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Abstract—Hyperspectral imagery (HSI) classification, which at-
tempts to assign hyperspectral pixels with proper labels, has drawn
significant attention in various applications. Recently, the graph-
based semisupervised learning (SSL) approaches have shown the
outstanding ability to handle the situation of limited labeled data
for classification task. However, it is hard to construct the pairwise
adjacent graph due to the high dimensionality of hyperspectral
data. Besides, the graph-based SSL models are usually decided
by a single classifier, which fail to effectively learn the complex
structures and intrinsic properties of HSI. To address these prob-
lems, we propose a novel graph-based SSL classification model
for HSI, which is based on random multigraphs construction and
ensemble strategy (RMGE). Specifically, the anchor graph (AG)
is constructed with spatial–spectral features, which integrates the
spatial characteristics extracted by local binary pattern on each se-
lected spectrum, preserving fine structures of local region. In order
to enhance the discriminative capability of the classifier and avoid
the trivial solution, the maximum entropy regularization is added
into adjacent AG model. In addition, to capture the diversity of HSI
data effectively, we design the ensemble framework by employing
multiple AGs to learn HSI features. Experiments conducted on real
hyperspectral datasets indicate that the proposed RMGE shows
better performance than that of state-of-the-art approaches.

Index Terms—Ensemble learning, graph-based semisupervised
learning (SSL), hypersectral imagery, maximum entropy
regularization.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) provides abundant spa-
tial structures and spectral characteristics of the land cover

classes, which is obtained by utilizing hyperspectral sensors
mounted on different platforms [1], [2]. With hundreds of very
narrow spectral bands, HSI usually can be used to distinguish
subtle materials between the observed objects [3], [4]. Therefore,
it has been applied to many fields, such as vegetation investiga-
tion [5], resource exploration [6], environmental monitoring [7],
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and target identification [8]. Among these applications, HSI
classification (HSIC) is considered as one of active studies,
which needs to predict a label for each pixel.

HSIC methods are divided into supervised, semisupervised,
and unsupervised according to nature of available training sam-
ples. Lots of supervised approaches [9]–[12] have been devel-
oped for HSI task. He et al. [13] proposed a supervised model
for HSIC with limited training samples, which extracts features
exiting in and among samples and learns the label distribution.
By doing this, the multiscale feature cutout is presented as the
regularization technique, which relieves the overfitting problem.
Feng et al. [14] combined collaborative learning and attention
mechanism to generate high-quality samples for HSI, where the
features of real multiclass samples assist the sample generation
in the generator, improving the classification performance of
the discriminator. These methods are usually based on pattern
recognition algorithms, e.g., random forest, support vector ma-
chine (SVM) and k-nearest neighbor (kNN) [15]. The more
training data is used to achieve the better classification per-
formance of supervised approaches. However, there are some
challenges to limit the effectiveness of HSIC, including the high
dimensionality of HSI, limited labeled data, and large spatial
variability. Therefore, the semisupervised learning (SSL) tech-
niques have emerged and been more meaningful, where labeled
and unlabeled samples are employed for classification model
training. The SSL-based approaches contain generative models,
co-training models, self-learning models, and graph-based mod-
els. Feng et al. [16] proposed a semisupervised model that is con-
structed by using the intraclass compactness constraint, which
makes full use of both limited labeled and sufficient unlabeled
samples. In the past two decades, the graph-based SSL models
have obtained widespread attention [17], [18], which explore
the pairwise adjacent graph between pixels and capture the data
structure. Nevertheless, these approaches generally suffer from
the high complexity associated with eigenvalue decomposition
on graph Laplacian [19].

In order to handle this issue, the anchor graph (AG)-based
methods [20]–[22] have been proposed, which chose a small
part of points as anchors to encode the adjacent graph. Thus,
the computational complexity is reduced effectively. Wang
et al. [21] developed a scalable AG-based clustering method,
which adds the nonnegative relaxation to AG model. With this,
the clustering results are directly obtained without adopting
k-means. He et al. [22] proposed fast SSL model with AG,
which constructs a naturally sparse and scale invariant AG,
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alleviating the computation burden. He et al. [23] presented
semisupervised model with bipartite graph, which calculates the
labels of the data and anchors simultaneously and adopts the
Woodbury matrix to handle the large matrix inverse. It obtains
better accuracy in the shorter time and requires less storage
spaces. However, these AG-based methods rarely utilize spatial
characteristics within samples, where the discriminability of
models is restricted.

A plenty of spatial–spectral combined algorithms [24]–[28]
have been implemented through using spatial correlations and
spectral similarity. Luo et al. [29] constructed an intraclass
spatial–spectral hypergraph by joining the coordinate relation-
ships and spectral similarity of neighboring pixels. The above-
mentioned approaches extract the feature in spatial usually ac-
cording to the coordinate distance, making it unable to capture
the fine features. Besides, most of them just consider the spatial
structures in the HSI data preprocessing process, and fail to
incorporate these inherent structures into the graph construction
process [30], [31]. In addition, the aforesaid methods are con-
structed by a single graph structure, to lead the weak diversity
learning of intrinsic property existing in the HSI data. To mitigate
the phenomenon, the ensemble learning [32]–[34] causes more
attention. However, there are few methods to apply the AG-based
ensemble model for HSIC.

To handle the aforementioned drawbacks, we propose a
novel graph-based SSL classification model combined random
multigraphs construction and ensemble strategy (RMGE) for
hypersectral data. We summarize the contributions as follows.

1) We employ the local binary pattern (LBP) model to encode
the texture information as the spatial features, and use
them in the graph construction procedure. LBP discovers
the fine characteristics, which enhances the discriminabil-
ity of the proposed RMGE.

2) We present the AG-based SSL scheme to learn the adjacent
graph by allocating adaptive neighbors based on local
distance, which effectively handles the high-dimensional
problem. The maximum entropy regularization is applied
for the graph learning to avoid the trivial solution.

3) We introduce the ensemble framework to obtain the op-
timal prediction model, which makes multiple AGs to
be built in parallel. Thus, it can guarantee the diversity
learning of HSI data and the efficiency of the proposed
RMGE.

Compared with the conference version of the research in [35],
the improvements of this article include that introducing more
technical modules and providing more experiments. Specifi-
cally, Section III introduces the weighted mean filtering (WMF)
module to reduce the impact of noisy pixels in HSI and guarantee
the consistency of pixels within a local region. Section III-C
proposes the maximum entropy regularization for the graph
construction, which makes the model to avoid the trivial solution.
Section IV provides the experiments on another large-scale
dataset, and the major parameters analysis of RMGE is also
discussed.

The rest of this article is organized as follows. Section II
reviews the graph-based SSL and AG-based HSIC methods.
In Section III, the specific content of the proposed RMGE is
given. Section IV reports the extensive experimental results and
analysis. Finally, Section V concludes this article.

II. RELATED WORK

A. Graph-Based SSL HSIC Methods

Various graph-based SSL models have obtained success in
HSIC, where the sparse representation (SR) of data and the
corresponding manifold structure are considered.

