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Hyperspectral Classification via Global-Local
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Abstract—The fusion of spectral–spatial features based on deep
learning has become the focus of research in hyperspectral image
(HSI) classification. However, previous deep frameworks based
on spectral–spatial fusion usually performed feature aggregation
only at the branch ends. Furthermore, only first-order statistical
features are considered in the fusion process, which is not conducive
to improving the discrimination of spectral–spatial features. This
article proposes a global–local hierarchical weighted fusion end-
to-end classification architecture. The architecture includes two
subnetworks for spectral classification and spatial classification.
For the spectral subnetwork, two band-grouping strategies are
designed, and bidirectional long short-term memory is used to
capture spectral context information from global to local per-
spectives. For the spatial subnetwork, a pooling strategy based
on local attention is combined to construct a global–local pooling
fusion module to enhance the discriminability of spatial features
learned by a convolutional neural network. For the fusion stage, a
hierarchical weighting fusion mechanism is developed to obtain the
nonlinear relationship between both spectral and spatial features.
The experimental results on four real HSI datasets and a GF-5
satellite dataset demonstrate that the method proposed is more
competitive in terms of accuracy and generalization.

Index Terms—Band grouping, deep learning (DL), features
fusion, global–local, hyperspectral image (HSI).

I. INTRODUCTION

EACH pixel in hyperspectral images (HSIs) has a contin-
uous and rich spectral curve. Compared with RGB im-

ages and multispectral images, HSIs can simultaneously obtain
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rich spectral information and spatial information of ground
features [1], and have advantages in detecting and identifying
ground cover. Therefore, it is widely used in urban remote sens-
ing [2], environmental monitoring [3], precision agriculture [4],
and other fields [5]. Around the key issues in these application
fields, a large number of research topics have become the focus,
such as classification [6]–[9], target detection [10]–[12], super-
resolution [13]–[15], etc. Hyperspectral classification predicts
the label of each pixel, which is the basic task of most applica-
tions and has important research significance [16].

In recent years, the rapid development of advanced pattern
recognition methods has extensively promoted the development
of HSI classification [17]. Deep learning (DL) captures the
advanced features of the original data adaptively through a
hierarchical structure. As a powerful feature extraction tool [18],
it has been successfully applied in the field of remote sens-
ing [19]–[22]. Chen et al. [23] proposed a combination of
stacked autoencoder and principal component analysis (PCA)
to extract spectral features. Zhong et al. [24] developed a deep
belief network for hyperspectral classification tasks through reg-
ularized pretraining and fine-tuning processes, using diversity to
promote priors rather than latent factors. It benefited from the su-
perior performance of the recurrent neural network (RNN) [25]
and its variant, long short-term memory (LSTM) [26], in natural
language processing. In [27], Mou et al. considered the inherent
sequence data structure of hyperspectral pixels and introduced
an RNN to treat the spectrum of pixels as a 1-D sequence for
training. However, there are some problems with these networks,
due to they are all fully connected (FC) layers or additional
sequence updates are needed to optimize a large number of pa-
rameters, the training cost is increased significantly. In addition,
these networks did not fully exploit the 2-D spatial information
of HSI.

Convolutional neural network (CNN) can more effectively
address these problems due to its local connection and pa-
rameter sharing [28]. Hu et al. [29] used CNNs for feature
extraction of spectral vector for the first time and applied it to
HSI classification task. Xie et al. proposed a densely connected
CNN framework [30]. It extracts multiscale patches around the
center pixel and then uses dense modules to fuse multiscale
information for classification. In [31], a 3-D CNN (3D-CNN)
was proposed to simultaneously extract features in the spatial
and spectral domains of HSI for classification. In [32], the
hybrid 3-D–2-D CNNs were developed to reduce the model
complexity caused by using 3-D CNNs alone. Feng et al. [33]
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constructed a semisupervised CNN network to transform band
selection into a reinforcement learning problem. These studies
verify the effectiveness of CNN in hyperspectral classification
tasks. However, the CNN-based method will inevitably produce
the oversmoothing phenomenon, leading to the misallocation of
small targets and the loss of image edge details.

Based on the above work, many researchers have further
explored the method of hyperspectral feature extraction based
on DL. The two-branch network has recently attracted attention
in HSI classification. Compared with the single model, the dual-
branch network can break the performance bottleneck of the
single-branch network and achieve higher performance. Yang
et al. [34] used 1DCNN and 2DCNN to extract the spectral
features and spatial features of HSI, respectively, and cascade fu-
sion classification of the two extracted features. Hong et al. [35]
developed a combination of mini-graph convolutional networks
(miniGCNs) and CNN for hyperspectral classification and ex-
plored three fusion strategies (additive fusion, multiplicative
fusion, and cascade fusion) to compare the performance gains
achieved. A joint BiRNN-based spectral attention network and
CNN-based spatial attention network for hyperspectral classi-
fication was proposed in [36]. In [37], a gated recurrent units
(GRUs)-based HSI classification model of a cascaded RNN is
proposed, which designs two cascaded RNN models for fully
learning the information between the spectrals, and performs
a weighted fusion of the learned features, simultaneously, the
convolutional layer is integrated into the proposed model to learn
further the spatial characteristics of each band. Although the
above methods obtained excellent performance in hyperspectral
processing, the internal features in the spectral and spatial do-
mains were not fully explored since they only considered feature
aggregation at the end of the branches. In addition, previous
works usually used a simple linear fusion strategy for spectral
and spatial dimensional features, which reflects the limited
discriminability of pixel features and limits the classification
accuracy.

