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An APMLP Deep Learning Model for Bathymetry
Retrieval Using Adjacent Pixels

Jinshan Zhu , Jian Qin , Fei Yin, Zhaoyu Ren, Jiawei Qi , Jingyu Zhang, and Ruifu Wang

Abstract—Shallow water depth plays an important role in ma-
rine development, navigation safety, and environmental protection.
It is an efficient and economical way to obtain water depth by re-
mote sensing technology. At present, most empirical models based
on multispectral image usually obtain water depth by the relation-
ship between the sea surface reflectance (SSR) (a single pixel) and
in situ water depth, it is a one-to-one correspondence between the
reflectance and depth. However, seafloor substrate and inherent op-
tical properties (IOP) will also have contribution to the SSR. In this
article, we propose an adjacent pixels multilayer perceptron model
(APMLP) model using adjacent pixels to weaken the influence of
seafloor substrate and IOP. Datasets on Oahu Island (Sentinel-2B,
LIDAR in situ data) and Saint Thomas Island (Sentinel-2A, LIDAR
in situ data) are used to establish and verify the model. The APMLP
model are also compared with the multilayer perceptron model
(MLP) model, BP neural network model, and Log-ratio model. The
overall root-mean-square error (RMSE) of APMLP model on Oahu
Island is 0.72 m, which is much better than the other three models
(MLP 1.07 m, BP 1.05 m, Log-ratio 1.52 m). Similar results are
obtained from the Saint Thomas Island dataset, RMSE of APMLP
model is 1.56 m, better than the other three (MLP 1.91 m, BP 1.89 m,
Log-ratio 2.39 m). The study confirms that considering adjacent
pixels in an artificial neural network model can effectively improve
the performance of water depth retrieval.

Index Terms—Bathymetry, neural networks, remote sensing.

I. INTRODUCTION

SHALLOW water depth is important marine hydrological
information that plays a guiding role in chart drawing,

coastal engineering, marine resource development, and manage-
ment. Traditional bathymetric surveys are based on field surveys,
mainly using ship-borne sonar or airborne lidar [1]. These survey
methods have the advantage of high measurement accuracy, but
will consume considerable manpower and material resources
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and may be easily affected by sea conditions [2]–[4]. In sea areas
with complex terrain or disputes of interest, it is often difficult
to conduct in site water depth detection.

Compared with traditional airborne or shipborne surveys,
inversion technology based on remote sensing images (RSI)
provides higher spatial coverage and temporal resolution at a
lower cost and overcomes many obstacles of traditional methods
[5]. Although the detectable depth and accuracy level are lower
than those based on ships and lidar, remote sensing technology is
still very attractive [6], [7]. In recent decades, many water depth
inversion methods based on RSI have been proposed [8]–[13].
Most of these methods use the visible bands (420–780 nm) for
water depth inversion. These methods can be roughly divided
into two categories: physical models based on hyperspectral
remote sensing images (HSIs) and empirical models based on
multispectral remote sensing images (MSIs) [14].

Physical models can invert the water depth without in-situ
data. Previous studies have found that the semianalytical model
(a physical model) can obtain relatively accurate shallow water
depths from HSIs [15]–[17]. However, there are some difficulties
in the practical application. It is often hard to find an appropriate
HSIs for a selected location. Additionally, the spatial resolution
of HSIs is usually not very high. For example, the spatial resolu-
tion of ADEOS-2 is 250 m, that of HJ-1A is 100 m and EnMAP
is 30 m. When the coastal shallow water area has complex seabed
topography and large depth fluctuation, RSI with lower spatial
resolution will not be suitable for high-precision water depth
inversion.

These difficulties of HSIs rarely occur on MSIs. There are
many satellites carrying multispectral sensors, such as Sentinel-
2, QuickBird, Worldview-2, IKONOS, and Landsat-5. These
data are very easy to be obtained, and the spatial resolution
is usually higher than that of HSIs. For example, the spatial
resolution of Sentinel-2 is 10 m and that of QuickBird is 0.6 m.
Disadvantage of MSIs is that their number of bands is far less
than that of HSIs, there are usually no more than five visible
bands, which can be used for water depth inversion.