1) Graph-Based SSL With Manifold Learning: Many vari-
ants of manifold learning explore the nonlinear manifold struc-
ture hidden in the high-dimensional HSI data. Ma et al. [36]
constructed the graph by adopting the manifold learning strategy,
which captures the local geometric properties of each neigh-
borhood and improves the classification accuracy of data with
multiple submanifolds. Cheng et al. [37] proposed the SSL
framework that joints discriminant information and adaptive
loss, which improves the separability between different objects
by utilizing the pairwise constraints, alleviating the impact of
outliers. To make better use of spatial information, Luo et al. [38]
built adjacent graph with distance metric and local manifold
structure to design the pairwise similarity, preserving the local
properties of spectral–spatial neighbors. Jamshidpour et al. [39]
constructed different graphs and fused their Laplacians to build
the adjacent graph, achieving the better capability of extracting
the spatial features.

2) Graph-Based SSL With SR: The SR-based graphs can
obtain the adjacent relationships among pixels and weights
simultaneously and automatically, which reinforce the discrim-
inability of model naturally. Therefore, many various SR-based
graph models have been proposed. Morsier et al. [40] encoded
the representation of graph with sparse coding and low rank
constraints for HSIC. This method obtains the graph that has
limited connectivity and provides the smoother kernel distortion.
Shao et al. [41] presented a graph by merging probabilistic
class structure into the SR-based edge weighting model, which
describes the edge weights between pixels and classes, enhanc-
ing the discriminability of graph structure. Dornaika et al. [42]
proposed graph-SSL with LBP for holistic object categorization,
which designs a two-phase regularized least square to obtain
graph in a semisupervised context and utilizes LBP as descrip-
tors to classify the detected objects in outdoor and indoor scenes.
Cheng et al. [43] developed a spectral–spatial random patches
network, which integrates shallow, deep, spectral, and spatial
feature with LBP, and stacks them into high-dimensional vector.
Then, the high-dimensional spectral–spatial vector is fed into a
graph-based learning for HSIC. Xue et al. [44] fused the spatial
information into SR model by total variation. Based on sparse
graph representation, it propagated the predicted labels from
dictionary to unknown data, which is free-parameters and robust
to noise. Aydemir and Bilgin [45] designed a SSL-based method
for spectral–spatial HSIC, which provides rich samples by using
subtractive clustering-based model for training. By combining
SVM and kernel SR classifiers, this method obtained better and
more promising results. Hong et al. [28] proposed an end-to-end
fusion framework, which develops the fusion schemes by inte-
grating extracted features and the proposed graph convolutional
networks. It learns more discriminative feature representations
for HSIC.

Although graph-based SSL methods for classification have
shown better accuracy, this is at the cost of higher computational
complexity, which is inefficient in large-scale data. In addition,
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Fig. 1. Architecture of an RMGE algorithm.

the high dimensionality and limited labeled data of HSI further
restrict the performance of classification.

B. AG-Based HSIC Methods

AG-based methods can address the scalability issue with a
small subset of samples as anchors, which is enough to represent
the entire points. Motivated by recent development in the AG
construction, He et al. [22] proposed fast SSL model with AG,
which constructs a naturally sparse and scale invariant AG,
alleviating the computation burden. Wang et al. [21] devel-
oped a scalable AG-based clustering method, which adds the
nonnegative relaxation to AG model. With this, the clustering
results are directly obtained without adopting k-means. To han-
dle the defect that AG-based methods usually ignore the spatial
information, Wang et al. [47] presented an AG-based method
with clustering for HSI data, which fuses the spatial information
by using the mean of neighboring pixels to reconstruct center
pixel. Wei et al. [48] utilized the spatial correlation by adopting
WMF to filter hyperspectral pixels, which considers the local
neighborhood relationship within a window. He et al. [23]
presented a semisupervised model with bipartite graph, which
calculates the labels of the data and anchors simultaneously and
adopts the Woodbury matrix to handle the large matrix inverse.
It obtains better accuracy in the shorter time and requires less
storage spaces. Gao et al. [34] improved a spatial–spectral clas-
sification framework with multigraphs, which randomly selects
several features to create the graph, mitigating the well-known
Hughes phenomenon. Zhou et al. [30] proposed a local reg-
ularized embedding model with spatial–spectral information,
which incorporates spatial feature into the dimensionality re-
duction procedure, to achieve optimal discriminative matrix by
the minimization of local spatial–spectral scatter. Feng et al. [31]
designed the discriminate margins with spatial–spectral neigh-
borhood pixels, which effectively captures the discriminative
features and learns the structures of HSI data.

III. METHODOLOGY

The details of the proposed RMGE algorithm are described
from five aspects: WMF, spatial–spectral feature extraction,
anchor-based adjacent graph construction, graph-based SSL

framework, and AG-based SSL model. The architecture of
RMGE is shown in Fig. 1.

A. Weighted Mean Filtering

To smooth the homogeneous regions and reduce the interfer-
ence of noisy points, the WMF [30] is employed to preprocess
the original HSI data Y. The main idea of the WMF is to use the
weighted mean of the neighboring pixels in the spatial window to
reconstruct the center pixel value, where the weight coefficient of
the center pixel and the neighboring pixels is determined by their
spectral similarity. The higher the similarity is, the greater the
weight coefficient is. On the contrary, the lower the similarity
(such as the similarity between the noise point and the center
pixel) is, the smaller the weight coefficient is. Therefore, al-
though there are many filter techniques, such as edge-preserving
filtering and anisotropic diffusion filtering, the WMF is relatively
simple, fast, and efficient for HSI preprocessing.

Assume Y = [y1, y2, ..., yn]
T ∈ Rn×d and each pixel is yi ∈

Rd (i = 1, 2, ..., n). The labels of {y1, y2, ..., yn} are denoted as
T(yi) ∈ {1, 2, ..., c}, respectively, and c represents the number
of categories. Suppose that (p̄i, ḡi) denotes the corresponding
spatial coordinate of yi, then the neighborhood of yi is denoted
as

Ω(yi) =

{
yi(p̄, ḡ)| p̄ ∈ [p̄i − δ, p̄i + δ]

ḡ ∈ [ḡi − δ, ḡi + δ]

}
(1)

where δ = (s− 1)/2, s indicates the size of neighborhood
window and is a positive odd number.

The reconstructed pixel ŷi by WMF is defined with a weighted
summation, i.e.,

ŷi =
yi +

∑s2−1
k=1 vkyik

1 +
∑s2−1

k=1 vk
, yik ∈ Ω(yi) (2)

where vk = exp{−γ0‖yi − yik‖22} represents the similarity be-
tween yik and yi on the spectrum. The parameter γ0 is em-
pirically set to be 0.2, which reflects the degree of filtering.
Ω(yi) is the adjacent space of yi. The WMF method can effec-
tively decrease the influence of noise and enhance the spectral
similarity between pixels from the same class by adjusting the
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degree of filtering. After WMF, the consistency of pixels in the
same homogeneous regions is guaranteed.