To overcome these problems, we propose a global–local hier-
archical weighting fusion network (GLH-WFN) for hyperspec-
tral classification. The model includes two data streams used to
extract the spectral and spatial features of HSI. In the spectral
subnetwork, we design two different band grouping strategies to
focus on the local and global information of the bands, and use
the BiLSTM as the backbone network to obtain the global–local
spectral features. In the spatial subnetwork, a global–local pool-
ing fusion module is designed after each convolutional layer to
enhance the complementarity of local and global information
in the downsampling process. To better fuse the spectral and
spatial features, we use hierarchical weighted fusion to obtain
the spectral–spatial second-order statistical features, which can
effectively utilize the correlation information between different
channels to generate more representative features compared to
the first-order statistical features [38],[39]. Moreover, the model
uses an end-to-end strategy to train both spectral and spatial
subnetworks simultaneously. The main contributions of this
article can be summarized as follows.

1) A global–local grouping fusion-based BiLSTM (GL-
BiLSTM) is proposed to full capture global and local

context information of the spectral vector, which can
further improve the separability of spectral features and
effectively overcome the training difficulties caused by
high-dimensional spectra.

2) Attention mechanism is introduced in the pooling layer,
and the global–local pooling fusion (GL-PF) module is
proposed. The module obtains spatial global and local
information by considering the strong complementarity
and correlation between different pooling layers, and can
adaptively sampling and enhancing important features to
effectively overcome interfering information in patches.

3) An end-to-end HSI supervised classification network
(GLH-WFN) is proposed. Compared with the existing
spectral–spatial joint network, GLH-WFN makes full use
of the second-order statistical properties of spectral and
spatial features. In addition, the model considers the
weights of spectral and spatial features in the merged layer.

The rest of this article is organized as follows:
Section II briefly reviews related works. Section III introduces
the proposed GLH-WFN in detail, including the spectral
subnetworks, spatial subnetworks, and hierarchical weighted
fusion layers. Section IV reports the experimental results and
analysis, and the practical application analysis of the proposed
method is presented in Section V. Finally, Section VI concludes
the article.

II. RELATED WORKS

In this section, we briefly review the relevant methods used in
the proposed framework, including BiLSTM, pooling operation
in CNN, and bilinear pooling.

A. Bidirectional Long Short-Term Memory

As a variant of RNN [25], LSTM [26] is proposed to solve
the problem of gradient disappearance and gradient explosion
caused in the process of long sequences modeling. Compared
with RNN, LSTM adds a memory cell and three control gates
(forget gate, input gate, and output gate). Specifically, at time t,
the three control gates can be expressed as follows:

Forget Gate

ft = σ (Whf · ht−1 +Wxf · xt + bf ) . (1)

Input Gate

it = σ (Whi · ht−1 +Wxi · xt + bi) (2)

C̃t = tanh (WhC · ht−1 +WxC · xt + bC) (3)

Ct = ft � Ct−1 + it � C̃t. (4)

Output Gate

ot = σ (Who · ht−1 +Wxo · xt + bo) (5)

ht = ot � tanh (Ct) (6)

where xt, ht represent input and output of the hidden
layer, respectively, and ft, it, and ot represent the for-
get gate, input gate, and output gate, respectively. Ct

is the cell state, and C̃t is the candidate cell value.
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{(WΔf , bf ), (WΔi, bi), (WΔo, bo), (WΔC , bC),Δ = h, x} are
the weight matrices and bias terms of forget gate, input gate,
output gate, and candidate cell value, respectively. σ(·) is the
sigmoid function. “�” is the elementwise multiplication.

The unique gating mechanism of LSTM can significantly im-
prove the capacity to capture long sequence information. How-
ever, the LSTM only considers past information. BiLSTM [40]
consists of a forward LSTM layer and a backward LSTM
layer. These two LSTM layers trained along opposite directions
connect the output layer simultaneously, so that the output is
determined by the states from past and future. Specifically, at
time t, the output of the hidden layer of the LSTM in two different
directions can be expressed as

−→
ht = LSTM

(
xt,
−→
h t−1

)
(7)

←−
ht = LSTM

(
xt,
←−
h t−1

)
(8)

where
←−
h t−1,

−→
h t−1 represent the forward and backward hidden

layer output at (t−1) time, respectively, and LSTM represents
LSTM unit. After two LSTM hidden layer outputs in different
directions are obtained, they are concatenated to form the final
output of the entire BiLSTM hidden layer. The process can be
expressed as

Ht =
[−→
ht ,
←−
ht

]
(9)

where [·, ·] represents connection operation, and Ht is the final
output.

B. Pooling Operation in CNNs

Pooling layers are essential for CNNs in reducing the size
of the model and improving operating efficiency. Further-
more, they can also expand the receptive field and improve
the robustness of features. Currently, max-pooling, average-
pooling, and sum-pooling are used widely in many popular
backbone networks. Max-pooling takes the largest value in the
feature area as the output, average-pooling, and sum-pooling
take the average value and sum in the corresponding area as
the output. In recent years, the research on pooling strategy has
attracted more attention [38]. In [41], the researchers proposed
a random pooling, which selects regional elements randomly
according to their probability value. A combination based on
max-pooling and average-pooling is proposed in [42]. Saeedan
et al. [43] proposed a differentiable pooling strategy with higher
performance than the max-pooling layer. In contrast to the
traditional N ×N local area, a stripe pooling strategy with a
narrow convolution kernel (1×N or N×1) is proposed in [44],
which is conducive to improving the ability of the backbone
network to simulate long-distance relationships. Furthermore,
other pooling methods are used to achieve specific tasks. He et al.
proposed spatial pyramid pooling [45], which uses a pooling
layer with asynchronous length and window size to obtain
multiscale information, and solves the problem of fixed input
size and repeated convolution calculations in the network. These
pooling strategies have improved the performance of CNN in
different tasks.

