large point cloud scene
is along the X–Y plane while the data points in Z direction in
each block are preserved. With regard to the setting for block
size, our principle is to try to make the number of points in
each block as close as possible. Under this consideration, we
set the width and length of the block in Vaihingen 3D to 30 and
30 m, respectively, while those in LASDU are set to 50 m ×
50 m. Aiming to ensure the size consistency of each sample in
mini-batch processing, we randomly select 4096 points in each
divided block. Here, for the blocks with less than 4096 points,
we adopt a sampling with replacement approach. Otherwise,
random sampling is conducted without replacement.

Point clouds in LASDU dataset includes RGB color spec-
trum information; so we can directly utilize them for fusion
processing. However, for Vaihingen 3D dataset, point clouds
have only position attributes. They do not contain color spectrum
attribute. In order to acquire these important information, we
leverage bilinear interpolation method, which is similar to [33],
to extract the corresponding colors based on the geo-referenced
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Fig. 7. Each region in LASDU dataset is shown separately. Sections II and III are training sets. Sections I and IV are used for test purpose. The label legend
corresponding to each point can be referenced to the bottom of this figure. Best viewed in color.

true orthophoto of Vaihingen. Note that the band of the color in
Vaihingen is near infrared, red (R), and green (G), and not RGB.

C. Evaluation Indicator

In order to quantitatively evaluate the performance of the
proposed method, we employ two widely used indicators, i.e.,
overall accuracy (OA) and mean F1-score (mF1).

OA is a very classic evaluation metric. It can be written as

OA =
Ncorrect

Ntotal
(4)

where Ncorrect and Ntotal, respectively, stand for the quantity of
correctly classified points and the total number of points. Gener-
ally, a relatively large OA value suggests a higher performance
of the network.

With regard to mF1, it reflects the comprehensive perfor-
mance of all semantic categories. Consequently, we first cal-
culate the F1-score for each category. Through the confusion
matrix, we can obtain the value of true positives (TP), false
negatives (FN), and false positives (FP), separately. TP means
the number of correctly classified positive sample points. For
FN, it represents that the number of positive sample points which
are recognized as negatives. Regarding FP, it indicates negative
sample points which are misclassified as positives. Then, Preci-
sion and Recall can also be calculated by the following formula:

Precision =
TP

TP + FP
(5)

and

Recall =
TP

TP + FN
. (6)

After that, theF1-score of each category can be acquired through

F1 = (1 + β) · Precision · Recall
β2 · Precision+Recall

, β = 1. (7)

Ultimately, we average all the F1-scores and have

mF1 =
1

Cm

Cm∑

j=1

F1j (8)

where Cm is the total of annotated categories. Consistent with
OA indicator, a higher mF1 typically indicates that the model is
able to achieve a more superior performance.

D. Training Settings

We leverage PyTorch [54] framework that is an open-source
library for deep learning research to implement the proposed
approach. During the training procedure of our CSF-Nets, the
learning rate is initialized to be 0.001 and it gradually decreases
following a cosine annealing strategy [55]. We feed point cloud
data to the network in a mini-batch fashion and batch size is set
to 8. Totally, we train all models from scratch for 500 epochs on a
single GeForce RTX 2080 Ti GPU. Here, the learnable parameter
initialization method is subject to kaiming uniform [56] which is
suitable for neural networks with ReLU activation function. As
regard to the optimization for weights and biases of the model,
we select the efficient Adam optimizer [57]. Additionally, we
also configure the value of dropout rate to be 0.5, which aims to
prevent neural network overfitting problem.

E. Experimental Results

We first conduct experiments to determine the optimal fusion
strategy for CSF-Nets. The classification results on Vaihingen
3D dataset and LASDU dataset are reported in Tables III and IV,
respectively. Here, the baseline we used in the experiments
is the classical PointNet++ architecture. Figs. 8 and 9 give
the corresponding confusion matrices of the three CSF-Nets
obtained on these two datasets.