Compared with the physical models, the empirical models
have low requirements for the number of bands. Many experts
have achieved successful water depth retrieval using MSIs [18]–
[20]. At present, there are several commonly used empirical
models. For example, Stumpf et al. [21] proposed a Log-ratio
model (LG) in 2003, in this model Log-ratio of the blue band and
green band is used to invert water depth, the form of this model is
relatively simple, and only two or three model parameters need
to be tuned. This model is used widely until nowadays for its
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simplicity and ease of use [22]–[26]. Wang et al. [27] tried to use
a back propagation neural model (BP) for water depth retrieval,
their article proved that the BP neural network can be used to
invert water depth, but there may have problems (error-large
and change trend-inconsistency) when the water is deeper than
10 m. The reason for these problems may be that the amount of
the training samples is not large enough. A multilayer perceptron
model (MLP) is used for water depth inversion by Wang et al.
[28]. Their article proved that the spectral features alone are
insufficient for water bathymetry retrieval, except the spectral
features, spatial location feature is also integrated into the model,
and this can address the problems caused by heterogeneous
bottom types well.

At present, most empirical models will establish a relationship
between the sea surface reflectance (SSR) of the target pixel and
its in situ water depth. The SSR and water depth has a one-to-
one relationship in the model. But in fact, as proved in Wang’s
research [28], in most cases the relationship between them is
not only one-to-one. The seafloor substrate and water column
inherent optical properties (IOP) may also have contribution to
the SSR, the SSR and the water depth many have a many-to-
one relationship. Usually, the water depth difference between
adjacent pixels is not so large, but their seafloor substrate and IOP
may not be identical, so we consider to introduce the adjacent
pixels into our model in this article and use the multiple SSRs
from the target pixel and the adjacent pixels to correspond to
one water depth, and try to improve the inversion accuracy.

In this article, an adjacent pixels multilayer perceptron model
(APMLP) is proposed. In this model, the adjacent pixels are
taken into account. One target pixel and the surrounding eight
pixels are assigned as a small region (SR). We assume that the
water depth of these nine pixels inside one SR is the same.
This SR is used to instead the one pixel in the commonly used
empirical models. When training the APMLP model, each water
depth will correspond to nine different SSRs, which can help to
solve the problem of one-to-one relationship between SSR and
water depth, and weaken the influence of seafloor substrate and
IOP.

The original contribution of this article is that a SR is used to
instead the one single pixel in other empirical models, so that
each in situ water depth will correspond to nine different SSRs.
This will avoid the one-to-one relationship between the SSR and
water depth. Information not only about the water depth, but
also about seafloor substrate and IOP will be introduced into the
model. According to our experiment, our strategy using a SR in
a MLP machine learning model is very effective to improve the
water depth inversion accuracy comparing with other models.

II. MATERIALS

A. Study Areas

The first study area is the area surrounding Diamond Head
Beach Park, located approximately 8.2 km southeast of Hon-
olulu, Oahu Island, Hawaiian Islands, in the North Pacific [see
Fig. 1(a)], hereinafter, we will call it Honolulu for short. The
surrounding underwater sediment is complex, and the seawater
quality and transparency are good.

Another study area is located between Saint Thomas Island
and Saint John Island in the U.S. Virgin Islands [see Fig. 1(c)],
hereinafter we will call it Saint Thomas Island for short. There
are many small islands in the study area, and deep-water areas
and shallow-water areas are staggered with each other.

B. Satellite Images and In Situ Depth Data

A Sentinel-2B multispectral image over Honolulu acquired
on December 1, 2020 [see Fig. 1(b)] and A Sentinel-2A multi-
spectral image over Saint Thomas Island acquired on January
15, 2019 [see Fig. 1(d)] were used to invert shallow water depths.
They are the L2A-level (bottom-of-atmosphere corrected re-
flectance) data obtained from the official website of the European
Space Agency.1 This means that they have been processed by or-
thorectification, subpixel geometric correction, and atmospheric
correction. There are 12 bands in the remote sensing image with
three spatial resolutions, and only bands B1–B5 can be used for
water depth inversion. The image scene quality is excellent, with
no broken waves, no clouds, and minimal levels of wave-induced
sun glint at the sea surface.