B. Spatial–Spectral Feature Extraction

1) Spatial Feature Extraction: To improve computational
efficiency, the principal component analysis is applied to reduce
the dimensionality of HSI preprocessed by WMF. The LBP is
then adopted in each principal component for extracting texture
features to refine the spatial information. The original LBP
model can effectively extract rotation-invariant texture features,
such as edges, corners, and spots, to describe local spatial
patterns. Those texture features are learned by comparing each
pixel with its local neighborhood. Specifically, LBP utilizes the
center pixel value to label the pixels of a local region with a
binary threshold, which does not make any assumptions about
the distribution of this local region. We use the uniform pattern
of LBP in this article, which reduces the feature vector and
implements rotation-invariant operator.

By LBP processing, the local spatial feature of yi is defined
as

LBP(yi) =

s2l −1∑
h=1

LLBP(yih − yi)2
h, yih ∈ Ω(yi) (3)

where sl indicates the size of neighborhood window and
LLBP(yih − yi) = 0 if yih ≤ yi, otherwise LLBP(yih − yi) = 1.
As indicated in (3), a binary code is assigned to each neighbor
of yi, which reveals the texture orientation and smoothness in
the adjacent space. Based on the LBP code, the corresponding
histogram is obtained over the local patch centered at yi. Then,
the spatial feature is built by concatenating all the principal
components of LBP histograms, which captures local struc-
tures efficiently. LBP is a nonparametric method and computed
simply, and the special property of LBP is the tolerance about
monotonic illumination changes, which is suitable for single
band processing in HSI.

2) Spectral Feature Selection: The linear prediction er-
ror [49] is employed to select spectral bands. Given two initial
bands B1 and B2, the other B that is the least similar to B1

and B2 can be found by the two steps: a) using B1 and B2

to predict B by B′ = α0 + α1B1 + α2B2; and b) learning the
parameters (α0, α1, α2) to minimize ε = ‖B−B′‖. Assume
that a = [α0, α1, α2]

T, and it is obtained by employing the least
squares solution, i.e.,

a = (MTM)−1MTq (4)

where M = [1,b1,b2] ∈ Rn×3, b1 and b2 are the column
vectors that represent all the n pixels in B1-band and B2-band,
respectively. Similarly, q is the all pixels in B-band. The band
that maximizes the error εmin is selected asB. Thus, it is obvious
that this similar procedure is simple to conduct when the desired
number of bands is greater than two. Through abovementioned
steps, the band subset that can be used to represent other bands
is obtained as the spectral features.

Based on the abovementioned steps, we obtain the spatial–
spectral features of a pixel by stacking the spatial features and
spectral features into 1-D vector.

C. Adjacent AG Construction

Graph-based SSL models include two steps:
1) constructing the adjacent graph;
2) using the graph to predict the unknown labels.
Generally, constructing the adjacent graph has several meth-

ods, such as kNN, ε-neighborhood, and heat kernel. This section
mainly describes the method of constructing the adjacent graph
that we design.

We randomly select kss features from the spatial–spectral fea-
tures obtained in the Section III-B to build a graph. To decrease
the computational complexity, we use the anchor-based strategy
to build the adjacent graph. Ideally, the linear combination of the
anchors can be utilized to represent each sample. Furthermore,
the data label is also considered as a specific representation of
the sample. The defined prediction function of labels is

f(xi) =

m∑
j=1

wijf(uj) (5)

where U ∈ Rm×d means the anchor set and m represents the
number of anchors (m � n). W ∈ Rn×m denotes the affinity
matrix, wherewij is the similarity between yi and uj . Assuming
that F ∈ Rn×c and Fu ∈ Rm×c, (5) is expressed as F = WFu.
It can be seen that the design of W is an important part, which
contains the following two stages.

1) Anchors generation: There are usually two methods of
anchor generation: random selection andk-means method.
Random selection generates anchors by selecting sam-
ples from data points randomly, which cannot guarantee
that generated anchors are always effective. The k-means
method utilizes the clustering centers as anchors, which
can obtain more representative anchors. Therefore, the
k-means method is adopted here. The k-means method
is a simple and easily implemented clustering algorithm.
The details are described as follows: the method selects
the initialized m samples as the initial cluster centers,
and it proceeds by alternating following two steps until
converge: a) assignment: each sample is assigned to the
cluster with the closest distance; and b) update: recalculate
the new means to become the centroid of the samples in
the cluster. When the assignment is no longer changed,
the algorithm is considered to have converged.

2) Adjacent graph learning: The matrix W is usually con-
structed by kNN approach. Motivated by [17] and [50],
the nearest anchors assignment of yi is considered as

min
wT

i 1=1,0≤wij≤1,‖wi‖0=k

m∑
j=1

‖yi − uj‖22wij

+

m∑
j=1

γwij lnwij (6)

where wT
i is the ith row vector of matrix W.

The second term is the maximum entropy regularization,
which controls the uniformity of the values of wij and avoids
the trivial solution of (6). γ is the parameter of regularization
term. Suppose that eij = ‖yi − uj‖22, the solution of problem
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(6) is represented as

min
wT

i 1=1,0≤wij≤1,‖wi‖0=k

m∑
j=1

wijeij + γ

m∑
j=1

wij lnwij . (7)

It is obtained that the vector wi only has k nonzero values
based on �0-norm constraint. Assume that the index of k nonzero
values in wT

i is {j1, j2, ..., jk}, then the problem (7) is reduced
to

min
wT

i 1=1,0≤wij≤1

k∑
r=1

wijreijr + γ
k∑

r=1

wijr lnwijr . (8)

The Lagrangian function of (8) is

L(wi, γ) =

k∑
r=1

wijreijr + γ

k∑
r=1

wijr lnwijr + λ(wT
i 1− 1)

(9)
where λ is the Lagrangian multiplier. In order to achieve the
optimal wijr , it should satisfy that the derivative of (9) with
respect to wijr is equal to zero, i.e.,

wijr = exp

(−eijr
γ

)
· exp

(
λijr − γ

γ

)
. (10)

Considering wT
i 1 = 1 and (10), we obtain

exp

(
λijr − γ

γ

)
=

1∑k
r=1 exp(−eijr/γ)

. (11)

Then, according to (10) and (11), we obtain

wijr =
exp(−eijr/γ)∑k
r=1 exp(−eijr/γ)

. (12)

Subsequently, substituting (12) into (7) and minimizing the
corresponding objective function. Then, the optimal solution for
problem (6) is

wij =

{
exp(−‖yi−ujr‖22/γ)∑k

r=1 exp(−‖yi−ujr‖22/γ)
, j ∈ {r1, r2, ..., rk}

0, otherwise
(13)

where {r1, r2, ..., rk} are the indexes of k nearest neighbors
of pixel yi. Then, we design the normalized adjacent graph Z
by using the nonnegative matrix W, and it is defined as Z =
WΛ−1WT. The jth element in diagonal matrix Λ ∈ Rm×m is
expressed as Λjj =

∑n
i=1 wij . Intuitively, the zij is represented

as zij = wT
i Λ

−1wj and zij = zji. Furthermore, the required
Z ≥ 0 ensure that the resulting graph Laplacian is positive
semidefinite. This property of Z is crucial to obtain global
optimum of AG-based SSL model, which will be considered
later.