C. Bilinear Pooling

Recent works [38], [39] have shown that high-order statistics
have achieved exciting performance in computer vision tasks.
Bilinear pooling shows great potential for feature fusion by
modeling higher order statistics information of features [46].
According to the different sources of feature extraction, it
can be divided into multimodal bilinear pooling and homoge-
neous bilinear pooling (second-order pooling). For two features
fA(I, l) ∈ RD×M and fB(I, l) ∈ RD×N of sample I at posi-
tion l, first perform an outer product operation, as follows:

Fu (l, I, fA, fB) = fT
A (l, I)fB(l, I) ∈ RM×N . (10)

The sum-pooling operation is used for all positions of Fu to
obtain the matrix ξ

ξ(I) =
∑
l

Fu (l, I, fA, fB) ∈ RM×N . (11)

Finally, matrix ξ is spanned into a vector, denoted as bilinear
vector α

α = vec(ξ(I)) ∈ RMN×1. (12)

After the matrix normalization operation and L2 normal-
ization operation are performed on α, the fusion feature γ is
obtained

β = sign(α)
√
|α| ∈ RMN×1 (13)

γ = β/‖β‖2 ∈ RMN×1 (14)

where M and N represent the number of channels.
In general, bilinear pooling can generate more representative

features by aggregating second-order statistics between features
due to [47]: 1) By describing the relationship between feature
vectors, it can make full use of the correlation information
between features. 2) The second-order statistic is aggregated by
the outer product operation, which can fully capture the global
representation between features.

III. PROPOSED METHOD

As shown in Fig. 8, the method proposed in this article
includes three parts: 1) Global–local grouping fusion-based
BiLSTM, 2) global–local pooling fusion-based CNN, and 3)
spectral–spatial hierarchical weighting fusion. The method en-
hances the spectral–spatial feature representation of the HSI and
simultaneously uses the high-order statistical information of the
spectral–spatial feature to strengthen their connection, which is
more conducive to improving classification accuracy.

A. Spectral: Global–Local-Grouping Fusion-Based BiLSTM

DL has been shown to be significantly effective in dealing
with complex spectral features in HSI [37]; vector-based spectral
classification methods focus only on the local dependency of
the spectrum and do not take into account the complementarity
between nonadjacent bands [27]. In contrast, BiLSTM repre-
sents the spectrum from a sequence perspective and pays more
attention to its contextual information. If the high-dimensional
spectral vectors are directly input into the BiLSTM band by band
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Fig. 1. Illustration of the two spectrum grouping strategies

for training, it will make the network structure too deep, thus
making training difficult. Therefore, it is necessary to reasonably
group spectral vectors consisting of hundreds of bands.

We design two grouping strategies from the global and local
perspectives of the whole spectral band to focus on the contextual
information between the spectra. Specifically, for a pixel u in
HSI, the ith reflection value can be described as ui. Let n be the
total number of bands and g(i) be the input sequence group of
the i-th time step in BiLSTM. Then, the two grouping strategies
can be described as follows.

Adjacent Grouping Strategy

g
(1)
ad = [u1, u2, . . . , um]

g
(2)
ad = [um+1, um+2, . . . , u2m]

. . .

g
(τ)
ad =

[
u(τ−1)m+1, u(τ−1)m+2, . . . , un

]
. (15)

Interval Grouping Strategy

g
(1)
in =

[
u1, u1+τ , . . . , u1+τ(m−1)

]

g
(2)
in =

[
u2, u2+τ , . . . , u2+τ(m−1)

]

. . .

g
(τ)
in = [ui, ui+τ , . . . , un] (16)

where τ represents the number of time steps in BiLSTM, and m
is the length of the input sequence at a time step. Fig. 1 illustrates
an example of two different grouping strategies.

As show in Fig. 2, suppose the time step is 3, we plot the
correlation matrix between the spectral bands of Indian Pines
images (See Section IV-A for details) and the interband cor-
relation matrix between the spectral groups generated by the
two grouping strategies. From Fig. 2(b)–(d), we can find that
the correlation matrix between spectral groups consisting of
adjacent band grouping strategies is diverse, and different groups
have different degrees of correlation. The wavelength span of the
spectral groups within the same step is short, and this grouping
strategy is more concerned with the local characteristics of the

Fig. 2. Spectral correlation matrices of Indian Pines dataset. (a) Original
spectral band. (b)–(d) Spectral group generated by adjacent band grouping
strategy (i.e., local grouping strategy). (e)–(g) Spectral group generated by
interval band grouping strategy (i.e., global grouping strategy).

spectrum. However, Fig. 2(e)–(g) shows that correlation ma-
trices between the spectral groups obtained from interval band
grouping strategies are similar and consistent with the original
bands [see Fig. 2(a)]. The wavelength span of the spectral groups
within the same step is long, and this grouping strategy is more
concerned with the global characteristics of the spectrum.

The common point of the two grouping strategies is that
they are beneficial to solving the complex of BiLSTM training
caused by the excessively deep spectral dimension. In order to
fully mine the deep spectral information, we combine the global
and local information of the band simultaneously to further
strengthen the discrimination of spectral features. As shown in
Fig. 3, for the pixel u, the spectral bands are grouped by two
different strategies and fed into two models simultaneously for
training, and the features learned by the two strategies are fused
using elementwise addition. We consider their contributions to
be equivalent and the process is represented as

Fspe = Fglobal ⊕Flocal (17)

where Fglobal and Flocal represent the outputs of the interval
band grouping strategy and the adjacent band grouping strategy
through the FC layer of BiLSTM, respectively;Fspe is the fusion
feature and ⊕ denote elementwise addition. Then, after Fspe

passes through an FC layer, the softmax layer determines the
label allocation.

B. Spatial: Global–Local-Pooling Fusion-Based CNN

When using CNN for feature extraction of HSI, the neigh-
borhood patch centered on the target pixel is usually selected to
replace its spatial information as the input of the network. As
shown in Fig. 4, on the one hand, the pooling operation inevitably
leads to the loss of mapping information, so it is necessary
to consider the most discriminative features of sampling. On
the other hand, in complex hyperspectral scenes, there is less
spatial information representing the target pixel in patch, and the
interfering spatial information may have a greater interference
to the expression of pixel labels on the feature map. In the case of
limited network structure, a single pooling operation often can-
not overcome this problem well. Inspired by [48], we introduce
attention learning in pooling layer and propose GL-PF module
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Fig. 3. Flowchart of the proposed GL-BiLSTM.