A total of 30 000 water depth points were selected from
the scanning hydrographic operational airborne lidar survey
(SHOALS) lidar bathymetry data [see Fig. 2(a)] acquired from
the website of the University of Hawaii, Manoa.2 Another 30 000
water depth points were selected from lidar bathymetry data [see
Fig. 2(b)] acquired from the website of NOAA.3 They are used
as in situ depth data for Honolulu and Saint Thomas Island,
respectively. Seventy percent of them were used for network
training, and the other 30% were used to test the model.

C. Image Processing

Sentinel-2 image has 12 bands, but only the visible to near
infrared bands B1–B5 (411–714 nm) are useful for water depth
inversion. However, the spatial resolution of band B1 is 60 m,
that of band B5 is 20 m and bands B2–B4 is 10 m. To solve
the problem of mismatched spatial resolution, spatial resolution
of bands B1 and B5 are improved into 10 m. ESA offers a
Sen2res plug-in4 on SNAP software,5 which provides us a way
to improve the spatial resolution.

III. METHODOLOGY

For shallow water, a simplified shallow water radiation trans-
fer equation is proposed by Maritorena et al. [29], Philpot [30].
The equation is formulated as

Rw = R∞ + (Ad −R∞) exp (−2kH) (1)

where Rw is SSR; R∞ is the surface reflectance of the optically
deep water; Ad is bottom albedo, which is affected by seafloor
substrate; 2k is the effective two-ways attenuation coefficient,
which is affected by IOP, and H is the depth of water.

1[Online]. Available: https://scihub.copernicus.eu/dhus/#/home
2[Online]. Available: http://www.soest.hawaii.edu/coasts/data/hawaii/

shoals.html
3[Online]. Available: https://www.ncei.noaa.gov/maps/bathymetry/
4[Online]. Available: http://step.esa.int/main/third-party-plugins-2/sen2res/
5[Online]. Available: http://step.esa.int/main/download/
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Fig. 1. (a) Study sites for diamond head beach park. (b) Saint Thomas Island. (c) Sentinel-2B multispectral image over diamond head beach park acquired on
December 1, 2020. (d) Sentinel-2A multispectral image over Saint Thomas Island acquired on January 15, 2019.

According to (1), SSR is mainly determined by seafloor sub-
strate, IOP and water depth. If we classify the seafloor substrate
in advance, invert the water depth, respectively, according to the
seafloor substrate type, for each training, the seafloor substrate
type of the samples input to the model is the same, i.e., the
change of Ad in (1) is very small. According to (1), when the
change of Ad is very small, SSR is mainly determined by water
IOP and depth, so the influence of seafloor substrate on SSR
can be weakened. When the seafloor substrate type of samples
is the same, the model does not have to learn the effects of
different seafloor substrate types on SSR, which reduces the
time required to train the model. So, it is necessary to conduct
seafloor substrate classification in advance.

The seafloor substrate of study areas is complex and there
are many mixed pixels. It is hard to know the types of seafloor
substrate exactly, or even how many kinds. Compared with other
algorithms, ISODATA does not need to determine the number
of categories in advance, and the algorithm will automatically
adjust the number of categories and category centre, which is
very suitable for current situation. The parameters of ISODATA
algorithm are listed in Table I. Seafloor substrate is classified into
four types (Honolulu) and three types (Saint Thomas Island).
The classification results are shown in Fig. 3.

As shown in Fig. 4 row A, the blue square on the left is one
pixel, the line chart in the middle shows the SSR spectrum of
one pixel, and H on the right is the corresponding water depth of
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Fig. 2. Spatial distribution of water depth points. They are used to train and test models. (a) Honolulu. (b) Saint Thomas Island.

Fig. 3. Classification results of seafloor substrate in study areas. (a) Honolulu and (b) Saint Thomas Island.

Fig. 4. Main principles of several current empirical models and APMLP model. Models using one pixel (row A); APMLP (row B).



