IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022 393

Superpixel-Based Weighted Collaborative Sparse
Regression and Reweighted Low-Rank
Representation for Hyperspectral Image Unmixing

Hongjun Su

Abstract—Sparse unmixing with a semisupervised fashion has
been applied to hyperspectral remote sensing imagery. However,
the imprecise spatial contextual information, the lack of global
feature and the high mutual coherences of a spectral library greatly
limit the performance of sparse unmixing. In order to address
these prominent problems, a new paradigm to characterize sparse
hyperspectral unmixing is proposed, namely, the superpixel-based
weighted collaborative sparse regression and reweighted low-rank
representation unmixing (SBWCRLRU). In this method, the
weighted collaborative sparse regression explores the pixels shared
the same support set to help the sparsity of abundance fraction,
and the reweighted low rank representation minimizes the rank
of the abundance matrix to promote the spatial consistency
of the image. Meanwhile, superpixel segmentation is adopted
to cluster the pixels into different spatial homogeneous regions to
further improve the unmixing performance. Extensive experiments
results conducted on both synthetic and real data demonstrate the
effectiveness of the proposed SBWCRLRU. It can not only improve
the performance of hyperspectral unmixing but also outperform
the existing sparse unmixing approaches.

Index Terms—Hyperspectral image (HSI) unmixing, reweighted
low-rank representation (LRR), simple linear iterative clustering
(SLIC), weighted collaborative sparse regression.

1. INTRODUCTION

YPERSPECTRAL imagery (HSI) has high spectral res-
H olution (usually less than the order of nm) since it can
capture hundreds of narrow and adjacent spectra in the scene
simultaneously. With such characteristics, HSThas been success-
fully applied to various aspects of earth sciences, such as image
classification, target recognition, mineral exploration, and object
detection [1]-[4]. However, due to the relatively low-spatial
resolution of imaging spectrometers, multiple scattering during
atmospheric transmission and complex distribution of surface
microscopic material, mixed pixels are typically present in HSI,
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and each image pixel may cover several different materials.
Thus, hyperspectral unmixing is an important issue for utilizing
the wealth of information in hyperspectral data. The task of
hyperspectral unmixing can be divided into two parts: extract
the pure spectral signatures (endmembers) in the mixed pixels,
and estimate their fractional proportions (abundances) [5]. The
linear mixture model (LMM) assumes that the mixing between
objects occurs on a macroscopic scale and that the incident solar
radiation only interacts with one material. LMM has been widely
applied for hyperspectral unmixing due to its computational
tractability, efficiency and clear physical meaning [6]. Hence,
the LMM-based spectral unmixing algorithms will be the focus
of this article.

Several spectral unmixing approaches based on geometry
[7]1-[9], statistics [10], [11], nonnegative matrix factorization
(NMF) [12]-[14], and sparse regression [5], [15] are mainly in-
troduced in LMM. Although geometry and statistics approaches
are simple and fast, the presence of pure materials assumptions
in hyperspectral data are usually required and accompanied with
higher computational complexity. The NMF-based methods aim
to divide the hyperspectral data into two nonnegative matrices.
However, it may obtain virtual endmembers with no physical
meaning and lead to the defect of nonunique solution. In addi-
tion, nonlinearity and spectral variability still hinder the afore-
mentioned LMM from producing high performance unmixing
capabilities [16]. To circumvent these obstacles according to
compressed sensing theory [17], [18], sparse regression-based
unmixing has been successfully proposed as a new semisuper-
vised technique. The model suggests that mixed pixels can be
approximately represented by linear combinations of several
pure spectral materials from a spectral library [15]. More specif-
ically, it can effectively circumvent the negative impact about
the availability of pure spectral signatures and the estimation of
the number of endmembers in HSI by using a spectral library as
prior knowledge. Due to the abovementioned advantages, sparse
unmixing has become a hot topic.

It is difficult to obtain accurate unmixing results by traditional
sparse regression unmixing model. The typical method is the
sparse unmixing algorithm via variable splitting and augmented
Lagrangian (SUnSAL) [19], which obtains the unmixing results
by constructing a prior from the spectral library and uses the
¢1 norm on abundance matrix. To alleviate the high mutual
coherences of atoms in the library, and the constrained version
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of the same algorithm called collaborative SUnSAL (CLSUn-
SAL) was introduced in [20]. CLSUnSAL used /5 ; norm to
constrain the row sparsity of abundance matrix. Furthermore, in
[21]-[23], the strategies of iteratively weighted sparsity also
obtained satisfactory results. However, these algorithms only
interpret the sparsity of abundance coefficients and the avail-
ability of spectral information, but spatial contextual informa-
tion is generally ignored, which may provide limited unmixing
performance and high computational complexity, especially for
observed HSI degraded by noise.