D. Graph-Based SSL Framework

As mentioned above, the HSI data is represented as
Y ∈ Rn×d. Suppose Y = Yl ∪Yv(n = l + v), Yl =
{y1, y2, ..., yl} denotes the labeled pixels, and Yv =
{yl+1, yl+2, ..., yl+v} is the unlabeled pixels. Given the
adjacent graph Z, the graph-based SSL approaches are regarded
as solving the following function:

minTr((F−T)TX(F−T)) + Tr(FTLF) (14)

where F denotes the predicted values on labeled pixels. T is a
label matrix and T = [t1, ..., tl, 0, ..., 0]

T ∈ Rn×c. X ∈ Rn×n

is a diagonal matrix, where xi = βl if i ≤ l and xi = βv if l +
1 ≤ i ≤ n. βl and βv are empirically set to βl = 0.01 and βv =
10−6, respectively. L represents a Laplacian matrix defined as
L = D− Z, where D is the degree matrix.

E. AG-based SSL Model

As mentioned in the Section III-C, F = WFu. The label
propagation for the AG-based SSL model can be represented
as

L(Fu) = Tr
(
(Fl −Tl)

T(Fl −Tl)
)
+ ηTr(FTLF) (15)

whereFl = WlFu,Tl is the labels of labeled pixels, and η is the
parameter of regularization term. Equation (15) is transformed
into the following form:

L(Fu) = ‖WlFu −Tl‖2F + ηTr((WFu)
TL(WFu))

= ‖WlFu −Tl‖2F + ηTr(Fu
TLAFu). (16)

Let us define LA = WTLW where L = D− Z. The ith
element of D is

dii =

n∑
j=1

zij =

n∑
j=1

wT
i Λ

−1wj = wT
i

n∑
j=1

Λ−1wj = wT
i 1 = 1.

(17)
Therefore, L = D− Z = I−WΛ−1WT, we have

LA = WT(I−WΛ−1WT)W

= WTW − (WTW)Λ−1(WTW). (18)

Taking the derivative of (16) with regard to Fu, we have

F∗
u = (WT

l Wl + ηLA)
−1WT

l Tl. (19)

According to F∗
u, we calculate the predicted label of yi

directly as follows:

ti = arg max
j∈{1,...,c}

Wi.F
∗
uj
. (20)

The whole framework of ensemble strategy in this article is
described as follows.

1) kss features are selected randomly from all the high-
dimensional features of each pixel.

2) Graph construction: m anchors that covered the data man-
ifold are generated, and then the weighted matrix W is
calculated to represent the rest of pixels by the selected
anchors.

3) The semisupervised inference on this graph is conducted
by employing the graph Laplacian regularization.

4) The abovementioned steps are repeated to obtainkg graphs
in parallel.

5) The unknown labels of pixels are acquired by processing
the prediction results of kg graphs using majority voting
rules. The solution process of RMGE is summarized in
Algorithm 1.
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Algorithm 1: RMGE.
Input: Hyperspectral data Y, window size sl, anchor

number m, the number of selected features kss, graph
number kg , βl = 0.01, βu = 10−6.

1: Use WMF to preprocess the HSI data Y;
2: Use LPE to select spectral features ys1;
3: Utilize PCA to complete the dimensionality reduction

of HSI data, then adopt the LBP extractor to obtain
spatial features ys2;

4: Stack ys1 and ys2 into 1-D vector yss;
5: repeat
6: Randomly choose kss features from yss;
7: Employ k-means to generate m anchors, obtaining

the anchor set U ∈ Rm×d;
8: Obtain the adjacent graph W by (13);
9: Design the normalized adjacent graph

Z = WΛ−1WT;
10: Calculate F∗

u by (19), and get the label of each pixel
by (20);

11: until the construction of kg graphs is finished;
12: Obtain the final label ti by the results from kg graphs

with majority voting;
Output: The label matrix T.

IV. EXPERIMENTS

We verify the effectiveness of the proposed RMGE on public
hyperspectral datasets in this section. To have a fair comparison,
we make all competitors adopt their respective optimal parame-
ters. The results of experiments and parameter analysis are also
discussed.

A. Datasets

The false color images and ground truths of three hyperspec-
tral datasets are shown in Fig. 2. The distribution of training
samples and test samples of each dataset is given in the Tables I
and II.

1) Indian Pines: The hyperspectral image is acquired via
AVIRIS device, as shown in Fig. 2(a). It covers the northwestern
Indiana with 145 × 145 pixels and 200 bands. The Indian
Pines contain 16 land-cover types whose distribution is shown
in Fig. 2(b).

2) Pavia University (PaviaU): The dataset is captured by the
German ROSIS sensor as shown in Fig. 2(c). It covers the Pavia
and contains 610 × 340 pixels. The 103 bands are selected with
discarding 12 bands. The PaviaU contains nine categories, as
shown in Fig. 2(d).

3) Salinas: The HSI data is also taken by AVIRIS, as shown
in Fig. 2(e). It covers the Salinas Valley, 1998, having 512× 217
pixels. The 204 bands are left after excluding 20 bands. All pixels
in dataset are divided into 16 categories, as shown in Fig. 2(f).

B. Experimental Setup

1) Comparison Algorithms: Some HSIC methods are
compared with the proposed method.

Fig. 2. RGB false color images and ground truth maps of three HSI datasets.

R-VCANet [11]: This method combines the spatial structures
and spectral features by utilizing rolling guidance filter and
vertex component analysis networks, which extracts deep and
representative feature expression for HSI data.

GCN-CNN [28]: This method proposes an end-to-end fusion
framework, which develops the fusion schemes by integrating
features extracted from CNNs and the proposed minibatch graph
convolutional networks. It learns more discriminative feature
representations for HSIC.

LSLRR [12]: It exploits the similarity metric that joints
spectral–spatial features to capture local structure. Besides, the
locality constraint criterion and structure-preserving strategy are
introduced to low-rank representation to construct the graph.

SS-RMG [34]: This method explores the structure with mul-
tiple graphs using random spectral–spatial information, where
the addition of randomness alleviates the Hughes phenomenon.

SSHGDA [29]: The complex spatial–spectral characteristics
are learned by the proposed hypergraph, which uses the priori
knowledge fully and extracts the multiple intrinsic properties of
HSI.

FSSLAG [22]: This method presents the AG-based SSL
model, which is parameter-free and naturally sparse in the
adjacent graph construction.