ZHU et al.: APMLP DEEP LEARNING MODEL FOR BATHYMETRY RETRIEVAL USING ADJACENT PIXELS 239

TABLE I
PARAMETER SETTINGS AND VALUES OF THE MODEL

TABLE II
MSES OF TRAINING DATA AND TEST DATA IN DIFFERENT STRUCTURES

left pixel. For a commonly used empirical model, in the training
dataset, each sample consists of an SSR spectrum and a water
depth, this means it is a one-to-one correspondence relationship.
When the model is trained by this kind of dataset, the model
will learn a one-to-one relationship between the SSR and in situ
depth only. However, according to (1), the SSR is also related to
seafloor substrate and IOP. So, in our APMLP model, we take
the seafloor substrate and water column IOP into account, and
established a new dataset. As shown in Fig. 4 row B, on the left
is pixels in one SR, in the middle is their SSRs. For our APMLP
model, in the new dataset each sample consists of these nine
SSRs and one water depth.

It can be observed through visual interpretation that the colors
of these nine pixels are not exactly the same, and they have
nine different SSRs. According to (1), there are three factors,
water depth, seafloor substrate, and IOP, can influent the shape
of the SSR spectrum. So, these nine different SSRs mean at least
one of the three factors is different. In our APMLP model, we
assume that the water depth of these nine pixels inside SR is
the same, and replace the SSR of the target pixel (commonly
used empirical model) with the nine SSRs in one SR (APMLP
model). This makes nine different SSRs correspond to one water
depth, and this is a many-to-one relationship between SSRs and
water depth. At the same time, when training the model using
this kind of dataset, the model will learn the following fact: if
the water depth is the same, the changes of seafloor substrate,
and IOP will also have contribution to the SSR.

We use MLP as the main network structure of APMLP. MLP
simulates the working process of brain nerve tissue, and it
comprises an input layer, hidden layers, and an output layer
[31]–[33]. In order to determine the appropriate number of
network layers, we used some data to test network with different
layers, and some of the results are listed in Table II. According to
this table, model with eight layers performed best. So, a network
structure with eight layers is adopted for our APMLP.

APMLP is built under Pytorch deep learning framework, and
the structure is shown as Fig. 5. The number of nodes in the input

Fig. 5. Network structure of the APMLP. It contains an input layer, six hidden
layers, and an output layer.

layer is 45, for the hidden layers, the number of nodes is 180, 180,
60, 30, 30, 10, respectively, and the output layer has only 1 node.
The nodes in each layer (except output layer) is connected to all
nodes in the next layer. Activation functions are added between
all layers to ensure network has enough nonlinear fitting ability.
Each SR contains nine pixels, each pixel corresponds to one SSR
spectrum, each SSR spectrum has five bands. So, each sample
of our training dataset has 45 SSR values, and they correspond
to 45 nodes of input layer. There is only one node in the output
layer, it’s value equal to the predicted water depth.

To balance performance and time costs, we chose Leakyrelu as
the activation function, which can be expressed as (2). Leakyrelu
uses a α parameter to give all negative values a nonzero slope so
that the network can transfer the gradient of the negative part and
avoid the death of neuron nodes. Because it does not include an
exponential operation, it converges faster than the sigmoid and
tanh activation function

LeakyReLU (x) =

{
x, x ≥ 0
αnegativeslope

x, x < 0
. (2)

The mean square error is used as the loss function of APMLP
and it can be expressed as follows:

loss =
1

N
∗

N∑
i = 1

(yi − ŷi)
2 (3)

where N is the number of training samples, yi is the in situ data,
and ŷi is the predicted value.

We choose Adam as the optimization algorithm. It com-
bines the advantages of Adagrad and RMSprop and assigns
independent adaptive learning rates for different parameters by
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TABLE III
PARAMETER SETTINGS AND VALUES OF THE MODEL

comprehensively considering the first moment estimation and
second moment estimation of the gradient [34].

During training, APMLP will receive 45 SSR values from
one SR and output a predicted water depth value. The loss
function will calculate the difference between the predicted and
in situ water depth and feed it to optimization function. The
optimization function will continuously adjust the weight and
bias of each layer, so as to keep the results of the model close
to in situ value gradually. All parameter settings or values of
APMLP are shown in Table III.