On the other hand, the methods based on spatial prior infor-
mation are exploited in many works [23]-[25]. Its basic idea is
to introduce spatial prior information into the sparse regression
framework to constrain optimization problem. The total vari-
ation (TV) regularization for sparse unmixing (SUnSAL-TV)
[24] strictly defines that a pixel is only similar to its four
neighboring pixels, which have similar fractional abundance.
A spectral spatial weighted sparse unmixing (S?WSU) [23]
method is proposed to investigate spectral and spatial infor-
mation simultaneously, and it uses both spectral and spatial
weighted factors, one of which is used to promote nonzero row
vectors, and the other is used to utilize the spatial correlation
information. From a different perspective, the nonlocal total
variation (NLTV) prior is used to the NMF model [25], the
nonlocal similarity is clarified, and smoothness of the entire
image and the spatial diversity distribution of endmembers are
described. The sparse unmixing methods with spatial informa-
tion have shown a great potential, but adopting regular-shaped
neighborhoods to explore the correlation between pixels limits
the accurate description of the spatial-contextual information
around each pixel of the image [26]-[28]. Thus, superpixel
segmentation is used to combine global spatial neighborhood
information and spectral information, and it provides a good
solution to the aforementioned issues. Each superpixel can be
regarded as a small nonoverlapping spatial region, and its shape
and size can be adaptively changed [29]. Typically, a fast sparse
multiscale sparse unmixing algorithm (MUA) is proposed [30],
where spectral unmixing is first performed in the approximate
domain images by using superpixel segmentation method, and
then, the coarse domain unmixing results are used to guide the
original domain unmixing to obtain more meaningful spatial in-
formation. Yang et al. [31] developed a hyperspectral unmixing
method based on superpixel segmentation, and nonlocal spatial
information is combined with spatial group sparsity effectively.
A superpixel-based technique to guide the sparse unmixing is
also adopted by Zhang et al. [32]. Readers can also refer to
the literature, such as [33]-[35], to comprehend the semisu-
pervised hyperspectral unmixing methods based on superpixel
segmentation.

Recently, low-rank representation (LRR) has received con-
siderable attention for better learning the spatial-spectral low-
dimensional embedding [14], [36]. The joint sparse and low-
rank learning [37] method is introduced for spectral unmixing by
sharing sparse coefficients and performing low-rank constraints.
To simultaneously take advantage of sparsity and correlation,
alternating direction sparse and low-rank unmixing [38] is per-
formed with weighted nuclear norm in a small area of the

abundance matrix determined by the regular sliding windows.
In [39], joint sparse blocks and low-rank unmixing method
is employed to achieve low-rank approximation of abundance
coefficients by using the global abundance weighted nuclear
norm. Furthermore, superpixel-based reweighted low-rank and
TV (SUSRLR-TV) is purported by Li et al. [40], where the rank
of the abundance matrix is minimized after superpixel segmenta-
tion, and the visual smoothness of the abundance maps is encour-
aged by using TV. However, a large nonsmooth convex optimiza-
tion problem and unacceptable time complexity will incur when
compared with the expected hyperspectral unmixing images.

In summary, the existing hyperspectral sparse unmixing meth-
ods combined with spatial information mostly ignore the spectral
similarity and location proximity of local pixels. In this article,
a new approach of sparse spectral unmixing algorithm based
on superpixel weighted collaborative sparse regression and
reweighted low rank representation for hyperspectral image un-
mixing (SBWCRLRU) is proposed, and both spectral correlative
and spatial low-rank characteristics of each superpixel in HST are
considered in this method. Specially, the simple linear iterative
clustering (SLIC) segmentation is integrated into abundance
matrix for reducing the solution space. The main contributions
of SBWCRLRU algorithm in this article can be summarized as
follows.

1) Superpixel segmentation is considered in spectral unmix-
ing, where spatial and spectral features can be extracted
from more meaningful regions rather than from a square
local patch. Since the size of superpixels is significantly
smaller than the original image, unmixing within each
superpixel can greatly reduce computational burden.

2) For better promoting the sparsity and overcome the
shortcomings of the original collaborative sparse
unmixing method, a collaborative sparse constraint
is imposed on each superpixel. In addition, a
spatial weighting factor is introduced to enhance the
reconstruction of abundance maps.

3) To overcome the problem of edge blur caused by the
TV regularization term, a new reweighted LRR is added
to minimize the rank of the abundance vector in each
superpixel. Experimental results show that the constraint
can maintain the internal local low-dimensional spatial
structure of the image.

The rest of this article is organized as follows. In Section II, a
detailed explanation of sparse unmixing is presented. Section III
is dedicated to introduce the proposed SBWCRLRU and the
alternating direction methods of multipliers (ADMM) algorithm
to address the minimization problem. Section IV presented
experiment results on two simulated data and three real hyper-
spectral datasets with different algorithms. Section V discussed
the parameters selection of our method. Finally, Section VI
concludes this article.