Fig. 4. (From left to right) HSI after dimensionality reduction, the groundtruth
of the target pixel and its corresponding neighborhood patch, the corresponding
activation in the feature map, and finally the pooling activation we want.
(a) Pixels at the boundary of the two classes. The purple tone activation is
caused by Soybeans-C, and the orange tone activation is caused by the Stone.
We want to get the purple tone activation in the patch above and the orange tone
activation in the patch below. (b) The activation process of a target pixel in a
more complex scene.

Fig. 5. Flowchart of the proposed GL-CNN.

in the spatial subnetwork to solve these problems. Next, we will
give a detailed description of the proposed gobal–local-pooling
fusion-based CNN (GL-CNN). Fig. 5 shows the classification
framework of GL-CNN. First, we perform PCA dimensionality
reduction processing on the original spectrum to achieve the
purpose of reducing computational consumption and then con-
struct a patch centered on the target pixel as the input of CNN.
After each convolution, we consider three pooling strategies
(LA pooling, max pooling, and average pooling), by construct-
ing GL-PF module to obtain downsampled output features.

We describe the construction of LA-pooling and gobal–local
pooling fusion below.

1) Local Attention Pooling: From the perspective of local
importance, for the feature map I after convolution, Ω is the
kernel index set corresponding to the relative sampling position
(Δx,Δy) in the sliding window, and the starting position of the
sliding window (i.e., the top left of the feature map I) is set to
(x, y), the input position is set to (x,′ y′), the pooling process
can be expressed as

Ox′,y′ =

∑
(Δx,Δy)∈Ω F (I)x+Δx,y+ΔyIx+Δx,y+Δy∑

(Δx,Δy)∈Ω F (I)x+Δx,y+Δy
(18)

where F (I) represents the importance map, and the size is the
same as the input feature map I . We learn the importance map
through a learnable attention module G(I) and determine the
downsampling features through the attention map. As shown in
Fig. 6, G(I) is composed of a 1× 1 convolution, which is a tiny
fully convolutional network used to capture important maps.
AffinedIN denote affine instance normalization, which makes
each channel of each feature map obey the normal distribution,
and then use the amplified sigmoid function to assist it to adjust
the range. The attention module G(I) can be written by the
following form:

G(I) = σ (IN (I ∗W1 + b1)) (19)

where W1 and b1, respectively, denote convolution kernel
weights and bias parameters, IN denotes instance normaliza-
tion, and σ is the sigmoid function. In order to keep the im-
portance weight positive and propagate backward more readily,
exp(·) is added after the attention module G(I). The importance
map can be described as

F (I) = exp(G(I)). (20)

Based on the importance map obtained, the feature output of
location (x, y) using LA pooling can then be described as

Ox′,y′ =

∑
(Δx,Δy)∈Ω Ix+Δx,y+Δy exp(G(I))x+Δx,y+Δy∑

(Δx,Δy)∈Ω exp(G(I))x+Δx,y+Δy
.

(21)
2) Global–Local-Pooling Fusion Module: Average pooling

can reduce the increase in the variance of the estimated value
caused by the limited size of the neighborhood, and max pooling
can reduce the estimated mean deviation caused by the convolu-
tional layer parameter error theory [41]. Average pooling takes
the mean value of the overall data as the output of pooling,
which is focused on the background information of the image
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Fig. 6. Process of LA pooling.

Fig. 7. Illustration of feature maps obtained by different pooling layers in the
three scenes of Pavia University. (a) Input patches; (b)–(d) show the downsam-
pled feature maps of max pooling, average pooling, and LA pooling with 1×
pooling operation, respectively.

and reflects the global features, whereas max pooling takes the
maximum value as the pooling output, which focuses more
on the texture information of the image and reflects the local
features. Fig. 7 illustrates the Pavia University (see Section IV-A
for details) as an example, and selects three scenes to illustrate
the feature maps obtained by performing a pooling operation
with three different pooling strategies. To fully explore the
global and local features in the pooling layer, we consider
the strong complementarity and correlation between the most
discriminative activation of the pixels obtained by LA-pooling
downsampling and the background features and texture features,
by cascading the features obtained by LA pooling and the fea-
tures obtained by max pooling and average pooling, respectively,
and finally adopt elementwise addition and fusion to obtain the
final downsampling feature vector. The processes are described
as follows:

s
(M−L)
i = [MaxPooling(Ii),LAPooling(Ii)]

s
(A−L)
i = [LAPooling(Ii),AvePooling(Ii)]

Si = s
(M−L)
i ⊕ s

(A−L)
i (22)

where Ii(i = 1, 2, 3) represents the features after different
convolutional layers, s

((M/A)−L)
i (i = 1, 2, 3) represents the

features of different downsampling layers of LAP-pooling
operation and Max/Ave-pooling operation that are cascading,
and Si(i = 1, 2, 3) represents the fusion features after different

downsampling layers. [·, ·] denotes concatenation and⊕ denotes
elementwise addition. After the last downsampling operation,
we add an FC layer to obtain the feature vector, and finally,
determine the label of the target pixel through the softmax layer.

C. Spectral–Spatial: Hierarchical Weighting Fusion

The fusion of spectral and spatial features is of great im-
portance for HSI classification. Previous studies adopted linear
fusion strategy [49], which only considered the first-order spec-
tral and spatial statistical features. The proposed GLH-WFN
makes full use of the second-order spectral and spatial statistical
features to obtain a more discriminative global representation.
Furthermore, considering that the importance of spectral and
spatial features varies with objects and scenes, we design a
weighting matrix to improve the spectral–spatial second-order
statistics of the fusion layer. It can be trained in the network
along with other parameters. In this section, we describe the
proposed GLH-WFN in detail.