It can be seen from Tables III and IV that the introduction
of color spectrum information is conducive to the improvement
of classification performance. And the proposed CSF-Nets can
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TABLE III
FUSION PERFORMANCE ON VAIHINGEN 3D

The first column lists the name of different fusion strategies. The next nine columns present the F1 indicator (%) for each category in Vaihingen
3D. The last two columns give the value of OA (%) and mF1 (%).

TABLE IV
FUSION RESULTS ON LASDU

The first column lists the name of different fusion strategies. The next five columns present the F1 indicator (%) for each
category in LASDU. The last two columns give the value of OA (%) and mF1 (%).

Fig. 8. Confusion matrices generated by CSF-Net (E), CSF-Net (D), and CSF-Net (ED), respectively, on Vaihingen 3D dataset. Best viewed in color. (a) CSF-Net
(E). (b) CSF-Net (D). (c) CSF-Net (ED).

Fig. 9. Confusion matrices generated by CSF-Net (E), CSF-Net (D), and CSF-Net (ED), respectively, on LASDU dataset. Best viewed in color. (a) CSF-Net (E).
(b) CSF-Net (D). (c) CSF-Net (ED).

continue to improve the performance with just about an incre-
ment of 0.1 M parameters. This also fully suggests that the
three extended fusion strategies are all effective, especially for
CSF-Net (E) which achieves the optimal performance indicated
by mF1-score. And there are about an increment of 7.6% and

5.0% in terms of mF1-score, compared with simple attribute
attachment fusion method in the input layer. Furthermore, as
shown in Figs. 8 and 9, we can find that almost all energy of the
confusion matrices are concentrated on the principal diagonal.
Most categories reach an acceptance performance. Additionally,
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TABLE V
COMPARISON RESULTS ON VAIHINGEN 3D

*means that the color spectrum information is used in the input layer. The first column lists the name of different models. The next nine columns
present the F1 indicator (%) for each category in Vaihingen 3D. The last two columns show OA (%) and mF1 (%).

TABLE VI
COMPARISON RESULTS ON LASDU

* means that the color spectrum information is used in the input layer. The first column lists the name of different models. The
next five columns present the F1 indicator (%) for each category in LASDU. The last two columns give the value of OA (%)
and mF1 (%).

the recognition accuracy of Impervious surfaces and Roof in
Vaihingen 3D dataset and Ground and Building in LASDU
dataset is even more than 90%. This reveals the superiority of
our CSF-Nets as well.

Apart from that, we observe that CSF-Net (D) and CSF-Net
(ED) are slightly inferior than CSF-Net (E), about a decline
of one to two points on the value of mF1 on both Vaihingen
3D dataset and LASDU dataset, in spite of the performance
improvement. We think that earlier fusion can make features
propagate to deeper layers of the network. It is relatively ben-
eficial to extract more generic and advanced information for
classification model. However, excessive fusion probably leads
to the redundancy and thereby interferes with the perception
of the model. For instance, the OA metric of CSF-Net (E) and
CSF-Net (D) are on a par with each other, whereas there exists
an obvious degradation for CSF-Net (ED).

V. DISCUSSION

In this section, we further compare our optimal CSF-Net
with other SOTA models on Vaihingen 3D dataset and LASDU
dataset. The quantitative and qualitative results achieved by the
proposed approach are both shown in Sections V-A and V-B,
respectively.

A. Performance Comparison on Vaihingen 3D

Table V lists the comparative experiment results on Vaihingen
3D dataset. From Table V, we can find that our CSF-Net sur-
passes all comparison models on mF1, which is one percentage
point higher than the best-performed method, DANCE-Net [64].
Moreover, for OA indicator, CSF-Net is also competitive, which
is second only to DANCE-Net [64] and KPConv [58]. It is note-
worthy that CSF-Net is able to reach convergence with a faster
speed, compared to the complex models in Table V. For example,
CSF-Net just takes 500 epochs to converge while the number of
epochs is 1000 for DANCE-Net [64]. In addition, the proposed
CSF-Net obtains outstanding performance on the categories that
are very difficult to distinguish, such as Powerline, Fence, and
Shrub.