II. RELATED WORK

A. Sparse Unmixing Model Based on LMM

The LMM model assumes that the spectra collected by the
imaging spectrometer in the real scene can be approximately
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expressed as a linear operation of some spectral signatures from
the library [5], [6], [15]. Hence, an HSI can be expressed in
matrix form as

Y =DX+E (1)

where Y € RE*™ denotes the observed vector with L spectral
bands andn pixels, D € RF*™ is alarge spectral library with m
spectral signatures, X € R™*"™ refers to the abundance vector
of all endmembers in each pixel that is compatible with spectral
library D, and E € R*™ is an observation noise or the model
error vector.

Generally, abundance estimation can be expressed as an in-
verse problem. To conform the physical limitation of hyperspec-
tral sparse unmixing model, there are two important constraints
of abundance matrix are imposed, which are the abundance
nonnegativity constraint (ANC) and a sum to one constraint

(ASC) [15]
ANC : X >0
ASC :1Tx =17, 2)

The ASC is not always satisfied due to the random selection
of endmembers from the spectral library (which does not neces-
sarily cover all the endmembers in HSI) and the strong spectral
variability in the real scene. Thus, the ASC is not delved into
sparse unmixing model in this article [15].

In practice, since the number of spectral signatures in the
available spectral library D is much larger than the real-
hyperspectral scene, that is, the abundance coefficient vector of
each pixel has only a few nonzero elements, and the abundance
matrix X manifests sparse characteristics. Therefore, the sparse
unmixing model can be written as

1
arg;nlni||DX—Y||§;+M|X||O+KR+(X) 3)

where || - || = /trace{X X} represents the Frobenius norm
of the abundance matrix X, and A > 0 is a regularization

parameter, which is controlling the balance between the data
fidelity term and the sparse constraint term. Here, || X||o de-
notes the number of nonzero components in the abundance
matrix X, that is, fo norm. {p (X) =" (g, (x;) is
the indicator function, which represents the nonnegative con-
straint of X > 0. For z; > 0,/g, (z;) =0, and otherwise,
(R, (x;) = 00

Although the /3 norm can describe the sparsity of abundance
coefficients well, the solution of (3) is NP-hard and difficult to
solve [41], [42]. Generally, a nonconvex ¢, norm can be replaced
by a convex £, norm [43] under certain assumptions [41], [44],
and both have the same optimal solution. Then, the optimization
problem is expressed as

1
argmin 5 [DX = Y7 + 2 X]|,0 + (X0 )

When setting p = 1, (4) is reduced to the typical SUnSAL
sparse unmixing model [19], where [ X[|1 1 = >77_; |27 |1 and
presents the j th column of abundance matrix X. However, the
£y norm does not adequately characterize the sparsity of the

spectral signatures, which affects the accuracy of hyperspectral
unmixing to a certain extent.

Considering the general situation, the observed vector re-
quires only a few spectra of the library to participate in the
unmixing, then the abundance matrix corresponding to the ob-
served vector is a row sparse matrix. Thus, setting p = 2, (4)
is actually the CLSUnSAL sparse unmixing model [20], where
X120 = >, [|#%||2 is the £2; mixed norm. Here, z° is the
1 th row of X. Obviously, the row sparsity constraint makes
most of the row vectors in the abundance matrix X zero, which
improves the accuracy of unmixing.

III. PROPOSED METHOD

A. HSI Representation Using Superpixel Segmentation

The spatial structure cannot be accurately described in tra-
ditional hyperspectral unmixing due to the spatial resolution
of HSI and adjacent pixels are likely to be from the same
class in the scene. Consequently, how to accurately capture
the characteristics of actual hyperspectral data and effectively
utilize spectral-spatial information is one of the main research
contents of this article. At present, superpixel segmentation [29],
[45] provides an effective solution for this purpose. Superpixel
segmentation divides the HSI into perceptually disconnected
homogeneous regions with similar properties, each of which
is called a superpixel. The value of superpixel segmentation
in the unmixing processing of HSI has been recognized in the
literature [30], [34], [35], [40]. Thus, the obtained homogeneous
and uniform regions-based superpixel segmentation method is
adopted in this article. In particular, SLIC [46] algorithm is
simple, and computationally efficient, and generates superpixels
that are uniformly sized and irregularly shaped, which is more
in line with the expected segmentation effect. The proposed
hyperspectral SLIC is iterative.

SLIC first divided the HSI into equally spaced grids based
on a predefined number of superpixels, as shown in Fig. 1(b).
Then, the center of each grid is evenly distributed in the image
and initialized with spatial adjacency constraints. Assuming that
the image with IV pixels, is predivided into K equally spaced
grid and the size of each grid is N/ K, then the distance between
the center points (seed points) of adjacent grids can be defined
as S = /N/K. Itis worth noting that SLIC algorithm needs
to be adapted to hyperspectral problems, where a clustering
center is the vector connecting spectral information and spatial
coordinates rather than the original RGB distance [29], [33],
[47]. For pixels ¢ and j, the distance is calculated as

di = (Yi — Yj)q (&)

d2 = \/(az — aj)Q -+ (bl - bj)2 (6)

D(i,j) = \/ad} + d3 (7

where y; and y; represent the spectral vectors of pixels ¢+ and
j , respectively, and D(i, j) denotes the dissimilarity between
pixels ¢ and j, calculated by combining the spectral distance d;
and spatial distance ds. In addition, «v is the weighted between
dy and dy, which in general is a constant.
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Fig. 1.