For the features Fspe ∈ R1×M and Fspa ∈ R1×M of the pixel
x extracted by the two branches, first perform the outer product
learning high-order statistical information

Q = F
speFspa ∈ RM×M (23)

where Q ∈ RM×M is the second-order-pooling matrix of
spectral–spatial characteristics. The outer product can consider
the paired interaction of spatial–spectral features to constrain
their output, similar to the feature expansion in the secondary
kernel [46]. Given that the spectral dimension and the spatial
dimension have different constraints to the learned new features,
we first calculate the difference values of different nodes on the
spectrum and spatial feature vectors

D(i,j) =
∣∣f i

spe − f j
spa

∣∣ (24)

where f i
spe and f j

spa (i, j ∈ {1, 2, . . . ,M}) denote the ith and the
jth node of the spatial and spectral feature vectors, respectively.
With the above obtainedD(i,j), then by mapping it to adjust the
range to get the weight w(i,j)

w(i,j) = e−D(i,j) (25)

the weight matrix W ∈ RM×M can be constructed by w(i,j).
Then, the weighted second-order-pooling matrix can be ex-
pressed as

Qw = W ·Q ∈ RM×M . (26)
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Fig. 8. Flowchart of the proposed GLH-WFN.

Finally, perform matrix normalization and L2 norm normal-
ization on the weighting matrix Qw, and flatten it into a vector.
The specific description is as follows:

X = sign(Qw)
√
|Qw| ∈ RM×M (27)

Y = X/‖X‖2 ∈ RM×M (28)

Z = vec(Y ) ∈ RMM×1. (29)

Fig. 8 illustrates the proposed GLH-WFN. After obtaining
the fused vector Z, we add an FC layer to obtain the joint
feature vector, and finally use the softmax layer to determine
the probability of each category to complete the classification.

IV. EXPERIMENTAL RESULTS

The organizational structure of the experiment is as follows.
First, four benchmark datasets for experimental analysis are
introduced. Second, the impact of three parameters in the model
on classification accuracy is analyzed. Third, the ablation experi-
ments on the spectral and spatial branches are analyzed. Fourth,
the effects of different feature fusion strategies on the model
effect are compared. Fifth, we compare the proposed GLH-
WFN with different classification methods on four hyperspec-
tral datasets and analyze their corresponding time complexity.
Finally, the practicability of GLH-WFN is analyzed using the
hyperspectral dataset of Dongting Lake watershed obtained by
the GF-5 satellite.

This article uses overall accuracy (OA), average accuracy
(AA), category accuracy (CA), and the kappa coefficient
(Kappa) as evaluation indicators. All experiments are repeated
10 times to improve the scientific credibility of the experimental
results, and the average value and standard deviation are used
as the final results of the experiment. The experiment is imple-
mented under Keras 2.2.4 with TensorFlow backend, The batch
size is set to 128, training epoch to 500, and learning rate to
1e-4 in the experiment. Adam optimizer is adopted to update

Fig. 9. Indian Pines dataset. (a) False-color composite map. (b) Groundtruth.
(c) Color coding of the label.

network parameters. All experiments are performed on a PC
with an Intel(R) Core(TM) i7-7800X CPU 3.50 GHz, NVIDIA
GTX 1080 Ti GPU, and 32 GB RAM.

A. Datasets Description

Experiments were conducted on four benchmark hyperspec-
tral datasets (Indian Pines, Pavia University, Salinas, and Wash-
ington DC) to evaluate the effectiveness of the proposed GLH-
WFN. The corresponding false-color composite image and
Groundtruth map are shown in Figs. 9– 12, and corresponding
specific categories information and training samples are shown
in Table I. The specific introduction of the datasets is as follows.

1) The Indian Pine dataset was acquired by the AVIRIS
hyperspectral sensor in the Indian Pine forest test area
in northwestern Indiana, USA. Its spatial dimensions are
145×145, and its spatial and spectral resolutions are 20
m and 10 nm, respectively. 20 wavebands absorbed by
atmospheric water were removed from the original bands,
leaving 200 bands for classification, and the image con-
tains 10 249 labeled samples and 16 categories.

2) The Pavia University dataset was taken by the ROSIS-3
sensor at the University of Pavia in Italy. Its spatial size
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TABLE I
NUMBER OF SAMPLES IN EACH CATEGORY USED FOR TRAINING AND TESTING

IN THE INDIAN PINE, PAVIA UNIVERSITY, SALINAS, AND WASHINGTON DC
DATASETS

Fig. 10. Pavia University dataset. (a) False-color composite map.
(b) Groundtruth. (c) Color coding of the label.

Fig. 11. Salinas dataset. (a) False-color composite map. (b) Groundtruth.
(c) Color coding of the label.

Fig. 12. Washington DC dataset: (a) False-color composite map.
(b) Groundtruth. (c) Color coding of the label.

is 610×340, the spatial resolution is 1.3 m, and the wave-
length range is 0.4–0.86μm. Remove 12 noise bands based
on the original band, leaving 103 bands. The HSI data
contains 41 176 labeled pixels and 9 categories.

3) The Salinas dataset was taken by the AVIRIS hyper-
spectral sensor in the Salinas Valley of California, USA.
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Fig. 13. Effect of principal component K and spatial neighborhood patch λ on classification performance. (a) Indian Pines dataset. (b) Pavia University dataset.
(c) Salinas dataset. (d) Washington DC dataset.

The original data contains 224 bands, and 204 bands
remain after removing 20 bands absorbed by atmospheric
water. The image size is 512×217×204. It contains 54 129
labeled pixels and 16 categories.

4) The Washington DC dataset was collected by the HYDCIE
hyperspectral sensor over the Washington DC mall. Its
space size is 280×307, contains 210 (0.4–2.4 μm) contin-
uous bands, and 19 water absorption bands (0.9–1.4 μm)
are removed, leaving 191 bands for analysis. The data
contains 9899 labeled pixels and 6 categories.