IV. RESULTS

In this article, two datasets, Honolulu and Saint Thomas
Island, were used to train and verify our APMLP model. The
result was also compared with BP, MLP, and LG model. The
performance of each model was assessed by five statistical
parameters, i.e., the correlation coefficient (r), mean relative
error (MRE) root-mean-square error (RMSE), bias (ε̄ ) and
absolute percentage difference (|ε̄| ), which can be expressed
as

r =
1

N − 1
∗

N∑
i=1

(
Ai − μA

σA

)
∗
((

Bi − μB

σB

))
(4)

RMSE =

√∑N
i=1 (Ai −Bi)

2

N
(5)

MRE =
1

N
∗

N∑
i = 1

|Ai −Bi|
Ai

(6)

ε̄ = median

(
Bi −Ai

Ai

)
∗100% (7)

|ε̄| = median

(∣∣∣∣Bi −Ai

Ai

∣∣∣∣) ∗100% (8)

where Ai and Bi refer to the in situ and estimated water depth;
μA and σA are the mean and standard deviation of A and μB

and σB are that of B, respectively; N is the number of test data
points.

A. Results of Honolulu

Fig. 6 is compares of the results from the four models (Hon-
olulu) and the in situ measured water depth, from Fig. 6(a) to
(d) is for APMLP, MLP, BP, and LG, respectively. According
to Fig. 6, when the water depth is lower than 7 m, for all of the

four models, the inversion results fit the measured depth very
well; when the water depth is 7–22 m, the dispersion degree has
a slightly increase; but when the water depth is more than 22 m,
the dispersion degree increases. By comparing the four models,
APMLP is the best, it has the highest correlation coefficient
(0.99573), which indicating that the predicted depth of APMLP
is very close to the measured depth. The ε̄ and |ε̄| of all of the
four models are quite small, which means small bias. We can
also find that, in Fig. 6(b) to (d), there are many outliers far from
diagonal line, for example, in the lower right corner of Fig. 6(c),
a point with a measured water depth about 34 m is incorrectly
estimated as 6 m, the error is very large. However, outliers with
so large error do not appear in Fig. 6(a), which proves once again
that by adding adjacent pixels, the performance of the model can
be improved significantly.

In order to further compare the performance of the models at
different depth ranges, we divided water depths into three inter-
vals: 0–7 m, 7–22 m, and 22–35 m according to the distribution
of points in Fig. 6. The results are summarized in Table IV. As
Table IV, when water depth increases, the accuracy of the four
models decreases obviously. For example, when water depth
exceeds 22 m, the RMSE of APMLP is 2.04 m, compare to
that in 0–7 m (0.39 m), it has an increase of 423%. The overall
RMSE of APMLP (0.72 m) is the lowest of the four models,
which is 0.8 m lower than the LG model (the worst performing,
1.52 m). In the water depth range of 0–7 m, the MRE of APMLP
is 24.05%, which is 8.01% lower than that of the MLP model
(the second place, 32.06%). The performance of APMLP is still
the best in the range of 7 to 22 m. In the range of 22–35 m,
although the RMSE of APMLP exceeds 2 m, it is still the lowest
among the four models.

The accuracy of water depth inversion can be affected by
many factors, usually, the spatial distribution of the absolute of
prediction residuals(APR) is uneven. The spatial distribution
of APR for the Honolulu dataset is plotted In Fig. 8, from
Fig. 8(a) to (d) is for the APMLP, MLP, BP, and LG, respectively.
The APR is divided into nine segments, and each segment is
represented by small dots with different sizes and colors. The
smaller and bluer the dot is, the smaller the APR. In contrast,
the larger and redder the dot is the larger the APR. As shown
from Fig. 8(a)–(d), there are many blue or light blue small
dots near the coastline. With the increase of offshore distance,
yellow dots begin to appear, and there are a few red dots far
away from the coastline. All of these cases suggests that the
farther away from the coast, the larger the APR. The number of
yellow dots near the coastline in Fig. 8(a) is significantly less
than that in Fig. 8(b)–(d), this phenomenon is more pronounced
on the left and right sides of Fig. 8(a)–(d). But in the area far
from the coastline, the change between them is not obvious.
The excellent performance of APMLP in shallow water area
shows that adding adjacent pixels into the model can effectively
improve the accuracy.

B. Results of Saint Thomas Island

Fig. 7 is compares of the results from the four models (Saint
Thomas Island) and the in situ measured water depth, from
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Fig. 6. Maps of estimated model values versus measured values for Honolulu. (a) APMLP model. (b) MLP model. (c) BP neural network model. (d) Log-ratio
model.