After clustering, any fragments with area less than a prede-
fined threshold are selectively deleted at each iteration process,
and then the surrounding pixels of the seeds are merged into
a larger superpixel. Each seed point is moved in a (3 x 3)
neighborhood until the gradient of the corresponding position
is the lowest, so as to prevent seed points from being located
on the boundary of the image and affect the overall effect of
clustering [33], [48], [49].

Finally, class labels are assigned to all pixels contained in
each merged superpixel. At the end of each round of labeling,
the abovementioned steps are repeated with the average value
of the same class of pixels as the new seed point, and iteration
until convergence. The final result of a segmentation is shown
in Fig. 1(c).

The constraints to the abundance maps in each superpixel
are added to shrink the solution space. Generally, two kinds of
priors are analyzed in constraining the abundance matrix of each
superpixel, thatis, weighted collaborative sparse regression prior
and reweighted LRR prior, which are introduced in the following
two sections.

B. Weighted Collaborative Sparse Regression Prior

Since each superpixel is a subimage of HSI, the sparsity of
superpixel is an important manifestation of the sparsity of HSI. In
the actual unmixing process, only some of the spectral signatures
of the library participate in the unmixing of the hyperspectral
data. Thus, the abundance matrix of each superpixel reflects
the characteristics of row sparsity of sparsity, which means that
only a few rows in the abundance matrix of each superpixel are
nonzero, and the row sparsity is stronger than ¢; norm. Hence
£3,1 mixed norm is adopted instead of ; norm. Inspired by [23],
[50], and [51], sparse unmixing is performed while considering
the additional constraint provided by weighting to enhance
the sparsity of abundance vector in the spectral domains. The
following weighted sparse regression formulation for unmixing
of superpixels is represented:

S
1
argmin o DX = Y[z + 4D [ Xellyz1 +En, (X). 8)
X k=1

SLIC segmentation for hyperspectral data. (a) Original image. (b) Initialization stage. (c) Final segmentation.

The term || Xp|[w, 21 = Y oreg wi,k”X,[;] |l2 is the weighted
l51 mixed norm to promote joint sparsity among all the
pixels and improve the unmixing accuracy in each superpixel.
Here, X ,[;} denotes the 7 th row of the k th superpixels of
abundance matrix X, fori=1,...,m, k=1,...,5, and
wy = [w1k, ..., Wn |’ is a nonnegative weight vector to pro-
mote row sparsity mainly.

C. Reweighted LRR Prior

To the best of our knowledge, an interesting relationship
exists between the sparsity and low-rank properties, and the
abundance matrix also demonstrates the characteristics of
low-rank, because the neighborhood pixels of HSI are usually
composed of the same endmembers with similar abundance
proportion. In order to capture this data structure with low-rank
and sparse nature, a low-rank constraint of the abundance
matrix has been imposed on sparse unmixing [52], [53]. A new
weighting strategy under the low-rank unmixing framework
is developed, that is, each row in superpixels is assigned a
different weighting coefficient at each iteration to promote the
image to maintain a low-rank structure. Therefore, a sparse
LRR optimization problem for unmixing can be expressed as

S
1
arg min o |IDX = Y5 + 2 Z Xkl 2,1
X k=1
S R
S Xl + b, (X) ®
k=1 j=1
rank(X,[cj])

where the term || X|lw. =D .0, w;io; (X,[g]) is the
weighted nuclear norm to realize singular value shrinkage by as-
signing different weights to each singular value. w;, 7 = 1,...,r
denotes the nonnegative weights and o; is the singular value
of a matrix XY, XV =[x X7 denotes the j th
submatrix of k th superpixels of X, and R represents the number
of submatrices in each superpixel. Here, 7 is nonnegative reg-
ularization parameter that controls the importance of low-rank
of the related terms. The nuclear norm provides an estimate of
the low-rank approximation of abundance matrix and can be
easily solved by the singular value threshold (SVT) method.