GLLR-SKSVM [27]: Based on low-rank representation, the
graph-based SSL algorithm is designed to consider the similarity
of mixed pixels in spectral–spatial space.
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TABLE I
TRAIN/TEST DISTRIBUTION OF SAMPLES FOR INDIAN AND SALINAS

TABLE II
TRAIN/TEST DISTRIBUTION OF SAMPLES FOR PAVIAU

2) Evaluation Indices: Three quantitative criteria are taken
in this article. The first is overall accuracy (OA) that represents
the proportion of correctly classified pixels in HSI. The second
is average accuracy (AA), which denotes the average of the
classification accuracy of each category. The value of OA and
AA ranges from 0 to 1. The third is Kappa coefficient that is a
metric combined commission error and omission error, which
can evaluate the overall consistency. Its value range is [0,1]. The
larger Kappa values indicate better consistency.

3) Parameters Analysis: The training samples sizes of Indian
Pines, PaviaU, and Salinas are 5%, 1%, and 1% respectively, and
the rest of pixels in the every dataset are selected for testing. To
reduce parameters adjustment, we set the anchors count equal to
the number of training samples. We here mainly discuss the three
parameters involved in the proposed RMGE. The first parameter
kg denotes the number of graphs, which is a crucial parameter
in our method. The quantitative results of different kg on three
hyperspectral datasets as given in the Table III. Fig. 3(a) is
provided to show the changing trend of OAs with varying kg
on three datasets. It is worth noting that there is an increase
on OA, AA, and Kappa when kg ≤ 4 for three datasets. When
kg > 4, the accuracy tends to be stable on the Indian Pines and

Salinas, while it has a sharp decline on the PaviaU dataset. For
the experiments, it can be seen that the final results are not always
better with the increase of kg . Since each graph is constructed
by randomly choosing kss features, the corresponding classifier
is different from each other. The greater the difference between
each other is, the more diversity the classifier learns, and the
final result is relatively better. From the Table III, although the
better results are obtained by setting kg = 9 for the datasets of
Indian and Salinas, the time taken is exponentially increased for
the slight improvement. Therefore, to ensure good accuracy and
speed up the running rate of RMGE, we choose kg = 4 for three
datasets.

The number of bands selected in the presented RMGE is also
close to the performance of HSIC. We set the number of bands
from {1, 4, 5, 6, 7, 8, 9, 10, 15, 20} to explore the changes of
accuracy on the three datasets, as given in Table IV. Fig. 3(b)
is provided to show the changing trend of OAs with varying
bands count on three datasets. It reveals that if the number of
bands is below 5, the values of OA, AA, and Kappa present a
slow decline on Indian dataset. Similarly, if the number of bands
is above 4, the accuracy has a sharp drop. However, according
to the Fig. 3(b), the fluctuation range of accuracy is small on
Salinas dataset the number of bands is above 4. It is relatively
stable. Hence, the number of bands is set to 4 in our experiments.
For the accuracy, although it is not the best excellent choice for
all the datasets, we select the relatively number to prepare for a
better analysis within the allowable hardware resources.

As given in Table V, the window size sl of LBP module is
another parameter that is related to the final classification results.
We choose sl = {1, 3, 7, 10, 15, 20, 30} for observing the influ-
ence on the three datasets. It can be noticed that there is a larger
increase on OA, AA, and Kappa when sl ranges from 1 to 7.
Then, the values of accuracy present a steady tendency when
sl > 7 on three datasets. Because the extracted features by the
smaller window size may not represent the spatial characteristics
of the center pixel. Therefore, we set sl = 7 in the subsequent
experiments. Meanwhile, to reflect the influence of parameters
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TABLE III
QUANTITATIVE RESULTS OF DIFFERENT GRAPH NUMBERS kg ON THREE DATASETS

The optimal value of each column is highlighted in bold.

Fig. 3. Influence of different parameters on three datasets. (a) Number of graphs (kg). (b) Number of bands. (c) Windows size in LBP (sl).

TABLE IV
QUANTITATIVE RESULTS FOR ANALYZING THE IMPACT OF NUMBERS OF BANDS ON THREE DATASETS

The optimal value of each column is highlighted in bold.

clearly, Fig. 3(c) is provided to show the changing trend of OAs
with varying sl on three datasets. Fig. 4 is provided to show
the influence of multiparameter combinations for classification
accuracy on the Indian dataset. According to Fig. 4, the fluctu-
ation range of OAs is relatively small. We can see that the OAs
of the proposed RMGE are relatively stable with changing the
parameters.

As shown in Fig. 5, it indicates the OAs of three HSI datasets
with varying kss. In the ensemble learning strategy, kss features
are chosen randomly to construct graph, which can also affect

the final classification results of RMGE. We set kss from {20,
50, 80, 100, 120, 140, 160, 180, 200} to analyze its influence on
Indian and Salinas, and {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
on PaviaU. It is worth noting that there is an increase on OA
when kss < 80 for Indian and Salinas datasets. When kss > 80,
the accuracy tends to be stable. For the PaviaU dataset, the OAs
increase when kss < 40, and the fluctuation range of accuracy
is small for kss > 40. It is relatively stable. Therefore, in this
article, we set kss = 150 on Indian and Salinas and kss = 80 on
PaviaU, respectively, in term of Fig. 5.
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TABLE V
QUANTITATIVE RESULTS FOR ANALYZING THE IMPACT OF DIFFERENT WINDOW SIZES sl ON THREE DATASETS

The optimal value of each column is highlighted in bold.

Fig. 4. Influence of multiparameters on Indian datasets.

Fig. 5. Influence of kss on three datasets.

Fig. 6. Influence of γ and η on three datasets.

Fig. 6 shows the OAs of three HSI datasets with varying
γ and η, respectively. γ is the maximum entropy regulariza-
tion parameter in RMGE. From Fig. 6, note that, the value
of classification accuracy remains unchanged basically when
γ turns from [0.1:0.1:1]. This phenomenon indicates that the
performance of RMGE is insensitive to parameter γ. In other
words, the experimental results are not stochastic in this article,
which is authentic and reliable. η is a regularization parameter,
and the result demonstrates that the optimal value of η is 0.001,
0.01, and 0.001 for Indian Pines, PaviaU, and Salinas datasets,
respectively.

Fig. 7. Visualization results of different methods on Indian.

Fig. 8. Visualization results of different methods on PaviaU.

C. Comparison of Classification Performance

The experiments and parameter analysis of the proposed
approach are discussed in this part. All the results about the
proposed method are obtained by averaging the accuracy results
of 30 times.

1) Performance on Indian Pines Dataset: 5% labeled pix-
els of each land cover class are randomly chosen for training
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TABLE VI
QUANTITATIVE RESULTS OF COMPARISON ALGORITHMS AND OUR RMGE ON INDIAN DATASET

The optimal value of each row is highlighted in bold.

Fig. 9. Spatial features extracted by LBP on different bands.