B. Parameter Tuning

For the proposed GLH-WFN model, in the spatial subnet-
work, the PCA-based dimensionality reduction method is first
adopted to reduce the original HSIs. Then the spatial neighbor-
hood patch centered on the target pixels is selected as the input
of the CNN. In addition to the above two critical parameters, in
the spectral subnetwork, the step size of the band-grouping also
is essential to the classification of the model. This section will
explore the influence of the number of principal components,
spatial neighborhood block size and band-grouping step on
classification accuracy.

1) Number of Principal Components(PCs) : Dimensionality
reduction of the original HSI can reduce the training cost while
retaining most of the valuable information. We set the range
of PCs K to [1–6] to analyze the impact on classification. As
shown in Fig. 13, when the number of principal components
K increases, OA values shows a trend of first increasing and
then leveling off. To balance the effects of training cost and
classification accuracy, we set K as 5 for Indian Pines, Pavia
University, and Salinas, and 6 for Washington DC in subsequent
experiments.

2) Size of Spatial Neighborhood Patch: We evaluate the impact
of the spatial neighborhood patch size on the classification
accuracy in detail by setting the spatial neighborhood patch λ

size range of [17–31] with a step size of 2. As shown in Fig. 13,
the OA values obtained by different spatial neighborhoods differ.
Generally speaking, a larger spatial neighborhood patch λ can
represent a larger homogeneous area. However, it will inevitably
introduce unnecessary information. In the subsequent experi-
ment, We set the spatial patch size to [27×27] for Indian Pines,
Pavia University, and Salinas, and [21×21] for Washington DC.

3) Spectral Grouping Step: As shown in Fig. 14, when the
timestep changes, it will lead to different classification per-
formance. In general, the OA values decrease with increasing
timestep, which indicates that the shallower network is con-
ducive to improving the performance of the model. Moreover,
when the timestep is small, OA fluctuates less in Indian Pines,
Pavia University, and Salinas, which means that the model is
more stable under this setting. In the following experiment, the
timestep of all datasets is set to 2.

C. Analysis of Spectral and Spatial Model Branches

In the third experiment, the effects of different grouping
strategies in the spectral branch and pooling methods in the
spatial branch on classification accuracy are explored.

1) Spectral Branch Grouping Strategy: The band-grouping
strategy is essential for extracting the rich spectral information of
the HSI. In this experiment, we analyzed the impact of different
grouping strategies on classification performance and compared
them with the proposed grouping strategy. The results of the
experiment are shown in Table II. In the band-by-band-grouping
method, each band corresponds to the time step of the BiLSTM.
This grouping method is often accompanied by a deeper network
that produces high training time costs. The “all-in-one” grouping
strategy means dividing all bands in HSI into one time step as the
input of BiLSTM. It can capture the global context information
of the entire band and retain the continuity of the original
frequency band, while ignoring the local context information
in the local adjacent frequency bands. Adjacent grouping and
interval grouping indicate that the input sequences are divided
into n frequency band groups in an adjacent and spaced manner
with n time steps, corresponding to (15) and (16).

Based on the results shown in the table, the proposed global
and local grouping strategy achieved the highest accuracy
in four datasets. Compared to Band-by-band, Indian Pines,
Pavia University, Salinas, and Washington DC increased by
16.37%, 10.9%, 6.8%, and 9.29%, respectively in OA, due
to GL-BiLSTM which integrates global information and lo-
cal information between bands. Furthermore, the time step set
in this article is 2, which has a higher advantage in training
efficiency.

2) Spatial Branch Ablation Analysis: We explore the impact of
pooling combination methods on the accuracy of spatial branch
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Fig. 14. Effect of grouping timestep on classification performance. The shaded area represents the standard deviation. (a) Indian Pines dataset. (b) Pavia University
dataset. (c) Salinas dataset. (d) Washington dc dataset.

TABLE II
PERFORM CLASSIFICATION PERFORMANCE ANALYSIS ON THE DIFFERENT BAND GROUPING METHODS OF THE SPECTRAL NETWORK BRANCH IN

THE FOUR BENCHMARK DATASETS

The best accuracy value for each column is highlighted in bold.

TABLE III
CLASSIFICATION PERFORMANCE OF DIFFERENT POOLING COMBINATIONS OF SPATIAL NETWORK BRANCHES IN FOUR BENCHMARK DATASETS

The best accuracy value for each column is highlighted in bold.

classification by comparing the performance of different pooling
combination methods on four different datasets. The relevant
results are shown in Table III. We used common fusion methods
to integrate features, where “+” indicates elementwise addition
and “[·, ·]” denotes connection along the channel axis. Compared
to elementwise addition, connection increases the number of
channels for feature mapping, which leads to an increase in
network parameters. As can be seen from the table, fusion of
pooling layers is effective in improving the classification accu-
racy compared to single pooling in the four benchmark datasets.
Furthermore, elementwise addition-based fusion can obtain
better classification performance than connection-based fusion.
However, as the number of pooling layers fused increases,
elementwise addition-based fusion generates some redundant

information, leading to a decrease in classification accuracy,
which is more evident in the Washington DC dataset. In contrast,
the proposed GL-PF module strengthens the most important
features of the central pixel in the patch and simultaneously
integrating the complementary nature of other pooling layers,
and achieves the best results on all four benchmark datasets.

D. Comparison of Different Feature Fusion Strategies

The fusion of spectral and spatial features is an important
process in the proposed model. An effective fusion strategy can
improve the correlation and complementarity of HSI spectral–
spatial information. In this section, we compare different fu-
sion strategies (i.e., addition, concatenation, multiplication, and
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Fig. 15. Performance analysis of the proposed method under different fusion strategies. Error bar represents the standard deviation. (a) Indian Pines dataset.
(b) Pavia University dataset. (c) Salinas dataset. (d) Washington DC dataset.

bilinear pooling) to verify the effectiveness of the proposed
fusion strategy. Fig. 15 shows the classification indexes (OA,
AA, Kappa) and corresponding standard deviation results ob-
tained using different fusion strategies in four datasets. The
bilinear pooling-based fusion method is superior to the other
three simple linear fusion methods in three different classifica-
tion indexes. Hierarchical weighting fusion can further improve
the correlation of spectral–spatial information and obtain more
discriminative spectral–spatial features. In addition, hierarchical
weighting fusion has a smaller standard deviation than bilinear
pooling, which indicates that the model under the fusion method
is more stable. This result is more evident for the Indian Pines
and Pavia University.