Fig. 10 shows the visualization performance and the error
map of our CSF-Net. It achieves a very satisfactory effect.
We can observe in Fig. 10 that the proposed model is able
to correctly classify most of the points. And in Fig. 11, our
CSF-Net and PointConv [23] are qualitatively evaluated. We
use red ellipses to mark the parts that our model correctly
predicts while PointConv [23] classifies incorrectly. PointConv
mispredicts some Fence points for Tree and Shrub. Due to the
similar geometric distribution and structure, it is relatively easy
to confuse these categories for classification model. However,
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Fig. 10. Left image presents the visualization effect of our CSF-Net on Vaihingen 3D test set. The right image shows the error map. Best viewed in color.

Fig. 11. Qualitative results on Vaihingen 3D dataset. Best viewed in color.

the proposed CSF-Net which fully utilizes the color informa-
tion can correctly classify almost all of the points with these
challenging categories in this scene.

B. Performance Comparison on LASDU

We further perform comparison experiments on LASDU
dataset. Table VI provides the quantitative results on test scenes,
i.e., Sections I and IV of this dataset. The CSF-Net reaches the
highest F1 on three of the total five categories, that is, Building,
Low vegetation, and Artifact. More specially, the quantity of
points in Artifact category is relatively small. It is not easy
to learn and perceive this category for classification network.
Yet, CSF-Net is still able to get an acceptable effect on Artifact,
which fully shows that our method has advantages in the face of
class-imbalanced problem. In terms of the overall performance,
CSF-Net achieves OA and mF1-score of 87.56% and 78.04%,
respectively, which is higher than all comparison models. This
suggests that our method can adapt different point cloud scenes
and it possesses a relatively better generality.

As for the qualitative performance, we can see from Fig. 12
that the visual effects of the test scenes in LASDU are relatively
better and the boundaries of different objects are relatively clear
as well. Only a few points are scattered in the red area, namely,
the misclassified parts. Furthermore, compared with the best
performed GACNet [66] in Fig. 13, CSF-Net also has good
performance in the area of building boundary and low vege-
tation. GACNet [66] incorrectly predicts some points belonging
to Building and Low vegetation as Artifact, whereas the results
obtained by CSF-Net are more close to the ground truth.

VI. CONCLUSION

In this article, we explore more fusion strategies for ALS point
clouds and color spectrum information on semantic labeling task
and present a CSF-Net. More concretely, we carefully develop
a CSF module as an auxiliary branch to extract deep semantic
information of color spectrum. And, we attach the proposed
CSF module to a classical encoder–decoder architecture. Then,
we expand three possible fusion strategies and accordingly con-
struct three network architectures, i.e., CSF-Net (E), CSF-Net
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Fig. 12. Left image presents the visualization results of our CSF-Net on Sections I and IV of LASDU dataset. The right image shows the error map. Best viewed
in color.

Fig. 13. Qualitative results on LASDU dataset. Best viewed in color.

(D), and CSF-Net (ED). The introduction of CSF module only
brings negligible extra network parameters (about 0.1 M) and all
the three CSF-Nets are still able to be trained in an end-to-end
manner. Finally, we utilize a WCE loss to optimize the learnable
parameters until convergence.

Experiments on two challenging large-scene datasets, Vaihin-
gen 3D and LASDU, demonstrate that the presented three fusion
strategies all can boost the classification performance, especially
for CSF-Net (E) which achieves the highest mF1-score, i.e.,
72.24% and 78.04%, respectively. We think that earlier fusion
for different modal data is relatively conducive to extract more
superior and generic features. Furthermore, compared with other
excellent methods, our CSF-Net is also very competitive. It

is able to perform well on both quantitative and qualitative
experiments and surpasses most of the models, which confirms
the superiority of our CSF-Net. With regard to future work, we
will continue to focus on the fusion of different modal data
and attempt to construct the fusion network by leveraging some
automatic architecture search approaches to further promote the
classification performance.
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