Fig. 10. Visualization results of different methods on Salinas.

model. The quantitative results of the approaches are given in
Table VI. It can be revealed that RMGE obtains better results
than competitors on OA, AA, and Kappa. Moreover, RMGE
gains the higher accuracy in most classes, as shown Table VI,
which indicates that the ensemble framework is constructed by
using multiple AGs can learn the diversity of HSI data well.
From Table VI, the graph-based SSL methods (SS-RMG,

GLLR-SKSVM, and RMGE) outperform the traditional graph-
based methods (LSLRR). Among these competitors, the pro-
posed method achieve the best accuracy, especially for several
surface objects (e.g, Corn-notill, Corn-mintill, and Soybean-
notill). This illustrates that the designed AG-based SSL model
captures the effective relationships in the adjacent graph learn-
ing. Furthermore, compared with FSSLAG, the proposed RMGE
improves over 20% in terms of OA. It shows that the maximum
entropy regularization in the graph construction procedure takes
the better performance.

The final classification maps obtained with each algorithm
are also shown in Fig. 7. The proposed RMGE obtains much
smoother maps than other methods. Especially, RMGE has
a superior performance than other spatial–spectral combined
methods, which indicates that LBP-based spatial features that
apply in the graph learning significantly provides an accurate
description of HSI local areas. It improves the discriminability
of the proposed model.

2) Performance on PaviaU Dataset: 1% labeled pixels of
each land cover class are randomly chosen for training model,
and the rest of pixels are selected for testing. To observe the
experimental results visually and quantitatively, Fig. 8 and Ta-
ble VII display the visual classification maps and the correspond-
ing accuracy, respectively. As given in Table VII, the presented
approach gives superior results than other methods, especially
for the land-cover types (Asphalt, Gravel, Trees, and Bitumen),
whose accuracy achieve 0.9547± 0.0051, 1, 0.9446± 0.0325,
and 1. After incorporating the LBP-based spatial characteristics
into the AG model, RMGE yields better accuracy in almost
all classes compared with FSSLAG. This indicates that LBP
module obtains more representative spatial features existing in
local regions, which refines the local structures of HSI. By
employing the LBP extractor, the distinctive characteristics in
spatial are captured, as shown in Fig. 9. The module discovers the
subtle differences of different bands, and preserves the intrinsic
properties of spatial structure. By this way, the discriminabil-
ity of classifier is enhanced, and the performance of RMGE
is improved effectively. As is shown in Fig. 8, RMGE gains
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TABLE VII
QUANTITATIVE RESULTS OF COMPARISON ALGORITHMS AND OUR RMGE ON PAVIAU DATASET

The optimal value of each row is highlighted in bold.

TABLE VIII
QUANTITATIVE RESULTS OF COMPARISON ALGORITHMS AND OUR RMGE ON SALINAS DATASET

The optimal value of each row is highlighted in bold.

more smoother map than other approaches, where the visualized
results accord with the Table VII.

3) Performance on Salinas Dataset: 1% labeled pixels of
each land cover class are randomly chosen for training model,
and the rest of pixels are selected for testing. To visualize the
experimental results, Fig. 10 shows the classification maps. The
quantitative accuracy of comparison algorithms and RMGE are
given in Table VIII. According to the visual results, it reveals that
the pixels in the Grapes_untrained class and Vinyard_untrained
class regions are most wrongly assigned. That is because the
classes of Vinyard_untrained and Grapes_untrained have highly
similar feature information, and their spectral curves are very
close. From Fig. 10, the Vinyard_untrained class is discriminated
well, and its accuracy reaches to 0.9979±0.0007 in Table VIII,
which is higher than that of other methods. This phenomenon
also justifies the effectiveness of RMGE. As given in Table VIII,
the results illustrate that RMGE yields the best classification
accuracies, especially the OA and Kappa coefficient are up to
0.9913± 0.0018 and 0.9899± 0.0021, respectively.

D. Computational Time Comparison

We display the running time of all the algorithms, as shown
in Table IX. All the experimental results are implemented with
MATLAB R2014a on a PC of Intel Core i7-9700F 3.00GHz CPU
with 16 GB RAM. Table IX gives the time consumed by different
algorithms on hyperspectral datasets. As given in Table IX,
R-VCANet, GCN-CNN, and SSHGDA produce larger execu-
tion time on different datasets, while the other methods have
less processing time. Among these methods, the time consum-
ing of FSSLAG and RMGE are the least, which indicates the
AG-based SSL methods can process HSI data more efficiently
than graph-based methods (i.e., LSLRR, SS-RMG, SSHGDA,
and GLLR-SKSVM). Obviously, the proposed RMGE obtains
best results about running time. It illustrates that the runtime
efficiency can be ensured by constructing multiple AGs in
parallel. To sum up, the RMGE algorithm proposed in this article
not only executes faster, but also outperforms other algorithms
in classification performance on three hyperspectral datasets.
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TABLE IX
TIME CONSUMED BY DIFFERENT ALGORITHMS ON HYPERSPECTRAL DATASETS

The optimal value of each row is highlighted in bold.

V. CONCLUSION

In this article, an efficient graph-based SSL classification
model with spatial–spectral features was proposed for HSI,
which was based on random multigraphs and ensemble strategy.
In order to discover the local structures and subtle changes within
a region, the fine spatial features captured by LBP module were
integrated into the AG learning, which contains more discrimi-
nant information. In addition, the multigraphs were constructed
by selecting the spatial–spectral features randomly, to alleviate
the high dimensionality of HSI data. The maximum entropy
regularization was introduced in the AG construction to avoid
the trivial solution. The label representation was adopted in the
prediction function to capture the intrinsic properties of data.
Moreover, the ensemble framework makes AGs to be built in
parallel, which learns the diversity of HSI data and improves the
efficiency of the proposed RMGE. Experiments conducted on
HSI datasets show the satisfying performance of RMGE, and
verify its advantages over the excellent competitors.

REFERENCES

[1] Q. Zhu et al., “A spectral-spatial-dependent global learning frame-
work for insufficient and imbalanced hyperspectral image clas-
sification,” IEEE Trans. Cybern., early access, May 25, 2021,
doi: 10.1109/TCYB.2021.3070577.

[2] Q. Wang, Q. Li, and X. Li, “A fast neighborhood grouping method for
hyperspectral band selection,” IEEE Trans. Geosci. Remote Sens., vol. 59,
no. 6, pp. 5028–5039, Jun. 2021.

[3] P. Sellars, A. I. Aviles-Rivero, and C.-B. Schönlieb, “Superpixel contracted
graph-based learning for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 6, pp. 4180–4193, Jun. 2020.

[4] C. Deng, X. Liu, C. Li, and D. Tao, “Active multi-kernel domain adap-
tation for hyperspectral image classification,” Pattern Recognit., vol. 77,
pp. 306–315, 2018.

[5] S. Susan, S. Shinde, and S. Batra, “Vegetation-specific hyperspectral band
selection for binary-to-multiclass classification,” in Proc. IEEE 16th India
Council Int. Conf., 2019, pp. 1–4.

[6] F. Gan, S. Liang, P. Du, F. Dang, K. Tan, H. Su, and Z. Xue, “CHESRE:
A comprehensive public hyperspectral experimental site and data set for
resources exploration,” in Proc. 7th Workshop Hyperspectral Image Signal
Process., Evol. Remote Sens., 2015, pp. 1–4.