SU et al.: SUPERPIXEL-BASED WEIGHTED COLLABORATIVE SPARSE REGRESSION AND REWEIGHTED LOW-RANK REPRESENTATION 397

Algorithm 1: Pseudocode of Proposed SBWCRLRU.
Input: Y, D, A, 7, i, &, the number of superpixels &
Initialization: set ¢t = 0,k = 0, P\, P{” P{”) p{®)

M1(0)7M2(0),M?EU),M£0)

1: Repeat:

2: for g = 1to®

3:  Compute WSZ) using (10)

4: end for

5: Repeat:

6: QUHY) « (DTD + 31" (D" (P + M) +

(P + 237) + (P + M) + (P + M)
7 B e (Y p(DQUY — M)
8. for g = 1to®

9: PQ(EH) + vect_soft(Q{ — Mz(z)» %Wélj))

100 P 1, 2 (Y — My
11: end for ‘

12: P max(QU) — MY 0)

13:  Update Lagrange multiplier:

14: MY« M — pQUAY 4 MY

15: MY @ _ QU+ 4 M(t+1)(i =2,3,4)
16: Update inner loops iteration: ¢t < t 4 1

17: QU+ — QUt+D)

18: MY (Y

19: Update outer loops iteration: & < k + 1.

20: Until stopping criterion is fulfilled.

D. Selection of Weighting Coefficients

To promote the sparsity of rows and singular values of each
superpixel, the selection of weighting coefficients of w; ;. values
in (8) and w; in (9) are interpretated in this part. For simplicity,
let @ represent sparse weighting factor w; ;, and b represent
low-rank weighting factor w;.

Exploring the importance of spatial information and relying
on success of [23] and [36] the spatial weighting factor into the
unmixing model is integrated to maintain the consistency and
uniformity of abundance matrix. Therefore, the weighting factor
can be described as

1
fheM(j)(IEZ)) +4

t+1) _

a (10)

where f(x;;) = (ZheM(j? eih.xih)/(ZheM(.j) €in), which
captures the spatial correlations in each superpixel through the
neighborhood domain M(j), and § is a small positive constant
(this article sets it to le—6). For simplicity, the neighboring
coverage identified here is 8-connected (3 x 3 window) for
experiments and Euclidean distance is defined, that is, €;; =
(1/((c = q)* + (d — 2)*)*/2) represents the neighborhood im-
portance for x;(c,d) and z,(q, 2).

Similarly, inspired by [36] and [53], minimizing the rank of
the abundance matrix in each superpixel to protect the main
features and ignore the unimportant or noisy parts in HSI, the
weighting coefficient b for weighted nuclear norm is selected,

that is
1

pt+1) —
o’z@ +e

(1)

where o; is the singular value and € is a preset positive con-
stant to prevent the denominator from being zero meaningless.
Clearly, the singular value of the abundance matrix of each
superpixel is relatively large, indicating that the singular value
is the principal component of the abundance matrix. Hence, a
large weight is used to attenuate nonzero singular values and a
small weight is used to encourage nonzero singular values in the
unmixing processing of HSI[39], [54], [55], the smaller singular
values should be attenuated as much as possible and the larger
singular values should be attenuated as little as possible.

Under the ADMM [56] framework, SBWCRLRU is summa-
rized in Algorithm 1. It should be noted that the convergence
of Algorithm 1 is difficult to justify. The inner and outer loop
iterative method is adopted to solve the optimization problem of
the model [23], [34]. The inner loop corresponds to the update
of the abundance coefficients via the ADMM and the outer loop
corresponds to the update of the spatial weight. More details can
be found in the Appendix.

IV. EXPERIMENTS

To evaluate the performance of the proposed SBWCRLRU
method, two simulated datasets and three real remotely sensed
image are used in the comparison with SUnSAL-TYV, S2WSU,
MUASs1c, SUSRLR-TV, and SUnCNN [57].

A. Simulated Data Experiments

1) Data description: Two simulated hyperspectral datasets
are adopted in our experiments, i.e., SD1 and SD2. Both use
the same spectral library D € R??4*240 " which is generated
by randomly selecting 240 different materials from the U.S.
Geological Survey (USGS) library! consisted of 224 spectral
signatures in 0.4 — 2.5 um [5], [15]. Their fractional abun-
dances are subject to the ANC and ASC constraints. The first
dataset (SD1) consists of 224 bands of 75 x 75 pixels formed
by five randomly selected signatures from the spectral library
D as endmembers. With abundance generated by [24], and
spatially distributed in the form of a square area, the back-
ground mixture is composed of five endmembers with fractional
abundances 0.1149, 0.0742, 0.2003, 0.2055, and 0.4051. In the
second dataset (SD2), nine spectral signatures from the spectral
library D are selected randomly as active endmembers, and the
corresponding fractional abundance maps with the spatial size
of 100 x 100 pixels are adopted, which were sampled according
to a Dirichlet distribution centered on the Gaussian random field
[34]. These two simulated data are contaminated by the Gaussian
noise of the signal-to-noise ratio (SNR), i.e., 20, 30, and 40 dB.