TABLE IV
COMPARISON OF MODEL ACCURACY (HONOLULU)

Fig. 7(a) to (d) is for APMLP, MLP, BP, and LG, respectively.
By comparing, we can find the APMLP is the best, it has the
highest correlation coefficient (0.98468), which indicating that
the predicted depth is still the closest to the measured depth.

In Fig. 7, for the results of the four model, they all some
outliers far from diagonal line, for example, in Fig. 7(b), a point
with a measured water depth of about 3 m in the upper left
corner is wrongly estimated as 33 m; in Fig. 7(c), a point with a
measured value about 25 m at the bottom of is wrongly estimated
as -30 m; while outliers with so large error appeared few in
Fig. 7(a).

Here, the water depth is also divided into three intervals:
0-7 m, 7–22 m, and 22–35 m to compare the performance of
models at different depth ranges. The results are summarized

in Table V. Compared with Honolulu, the overall accuracy of
the four models has decreased significantly. For example, the
overall RMSE of APMLP in Saint Thomas Island (1.56 m)
has increased 0.84 m comparing the same result in Honolulu
(0.72 m). Although the APMLP model does not perform so well
as in Honolulu, it still has the most accurate result of the four
models. In the water depth range of 0–7 m, the MRE of APMLP
is 37.34%, which is 10.77% lower than that of BP model (the
second place, 48.11%), but it won out of four models only a in
the range of 7–35 m.

The spatial distribution of APR for the Saint Thomas Island
dataset is plotted In Fig. 9, from Fig. 9(a) to (d) is for the APMLP,
MLP, BP, and LG, respectively. As shown in Fig. 9(b) and (c),
there are a large number of light blue points in the shallow water
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Fig. 7. Maps of estimated model values versus measured values for Saint Thomas Island. (a) APMLP model. (b) MLP model. (c) BP neural network model. (d)
Log-ratio model.

TABLE V
COMPARISON OF MODEL ACCURACY (SAINT THOMAS ISLAND)

area along the coast and in Fig. 9(d), almost all points are yellow
and red. However, at the same position in Fig. 9(a), the light blue
dots in coastal areas have become blue dots or dark blue dots,
and the yellow dots also decreased, but the situation of red dots
has hardly changed comparing with the other three Figures.

Experiment results of Saint Thomas Island proved again that
adding adjacent pixels into a machine learning model is helpful
to improve the inversion accuracy.

V. DISCUSSION

A. Selection Range of Adjacent Pixels

SR in the previous article is the green and blue pixels in
Fig. 10, the blue pixel is the target pixel, and green pixels are
called the adjacent pixels of the blue pixel. But adjacent pixels

are a broad concept, all pixels surrounding blue pixel can be
called adjacent pixels (even if they do not touch each other).
For example, yellow and red pixels are also adjacent pixels
of blue pixels. Although these adjacent pixels are farther from
the blue pixel, they also have similar depths, which means that
increasing the number of adjacent pixels may further improve
accuracy. However, as the distance between adjacent pixels and
target pixel increases, the water depth difference between them
will also increase, so we cannot increase the number of adjacent
pixels infinitely. How to determine a suitable number of adjacent
pixels is a problem to be solved in future research.

B. Weight of Adjacent Pixels

We hope that the model can output the water depth of the
target pixel, so the water depth of target pixel is used as the water
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Fig. 8. Spatial distribution of APR in Honolulu. (a) APMLP model. (b) MLP model. (c) BP neural network model. (d) Log-ratio model.

depth of SR during training. However, as the distance between
adjacent pixels and target pixel gradually increases, the water
depth difference between them will also increase. For example,
in Fig. 10, there is a difference between in situ depth of the
blue pixel and green pixel, and the difference will increase as
the distance increases. Therefore, it is unreasonable not to set
weights (all pixels have the same weight as) during training.

Obviously, the weight of the blue pixel should be the highest,
as the distance increases, the weight of adjacent pixels gradually
decreases, and the pixels of the same color have the same weight
(they have the same distance to the blue pixel). How to determine
the weight of each pixel is also a problem to be solved in the
future.