[7] Y. Wan, X. Hu, Y. Zhong, A. Ma, L. Wei, and L. Zhang, “Tailings reservoir
disaster and environmental monitoring using the UAV-ground hyperspec-
tral joint observation and processing: A case of study in Xinjiang, the
belt and road,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2019,
pp. 9713–9716.

[8] Q. Wang, Z. Yuan, Q. Du, and X. Li, “GETNET: A general end-
to-end 2-D CNN framework for hyperspectral image change detec-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 3–13,
Jan. 2019.

[9] G. Camps-Valls, N. Shervashidze, and K. M. Borgwardt, “Spatio-spectral
remote sensing image classification with graph kernels,” IEEE Geosci.
Remote Sens. Lett., vol. 7, no. 4, pp. 741–745, Oct. 2010.

[10] J. Peng, Y. Zhou, and C. L. P. Chen, “Region-kernel-based support vector
machines for hyperspectral image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 9, pp. 4810–4824, Sep. 2015.

[11] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, “Deep
supervised learning for hyperspectral data classification through convolu-
tional neural networks,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
2015, pp. 4959–4962.

[12] Q. Wang, X. He, and X. Li, “Locality and structure regularized low rank
representation for hyperspectral image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 2, pp. 911–923, Feb. 2019.

[13] X. He, Y. Chen, and P. Ghamisi, “Dual graph convolutional network
for hyperspectral image classification with limited training samples,”
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5502418,
doi: 10.1109/TGRS.2021.3061088.

[14] J. Feng et al., “Generative adversarial networks based on collaborative
learning and attention mechanism for hyperspectral image classification,”
Remote Sens., vol. 12, no. 7, 2020, Art. no. 1149.

[15] H. Wang, Y. Cheng, C. L. P. Chen, and X. Wang, “Semisupervised
classification of hyperspectral image based on graph convolutional broad
network,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14,
pp. 2995–3005, Mar. 2021.

[16] J. Feng et al., “Deep reinforcement learning for semisupervised hyperspec-
tral band selection,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art
no. 5501719, doi: 10.1109/TGRS.2021.3049372.

[17] F. Nie, S. Shi, and X. Li, “Semi-supervised learning with auto-weighting
feature and adaptive graph,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 6,
pp. 1167–1178, Jun. 2020.

[18] X. Li, M. Chen, F. Nie, and Q. Wang, “A multiview-based parameter free
framework for group detection,” in Proc. 31st AAAI Conf. Artif. Intell.,
2017, pp. 4147–4153.

[19] A. Anis, A. El Gamal, A. S. Avestimehr, and A. Ortega, “A sampling
theory perspective of graph-based semi-supervised learning,” IEEE Trans.
Inf. Theory, vol. 65, no. 4, pp. 2322–2342, Apr. 2019.

[20] W. Liu, J. He, and S.-F. Chang, “Large graph construction for scalable
semi-supervised learning,” in Proc. 27th Int. Conf. Mach. Learn., 2010,
pp. 679–686.

[21] R. Wang, F. Nie, Z. Wang, F. He, and X. Li, “Scalable graph-based clus-
tering with nonnegative relaxation for large hyperspectral image,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 10, pp. 7352–7364, Oct. 2019.

[22] F. He, R. Wang, and W. Jia, “Fast semi-supervised learning with anchor
graph for large hyperspectral images,” Pattern Recognit. Lett., vol. 130,
pp. 319–326, 2020.

[23] F. He, F. Nie, R. Wang, X. Li, and W. Jia, “Fast semisupervised learning
with bipartite graph for large-scale data,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 31, no. 2, pp. 626–638, Feb. 2020.

[24] W. Liao, M. D. Mura, J. Chanussot, and A. Piurica, “Fusion of spectral
and spatial information for classification of hyperspectral remote-sensed
imagery by local graph,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 9, no. 2, pp. 583–594, Feb. 2016.

[25] H. Huang, G. Shi, H. He, Y. Duan, and F. Luo, “Dimensionality reduction of
hyperspectral imagery based on spatial-spectral manifold learning,” IEEE
Trans. Cybern., vol. 50, no. 6, pp. 2604–2616, Jun. 2020.

[26] H. Huang, Y. Duan, H. He, and G. Shi, “Local linear spatial spectral
probabilistic distribution for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 58, no. 2, pp. 1259–1272, Feb. 2020.

[27] Z. Feng, S. Yang, M. Wang, and L. Jiao, “Learning dual geometric low-rank
structure for semisupervised hyperspectral image classification,” IEEE
Trans. Cybern., vol. 51, no. 1, pp. 346–358, Jan. 2021.

[28] D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph con-
volutional networks for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 7, pp. 5966–5978, Jul. 2021.

[29] F. Luo, B. Du, L. Zhang, L. Zhang, and D. Tao, “Feature learn-
ing using spatial-spectral hypergraph discriminant analysis for hyper-
spectral image,” IEEE Trans. Cybern., vol. 49, no. 7, pp. 2406–2419,
Jul. 2019.

[30] Y. Zhou, J. Peng, and C. P. Chen, “Dimension reduction using spatial
and spectral regularized local discriminant embedding for hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 2,
pp. 1082–1095, Feb. 2015.

[31] Z. Feng, S. Yang, S. Wang, and L. Jiao, “Discriminative spectral-spatial
margin-based semisupervised dimensionality reduction of hyperspectral
data,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 2, pp. 224–228,
Feb. 2015.

https://dx.doi.org/10.1109/TCYB.2021.3070577
https://dx.doi.org/10.1109/TGRS.2021.3061088
https://dx.doi.org/10.1109/TGRS.2021.3049372


MIAO et al.: HYPERSPECTRAL IMAGERY CLASSIFICATION VIA RANDOM MULTIGRAPHS ENSEMBLE LEARNING 653

[32] E. Zhang, X. Zhang, L. Jiao, L. Li, and B. Hou, “Spectral spatial hy-
perspectral image ensemble classification via joint sparse representation,”
Pattern Recognit., vol. 59, pp. 42–54, 2016.

[33] Y. Zhang, G. Cao, A. Shafique, and P. Fu, “Label propagation ensemble
for hyperspectral image classification,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 12, no. 9, pp. 3623–3636, Sep. 2019.

[34] F. Gao, Q. Wang, Y. Dong, and Q. Xu, “Spectral and spatial classification
of hyperspectral images based on random multi-graphs,” Remote Sens.,
vol. 10, no. 8, 2018, Art. no. 1271.

[35] Y.Miao, Q.Wang, M.Chen, and X.Li, “Spatial-spectral hyperspectral im-
age classification via multiple random anchor graphs ensemble learning,”
in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2021, pp. 3641–3644.

[36] L. Ma, M. M. Crawford, X. Yang, and Y. Guo, “Local-manifold-learning-
based graph construction for semisupervised hyperspectral image classifi-
cation,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2832–2844,
May 2015.