2) Visual quality comparison: For the simulated datasets,
Figs. 2 and 3, respectively, show the true and estimated
abundance maps through different unmixing algorithm with
SNR = 30 dB. It can be observed that the SUnSAL-TV adds

![Online]. Available: http://speclab.cr.usgs.gov/spectral.lib06
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Fig. 2. SDI with SNR = 30 dB results: abundance maps estimated by different methods. (a) Endmembers #1. (b) Endmember #2. (c) Endmember #3.
(d) Endmember #4. (e) Endmember #5.

the spatial information and provides relatively good unmixing because the spatial relationship in the local windows is only
effect. However, for endmember #5 of the SD1 and endmember dissected, and the spatial penalty constrains is not sufficient.
#2 of the SD2, the boundary of square region and the contour  Although the MUAg; ¢ algorithm could express the spatial
of the abundance maps can be clearly described, which obvi- information of the unmixed target well, there still exist some
ously leads to excessive smoothness and blurring phenomenon.  artifacts areas, which cannot be distinguished well. Part of
Moreover, there contains many noisy points after using S>WSU,  the abundance maps seems to be light-colored by using the
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Fig. 3.
(d) Endmember #7. (e) Endmember #9.

SUSRLR-TV algorithm, such as the upper right corner of SD1
endmember #2, and misidentification was observed in the small
areas of SD2 endmember #7, and the error caused the real abun-
dance maps to be distorted. For the SUnCNN method combined
with deep learning, it can better preserve the texture information
of the HSI due to the convolutional operator, but it contains
much noisy points in SD1 endmember #4 that do not conform to
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SD2 with SNR = 30 dB results: abundance maps estimated by different methods. (a) Endmember #1. (b) Endmember #2. (c¢) Endmember #4.

the actual. In the proposed SBWCRLRU, all the experimental
results in SD1 and SD2 datasets generate abundance maps with
better spatial consistency than other approaches, and the results
are similar to the ground-truth abundance maps, which can
effectively circumvent the problem of edge blurring, and reveal a
good compromise between smoothing the boundary and keeping
details.
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TABLE I
SRE AND RMSE VALUES OF DIFFERENT UNMIXING ALGORITHMS ON THE SD 1 (THE OPTIMAL PARAMETERS ARE INDICATE)

SNR Criteria SUnSAL-TV S’WSU MUAg ¢ SUSRLR-TV SUnCNN SBWCRLRU
SRE 17.47 28.23 22.38 37.65 30.7948 44.59
RMSE 0.0046 0.0013 0.0023 0.0005 0.0010 0.0002
40dB
A=5e-3 1=1e—3 A=1le-3 p=1le—-2 Iter = 12000 T=>5e—2
Ay =1le—3 B A, =1le—2 Ary = 5e — 4 B A=1le—4
SRE 14.43 15.49 15.73 24.59 20.8620 34.66
30dB RMSE 0.0066 0.0058 0.0056 0.0020 0.0031 0.0006
A=7e-3 e A =7e-3 p=5e—2 _ T=1le—-1
dpy = le—2 A=5e-3 A, =5e—2 Ay = le—2 [ter = 8000 A=5e—4
SRE 9.53 7.70 11.35 1331 10.8071 20.24
RMSE 0.0115 0.0142 0.0094 0.0075 0.0100 0.0034
20dB
A=5e-2 1=1le—1 A =3e—-2 p=le—1 lter = 4000 T=8e-1
Apy = 5e—2 e A, =1le—1 Apy = 5e—2 = A=5e—3
TABLE II
SRE AND RMSE VALUES OF DIFFERENT UNMIXING ALGORITHMS ON THE SD 2 (THE OPTIMAL PARAMETERS ARE INDICATED)
SNR Criteria SUnSAL-TV S’WSU MUAGgic SUSRLR-TV SUnCNN SBWCRLRU
SRE 20.62 24.88 20.19 25.81 29.2855 27.11
RMSE 0.0051 0.0031 0.0053 0.0028 0.0019 0.0024
40dB A=5e—-3 M=le-3 p=1le—2 T=>5e—3
= 5e — e =le- =1le— B = 5e—
Ary = 1le—3 A=5e-3 do=le2 Ary = 1e—3 fter = 12000 A1=5e—5
SRE 18.03 21.54 18.13 21.16 21.3798 22.25
30dB RMSE 0.0068 0.0046 0.0068 0.0048 0.0047 0.0042
A=5e-3 e, A =T7e-3 p=5e—2 _ T=3e—2
Ary =7e—3 A=5e-3 d,=5e—2 Ay =le—2 Iter = 8000 A=5e—4
SRE 11.86 9.33 14.82 15.24 13.0551 15.53
RMSE 0.0139 0.0186 0.0099 0.0094 0.0121 0.0091
20dB
A=1le-2 1=1le—2 Ay =7e—-3 p="5e—2 Iter = 4000 T=1le—1
Ay =3e—2 - ly=1le—1 Ay =3e—2 - A=1le-2

3) Quantitative comparison: To further quantitatively eval-
uate the performance of the proposed SBWCRLRU on the
simulated datasets SD1 and SD2, the three image quality evalu-
ation indicators are applied to measure the error between the
reconstructed abundance maps Y and the original image Y.
Here, the L represents the number of spectral bands of observed
vector, and N represents the number of pixels in each band of
observed vector. For convenience, the Y and Y are converted
into corresponding 2-D matrix to calculate these indicators.