C. Limitation of the APMLP

In APMLP, there is an assumption: the nine pixels in one
SR have the same water depth. When the spatial resolution of
the image is high, the water depth change between adjacent

pixels is usually very small, in this situation this assumption is
reasonable. However, when the spatial resolution of the image
is not high, for example, the resolution is 1 km, the water depth
change between adjacent pixels may be very large, so it will be
unreasonable to make this assumption. Therefore, when using
our proposed APMLP model, high-resolution remote sensing
images is recommended.

D. Edge Pixels in the APMLP

In APMLP, one target pixel and the surrounding eight pixels
are assigned as a SR. However, when the target pixel is an
edge pixel, there are less than eight adjacent pixels around the
target pixel, so a SR cannot be formed. In this article, we use
different processing methods to solve this problem according to
the position of the target pixel.

1) Target Pixel at the Edge of the Image: As shown in Fig. 11,
the blue pixel is the target pixel, and the red and green pixels
are adjacent pixels. Assuming that the yellow line is the image
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Fig. 9. Spatial distribution of APR in Saint Thomas Island. (a) APMLP model. (b) MLP model. (c) BP neural network model. (d) Log-ratio model.

Fig. 10. Spatial position between the target pixel and adjacent pixels.

boundary, and the target pixel is located at the edge of the image,
the red pixel does not actually exist. Therefore, we cannot obtain
a SR centered on the blue pixel. In this article, these kinds of
pixels are given up, water depth of the target pixels are not
inverted.

2) Target Pixel at the Edge of Land and Water or Seafloor
Substrate Types: As shown in Fig. 11, assuming the yellow line
is the water-land boundary or the boundary of seafloor substrate
types, the red pixels are land pixels or pixels from other seafloor
substrate types, blue pixel is the target pixel. In this case, the

Fig. 11 Schematic diagram of target pixels at the edge in various states. Blue
pixel is target pixel, red and green pixels are adjacent pixels, and the yellow line
is the dividing line.

target pixel has eight adjacent pixels, the water depth is inverted
by these nine pixels in our this article. In fact, this method will
cause errors, in future research, appropriate ways should be used
to solve this problem.

VI. CONCLUSION

At present, most empirical models based on multispectral
image usually obtain water depth by the relationship between the
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SSR (a single pixel) and in situ water depth. The model will find
a one-to-one relationship between the SSR and in situ depth. But,
in fact, SSR is also related to seafloor substrate and IOP. Adjacent
pixels may include the contribution of seafloor substrate and
IOP to the SSR. In this article, an APMLP model including
contribution of adjacent pixels is proposed. In this model, instead
of one single pixel in the commonly used empirical models, a
SR is defined. The water depth of the nine pixels in one SR is
assumed to the same. Under this circumstance, when training
the model, it can obtain a many-to-one relationship between
SSRs and a water depth. This many-to-one relationship may
also include contribution of seafloor substrate and IOP from the
adjacent pixels.

Two datasets, Honolulu and Saint Thomas Island, were used
to train and verify our APMLP model. The result was also
compared with the BP, MLP, and LG model. In Honolulu, its
correlation coefficient is 0.99573, which is the highest among the
four models. There are some outliers in the other three models,
but in APMLP, there are few, which proves that by adding
adjacent pixels, the performance of the model can be improved
significantly. In order to further compare the performance of
the models at different depth ranges, we divided water depths
into three intervals. In each interval, the APMLP model is always
the one with the best performance. According to Fig. 8, the APR
of APMLP near the coastline is significantly reduced, but in the
area far from the coastline, the performance of APMLP has little
different from that of other models. Similar performance was
also achieved in Saint Thomas Island, the correlation coefficient
of APMLP (0.98468) is still the highest among the four models.
Compared with results of Honolulu, the overall accuracy of the
four models has decreased significantly, but the accuracy of
APMLP in each interval is still higher than that of the other
three models. Compare Fig. 9(a)and (b), the light blue dots
[see Fig. 9(b)] in shallow water areas mostly become blue or
dark blue dots [see Fig. 9(a)], and the yellow dots disappeared
significantly. This shows that introducing adjacent pixels into the
model can effectively improve the inversion accuracy, especially
in shallow water area. According to our experiment, the APMLP
demonstrates its superiority.

The article confirms that considering adjacent pixels in an
artificial neural network model can effectively improve the
performance of water depth retrieval.
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