E. Comparisons With Other Approaches

In this section, we quantitatively analyze and compare the
classification results obtained by the proposed GL-BiLSTM,
GL-CNN, and GLH-WFN methods with several advanced clas-
sification methods. These methods include extended morpho-
logical profiles (EMP) [50] represented by traditional methods,
and classification methods based on DL such as LDCR [51],
2DCNN, 3DCNN [31], HybridSN [52], spectral–spatial atten-
tion networks (SSAN) [36], and spectral–spatial residual net-
work (SSRN) [53].

These comparison methods can be divided into spectral-
based, spatial-based, and spectral-spatial-based methods de-
pending on the feature information used for classification. For
the classification methods based on spectral level, including
LDCR, and our proposed GL-BiLSTM. The LDCR proposed
a multitask DL model to learn the compact representation of
HSI through end-to-end strategy, and its parameter settings,
see [51]. In the classification method based on the spatial level,
we compared EMP, 2DCNN, and the proposed GL-CNN. The
EMP uses morphology-based methods to extract spatial struc-
ture features, and the support vector machines (SVM) based on
RBF kernel were used to classify the extracted features. 2DCNN
and GL-CNN have a similar architecture, consisting of three con-
volutional blocks and two FCs. The last FC layer is the softmax
layer. Each convolutional block contains a convolutional layer, a

ReLU activation layer, and a max-pooling layer. The specific re-
ceptive field size is consistent with GL-CNN. Table VIII presents
the architecture and specific parameters of GL-CNN, in addi-
tion to the FC layer specific parameters. 3DCNN, HybridSN,
SSAN, SSRN, and our proposed GLH-WFN were divided into
classification methods based on spectral–spatial level. The pa-
rameters in 3DCNN, HybridSN, SSAN, and SSRN set the
default values of their references.

The first comparative experiment is to analyze the Indian
Pines dataset. Fig. 16 illustrates the results obtained by different
classification methods. Due to the lack of spatial information,
LDCR and GL-BiLSTM inevitably produces some noise ef-
fects. In contrast, other methods that use spatial information
achieve superior results in eliminating noise and can obtain more
accurate classification maps. Table IV presents the accuracy
values obtained by different classification methods. The OA
value of our proposed GL-BiLSTM reaches 89.43%. Although
it is competitive in the spectral-based classification method,
it still has a particular gap with the spatial-based comparison
method. In the comparison method based on spatial information,
GL-CNN has 4.29% and 1.19% higher OA values than EMP
and 2DCNN, respectively. Among the classification methods
based on spectral-spatial level, GLH-WFN is the best in terms
of OA, AA, and Kappa, and has a lower standard deviation,
which indicates that the method is more stable.

The second and third experiments were conducted on
the Pavia University and Salinas. Figs. 17 and 18 show the
results of different comparison methods of experiments on
the two databases. Compared with other comparison methods,
the proposed GLH-WFN can more accurately identify the
edge contours of the target features and can remove the
interference pixels of small samples and obtain a more accurate
classification result map on the two datasets. Furthermore, as
shown in Tables V and VI, the OA values of the proposed
method on Pavia University and Salinas reached 99.26% and
99.37%, which were increased by 0.62% and 1.90% compared
with SSRN, respectively. The proposed method has obvious
advantages over other classification methods.

The last experiment was conducted on the Washington DC
dataset. Table VII shows the quantitative results of the different
methods in Washington DC. The proposed GLH-WFN has
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TABLE IV
CLASSIFICATION ACCURACY AND RUNNING TIME OF DIFFERENT ALGORITHMS ON THE INDIAN PINES DATASET. THE DISTRIBUTION OF TRAINING SET AND TEST

SET ARE SHOWN IN TABLE I

The value in brackets represents the corresponding standard deviation. The best accuracy values base on different levels of methods are highlighted in bold.

TABLE V
CLASSIFICATION ACCURACY AND RUNNING TIME OF DIFFERENT ALGORITHMS ON THE PAVIA UNIVERSITY DATASET, THE DISTRIBUTION OF TRAINING SET,

AND TEST SET ARE SHOWN IN TABLE I

The value in brackets represents the corresponding standard deviation.

Fig. 16. Classification map obtained by (a) LDCR (85.93%), (b) GL-BiLSTM (89.43%), (c) EMP (93.83%), (d) 2DCNN (96.93%), (e) GL-CNN (98.12%),
(f) 3DCNN (90.80%), (g) HybridSN(97.67%), (h) SSAN (97.22%), (i) SSRN (97.99%), and (j) GLH-WFN(99.15%) in Indian Pines. Number in brackets represents
the OA (in%).
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TABLE VI
CLASSIFICATION ACCURACY AND RUNNING TIME OF DIFFERENT ALGORITHMS ON THE SALINAS DATASET, THE DISTRIBUTION OF TRAINING SET AND TEST SET

ARE SHOWN IN TABLE I

The value in brackets represents the corresponding standard deviation. The best accuracy values base on different levels of methods are highlighted in bold.

TABLE VII
CLASSIFICATION ACCURACY AND RUNNING TIME OF DIFFERENT ALGORITHMS ON THE WASHINGTON DC DATASET. THE DISTRIBUTION OF TRAINING SET

AND TEST SET ARE SHOWN IN TABLE I

The value in brackets represents the corresponding standard deviation. The best accuracy values base on different levels of methods are highlighted in bold.