SRE (dB) is defined as signal to reconstruction error in the
following equation, which represents the ratio between the re-
constructed abundance matrix and the true abundance matrix.
The higher the SRE, the higher quality of the unmixing results.

5 .
)
RMSE is root mean square error defined in the following
equation, which is to measure the quality of the image to be
tested from a global perspective by calculating the difference

between the corresponding pixels of the two images. The smaller
the value, the better.

. 1 2
RMSE(Y,Y) =/ 7 HY . YHF.

PSNR is peak SNR defined in the following equation, which
is a common and widely used metric to evaluate the image

E[IvI3]

SRE(Y,Y) = 10log,,
E [HY =1

12)

13)

quality. The difference between the corresponding pixels of the
real image and the estimated image is regarded as the criterion
for judging the image quality, where MSE stands for the mean
square error, the larger the PSNR value, the smaller the image
distortion and the better the quality.

max (Y)?

PSNR(Y,Y) = 10lo —
( ) €10 MSE(Y, V)

(14)

Tables I and II list the SRE (dB) values and the RMSE values
of all comparison algorithms for SD1 and SD2 with optimal reg-
ularization parameters values, the best results of each algorithm
are bolded. First, the longitudinal comparison of the different
SNR in the tables shows that the difference between different
algorithms will be significantly amplified with the reduction of
noise level, especially, the performance of S>WSU decreases
significantly when the SNR is reduced. Second, the horizontal
comparison of the different algorithms shows that the sparse
unmixing methods incorporating spatial contextual information
and displays great potential in unmixing performance, which is
obviously better than the traditional sparse unmixing algorithm.
Finally, the SBWCRLRU method illustrates good results on the
evaluation indexes of SRE and RMSE, which are consistent with
the visual results in Figs. 2 and 3, as well as our expectations.
The improvement of SD1 at 20, 30, and 40 dB is particularly
significantd because the change of SRE is at least greater than
8 dB. It further reveals that the weighted collaborative sparse
regression and reweighted LRR method can not only enhance the
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Fig. 5. Pseudocolor images of the test datasets. (a) Samson. (b) Jasper Ridge.

sparsity of the solution of the abundance matrix, but also improve
the consistency of the spatial information of the abundance
graph, so as to improve the accuracy of unmixing.

In order to obtain the difference of each algorithm in PSNR
evaluation indicator, the bar chart is shown in Fig. 4. It can
be seen that the SBWCRLRU algorithm has considerable un-
mixing results on the simulated datasets compared with other
methods.

B. Real Hyperspectral Data Experiments

1) Samson data: The data are generated by the SAMSON
sensor [14]. It contains 156 channels with the wavelengths
from 0.401~0.889 pm. For the sake of simplicity, a subset
composed of 95 x 95 pixels is utilized in this experiment.
Soil, trees, and water are selected as references for the
three endmembers.

2) Jasper Ridge data: The data are captured by the AVIRIS
sensor [13]. Jasper Ridge data has been widely used in
performance testing of hyperspectral unmixing. It contains
224 bands with a spectral resolution of 9.46 nm. Moreover,
to avoid atmospheric influence, some unusable frequency
bands are deleted (198 channels are reserved). It has 100 x
100 pixels and 198 spectral bands for experimentation,
and four endmembers are assumed to exist in Jasper
Ridge dataset: tree, water, soil, and road. The pseudocolor
images of Samson and Jasper Ridge datasets are shown
in Fig. 5.

3) Cuprite data: Cuprite dataset measured by AVIRIS sensor,
is composed of 250 x 191 pixels. The Cuprite data

60 T T T
I SNR=20dB
[ SNR=30dB - s
50 -| (] SNR=40dB = B

SUnSAL-TV SUSRLR-TV SBWCRLRU

(b)

s2wsu MUA G SURCNN

Difference of each algorithm in PSNR evaluation indicator for simulated datasets. (a) SD1. (b) SD2.
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Fig. 6.  USGS map showing the distribution of different minerals in Cuprite
mining district in Nevada.