[37] G. Cheng, F. Zhu, S. Xiang, Y. Wang, and C. Pan, “Semisupervised
hyperspectral image classification via discriminant analysis and robust
regression,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9,
no. 2, pp. 595–608, Feb. 2016.

[38] R. Luo, W. Liao, X. Huang, Y. Pi, and W. Philips, “Feature extraction of
hyperspectral images with semisupervised graph learning,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 9, pp. 4389–4399,
Sep. 2016.

[39] N. Jamshidpour, A. Safari, and S. Homayouni, “Spectral spatial semisu-
pervised hyperspectral classification using adaptive neighborhood,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 9,
pp. 4183–4197, Sep. 2017.

[40] F. de Morsier, M. Borgeaud, V. Gass, J.-P. Thiran, and D. Tuia, “Kernel low-
rank and sparse graph for unsupervised and semi-supervised classification
of hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6,
pp. 3410–3420, Jun. 2016.

[41] Y. Shao, N. Sang, C. Gao, and L. Ma, “Probabilistic class structure
regularized sparse representation graph for semi-supervised hyperspectral
image classification,” Pattern Recognit., vol. 63, pp. 102–114, 2017.

[42] F. Dornaika, A. Bosaghzadeh, H. Salmane, and Y. Ruichek, “Graph-based
semi-supervised learning with local binary patterns for holistic object
categorization,” Expert Syst. Appl., vol. 41, no. 17, pp. 7744–7753, 2014.

[43] C. Cheng, H. Li, J. Peng, W. Cui, and L. Zhang, “Hyperspectral image
classification via spectral-spatial random patches network,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 4753–4764, Apr.
2021.

[44] Z. Xue, P. Du, J. Li, and H. Su, “Sparse graph regularization for hyper-
spectral remote sensing image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 55, no. 4, pp. 2351–2366, Apr. 2017.

[45] M. S. Aydemir and G. Bilgin, “Semisupervised hyperspectral image clas-
sification using small sample sizes,” IEEE Geosci. Remote Sens. Lett.,
vol. 14, no. 5, pp. 621–625, May 2017.

[46] R. Wang, F. Nie, and W. Yu, “Fast spectral clustering with anchor graph
for large hyperspectral images,” IEEE Geosci. Remote Sens. Lett., vol. 14,
no. 11, pp. 2003–2007, Nov. 2017.

[47] Y. Wei, C. Niu, Y. Wang, H. Wang, and D. Liu, “The fast spectral clustering
based on spatial information for large scale hyperspectral image,” IEEE
Access, vol. 7, pp. 141045–141054, 2019.

[48] Q. Du and H. Yang, “Similarity-based unsupervised band selection for
hyperspectral image analysis,” IEEE Geosci. Remote Sens. Lett., vol. 5,
no. 4, pp. 564–568, Oct. 2008.

[49] Z. Wang, F. Nie, R. Wang, H. Yang, and X. Li, “Local structured fea-
ture learning with dynamic maximum entropy graph,” Pattern Recognit.,
vol. 111, 2021, Art. no. 107673.

Yanling Miao received the B.E. degree in communi-
cation engineering and the M.S. degree in computer
application technology from Henan Polytechnic Uni-
versity, Jiaozuo, China, in 2015 and 2019, respec-
tively. She is currently working toward the Ph.D.
degree in computer science and technology with the
School of Computer Science and the School of Artifi-
cial Intelligence, Optics and Electronics, Northwest-
ern Polytechnical University, Xi’an, China.

Her research interests include hyperspectral image
processing and computer vision.

Mulin Chen received the B.E. degree in software
engineering and the Ph.D. degree in computer appli-
cation technology from Northwestern Polytechnical
University, Xi’an, China, in 2014 and 2019, respec-
tively.

He is currently a Researcher with the School of
Artificial Intelligence, Optics and Electronics, North-
western Polytechnical University. His research inter-
ests include computer vision and machine learning.

Yuan Yuan (Senior Member, IEEE) is currently a Full
Professor with the School of Artificial Intelligence,
Optics and Electronics, Northwestern Polytechnical
University, Xi’an, China. She has authored or coau-
thored more than 150 papers, including about 100 in
reputable journals, such as the IEEE TRANSACTIONS

AND PATTERN RECOGNITION, as well as the confer-
ence papers in CVPR, BMVC, ICIP, and ICASSP.
Her research interests include visual information pro-
cessing and image/video content analysis.

Jocelyn Chanussot (Fellow, IEEE) received the
M.Sc. degree in electrical engineering from the
Grenoble Institute of Technology (Grenoble INP),
Grenoble, France, in 1995 and the Ph.D. degree from
the Université de Savoie, Annecy, France, in 1998.

Since 1999, he has been with Grenoble INP, where
he is currently a Professor of signal and image pro-
cessing. Since 2013, he has been an Adjunct Professor
of the University of Iceland. In 2015–2017, he was
a visiting professor at the University of California,
Los Angeles (UCLA). He holds the AXA chair in

remote sensing and is an Adjunct professor at the Chinese Academy of Sciences,
Aerospace Information research Institute, Beijing. His research interests include
image analysis, hyperspectral remote sensing, data fusion, machine learning
and artificial intelligence. He has been a visiting scholar at Stanford University
(USA), KTH (Sweden) and NUS (Singapore).

Dr. Chanussot is the founding President of the IEEE Geoscience and Remote
Sensing French chapter (2007–2010), which received the 2010 IEEE GRSS
Chapter Excellence Award. He was the recipient of multiple outstanding paper
awards. He was the Vice-President of the IEEE Geoscience and Remote Sensing
Society, in charge of meetings and symposia (2017–2019). He was the General
Chair of the first IEEE GRSS Workshop on Hyperspectral Image and Signal
Processing, Evolution in Remote Sensing. He was the Chair (2009–2011) and
Co-Chair of the GRS Data Fusion Technical Committee (2005–2008). He was
a Member of the Machine Learning for Signal Processing Technical Committee
of the IEEE Signal Processing Society (2006–2008) and the Program Chair of
the IEEE International Workshop on Machine Learning for Signal Processing
(2009). He is an Associate Editor of IEEE TRANSACTIONS ON GEOSCIENCE AND

REMOTE SENSING, IEEE TRANSACTIONS ON IMAGE PROCESSING, and PROCEED-
INGS OF THE IEEE. He was the Editor-in-Chief of IEEE JOURNAL OF SELECTED

TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING (2011–2015).
In 2014, he was a Guest Editor of IEEE Signal Processing Magazine. He is a
member of the Institut Universitaire de France (2012–2017) and a highly cited
Researcher (Clarivate Analytics/Thomson Reuters, 2018–2019).

Qi Wang (Senior Member, IEEE) received the B.E.
degree in automation and the Ph.D. degree in pattern
recognition and intelligent systems from the Uni-
versity of Science and Technology of China, Hefei,
China, in 2005 and 2010, respectively.

He is currently a Professor with the School of
Artificial Intelligence, Optics and Electronics, North-
western Polytechnical University, Xi’an, China. His
research interests include computer vision, machine
learning, pattern recognition, and remote sensing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