Fig. 17. Classification map obtained by (a) LDCR (92.36%), (b) GL-BiLSTM (95.08%), (c) EMP (96.35%), (d) 2DCNN (97.66%), (e) GL-CNN (98.34%),
(f) 3DCNN (92.51%), (g) HybridSN(99.08%), (h) SSAN (97.50%), (i) SSRN (98.64%), and (j) GLH-WFN (99.26%) in Pavia University. Number in brackets
represents the OA (in%).
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Fig. 18. Classification map obtained by (a) LDCR (91.47%), (b) GL-BiLSTM (93.08%), (c) EMP (97.36%), (d) 2DCNN (98.19%), (e) GL-CNN (99.04%), (f)
3DCNN (92.51%), (g) HybridSN (99.03%), (h) SSAN (97.06%), (i) SSRN (97.47%), and (j) GLH-WFN (99.37%) in Salinas. Number in brackets represents the
OA (in%).

Fig. 19. Classification map obtained by (a) LDCR (90.76%), (b) GL-BiLSTM (94.63%), (c) EMP (92.56%), (d) 2DCNN (85.31%), (e) GL-CNN (90.36%),
(f) 3DCNN (92.35%), (g) HybridSN (88.32%), (h) SSAN (88.47%), (i) SSRN (92.62%), and (j) GLH-WFN (97.78%) in Washington DC. Number in brackets
represents the OA (in%).

TABLE VIII
NETWORK SETTINGS OF GLH-WFN, SPATIAL BRANCHES AND SPECTRAL

BRANCHES, WHERE N IS THE CLASS OF DATASETS

significant advantages over other methods. Moreover, due to
the dense distribution of objects in this scene, the spatial-based
method classification performs poorly in terms of accuracy com-
pared to the spectral-based method. Excellent algorithms like
HybridSN and SSRN have not achieved exciting performance in
this scene. Fig. 19 shows the classification maps of the different
methods on the Washington DC.

F. Computing Cost

In this experiment, we analyzed the computational cost of
different comparison methods. As presented in Tables IV to VII,
the training time is positively correlated with the spatial size of
the data samples and the spectral depth. The computational cost
of SSAN is the highest among all methods due to the SSAN
having a deeper spectral branch network, which produces huge
training costs. In contrast, our proposed spectral classification
model with a grouping strategy greatly reduced the training cost.
Compared with SSRN and HybridSN, the computational cost
of our method has certain advantages. Moreover, although a
large amount of time is consumed in the training stage, the time
required in the test stage is greatly reduced.

V. PRACTICAL APPLICATION OF ANALYSIS

In this section, we further verify the practicability of the
proposed GLH-WFN method, using the HSI data collected
by the GF-5 satellite for the next experiment. The GF-5 is
the world’s first full-spectrum hyperspectral satellite to achieve
comprehensive observations of the atmosphere and land. GF-5 is
loaded with two payloads for land observation and four payloads
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Fig. 20. Classification map for GF-5 dataset. (a) False-color composite map. (b) Groundtruth. (c) GL-BiLSTM (95.42%). (d) EMP (95.57%). (e) 2DCNN
(96.03%). (f) GL-CNN (98.02%). (g) HybridSN (97.52%). (h) SSRN(97.90%). (i) GLH-WFN (98.41%). Number in brackets represents the OA (in%).

for atmospheric observation. As the world’s first satellite-borne
hyperspectral camera that takes into account broad coverage
and a wide spectrum, the visible shortwave infrared hyper-
spectral camera can obtain a wealth of information on ground
features [54]–[56]. This article uses the HSI of the DongTing
Lake basin acquired by the payload on January 22, 2019, and
uses one of the scenes as an example for experiment.

The raw data have been preprocessed, including atmospheric
correction and radiation correction. The spectral coverage of
this scene is 400–2500 nm, the spatial resolution is 30 m, 20
bad bands are eliminated, 310 spectral bands are reserved for
classification, and the image window size is 456×352 pixels.
Fig. 20 illustrates the false-color composite map and the ground
truth map. The scene is marked with 6 classes and a total of 4816
labeled samples.

In the experiment classifying the GF-5 hyperspectral dataset,
we randomly selected 15 label samples per annotated class in
the ground truth map as the training set and the remaining
samples of each annotated class as the test set. Fig. 20 shows the
qualitative classification maps corresponding to different clas-
sification methods. From the perspective of OA, our proposed
GL-BiLSTM can achieve 95.42%. However, the spectral-based
classification method inevitably produces some salt-and-pepper
noise that affects the classification result. This phenomenon is
evident from the classification map. DL-based spatial extraction
methods can significantly improve this phenomenon. Compared
with other spatial classification methods, GL-CNN can achieve
excellent classification results, but it also inevitably produces
oversmoothing phenomenon. In contrast, classification methods
based on the fusion of spectral and spatial information have ob-
vious advantages. Compared with the state-of-the-art classifica-
tion method SSRN and HybridSN, the proposed GLH-WFN can
more accurately classify the pixels in the edge area, providing
more similar results to the ground truth. In this experiment, our

proposed GLH-WFN is superior to other comparison methods
in OA value.

VI. CONCLUSION

This article proposes a GLH-WFN end-to-end framework
for hyperspectral classification. The framework consists of GL-
BiLSTM for spectral features and GL-CNN for spatial feature
extraction. In GL-BiLSTM, the entire spectral bands are rede-
fined in groups from global and local perspectives in order to ob-
tain more discriminative and robust spectral characteristics and
to overcome the training difficulties caused by band redundancy.
In GL-CNN, we proposed the GL-PF module that considers
the correlation and complementarity between different pooling
strategies to overcome the influence of interfering information
in the patch. Finally, the hierarchical weighting fusion is used
to model the high-order information of the extracted spectral
and spatial features, and generate a more discriminative global
representation. The experimental results on four real datasets and
a GF-5 satellite dataset illustrate that the GLH-WFN proposed
in this article has better classification performance than other
advanced classification methods.

In the future, our work will focus on optimizing the high-
dimensional information generated by high-level information
modeling in feature fusion. Moreover, due to the limited labeling
pixels in HSI, we will try to combine transfer learning and deep
networks to solve the HSI classification problem with few or no
labeled pixels.
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