contain 224 bands, covering the 0.4~2.5 um wavelength.
As an experiment, removing the low SNR and atmospheric
absorption bands, and the 188 effective bands are
remained. The portion subset of the Cuprite dataset (en-
closed by the red rectangle, as shown in Fig. 6) is used in
our experiment. Since the true abundance maps of this HSI
is not available [24], the three main minerals abundance
maps in Cuprite district are compared, namely Alunite,
Buddingtone, and Chalcedony. The parameters of all algo-
rithms were selected empirically, specifically, the regular-
ization parameters of the algorithms under comparison are
setas A = le — 3 and Aty = le — 3 for SUnSAL-TV,
L =0.07e -3 for SWSU, A; =le—3 and Ay =
le — 3 for MUAgp 10, p = le — 3, and Apy = le — 3
for SUSRLR-TYV, iteration = 20000 for SUnCNN, and
A=1le—9 and 7 = le — 4 for SBWCRLRU.
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TABLE III
SRE AND RMSE VALUES OF DIFFERENT UNMIXING ALGORITHMS
Data Criteria SUnSAL-TV S’WSU MUAg1c SUSRLR-TV SUnCNN SBWCRLRU
SRE 16.87 15.55 16.18 15.52 12.74 17.03
Samson RMSE , 0.(;719 X 0.0837 , 0.07778 ; O.(;840 ) 0.1158 0.(;706 ,
=oe— _ _ 1 =7e— p =5e— _ T=1e—
Ay =7e—3  A=10e-3 Ay=7e—2 Ay =le—z [ter=200000 5 .. _,
SRE 16.72 15.10 18.10 16.93 16.66 17.37
Jasper RMSE 0.0627 0.0756 0.0535 0.0612 0.0613 0.0582
A=5e-3 _ _ A=1le-3 p=1le—1 _ T=1e—-3
App=7e—3 A= 10e=3 dp=le—2  Ap=le—z [ter=200000 5 . 4
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Abundance maps estimated of the Samson dataset. (a) SUnSAL-TV. (b) S2WSU. (c) MUAgLic. (d) SUSRLR-TV. () SUnCNN. (f) SBWCRLRU.

TABLE IV
COMPUTATION TIMES OF DIFFERENT UNMIXING ALGORITHMS (IN MIN)

Data Criteria SUnSAL-TV S’WSU

MUAgic SUSRLR-TV SUNCNN  SBWCRLRU

Cuprite TIME 41.28 16.34

2.31 60.18 159.58 19.81

The quantitative evaluation of the Samson and Jasper Ridge
datasets is provided in Table III. Affected by the complex
conditions of the real scene, the average of SRE and RMSE
values between the estimated abundance maps and the ground-
truth maps are compared to qualitatively evaluate the unmixing
performance. It can be seen that most of the algorithms can
perform well. Among them, the SBWCRLRU method is signifi-
cantly better than SUnCNN with sparsity constraints in Samson
datasets.

Visual comparisons of the estimated abundance maps by
all approaches are presented in Figs. 7-9. It can be seen
that the proposed method provides basically the same visual
effect as the ground truth abundance maps, which is consistent
with the quantitative evaluation, while other methods produce
incorrect abundance estimated maps in some cases. For example,
the SUnCNN cannot completely distinguish water and soil in

Samson data, and S’WSU has some problems in distinguishing
water and road in Jasper Ridge data.

Since the ground truth abundance maps of the Cuprite dataset
are unavailable, the computation times of all methods are pre-
sented in Table IV. The computation times of the SBWCRLRU is
considerable as compared to other methods except the MUAgr 1
algorithm. From all the real data experiments results, it can be
concluded that the proposed approach SBWCRLRU exhibits
better unmixing capabilities for real complex hyperspectral
images, and is a valid unmixing algorithm for hyperspectral
unmixing.

V. DISCUSSIONS

To further study the effectiveness of the proposed SB-
WCRLRU algorithm, we mainly focus on the regularization
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Fig. 8. Abundance maps estimated of the Jasper Ridge dataset. (a) SUnSAL-TV. (b) S2ZWSU. (¢) MUAgL1c. (d) SUSRLR-TV. (¢) SUnCNN. (f) SBWCRLRU.
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Fig.9. Abundance maps estimated of the Cuprite dataset. (a) SUnSAL-TV. (b) S?WSU. (c) MUAgL1c. (d) SUSRLR-TV. (¢) SUnCNN. (f) SBWCRLRU.

parameter 7 and A, the penalty parameter p, the effectiveness
of the reweighting strategy, the number of superpixels, and the

convergence of algorithm are analyzed on the simulated data.
1) Parameter sensitivity analysis: For simplicity, the simu-
lated hyperspectral datasets SD1 and SD2 under different

SNR levels are used to analyze the influence of parameters.
The objective function contains regularization parameters
7 and A, and the penalty parameter y in the proposed
SBWCRLRU algorithm. Here, the change of parameter A
indicates the effect of collaborative sparsity on unmixing,
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and the change of parameter 7 states the influence of
reweighted low-rank on unmixing. After the initialization
is obtained, the penalty parameter p is first set to 0.1,
and then we select 7 and A from the set of {0, 0.0001,
0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.
The unmixing results of the terms SRE and RMSE, as
a function of the parameters 7 and A, are presented in
Fig. 10, it can be clearly observed that the unmixing results
of SBWCRLRU are stable as 7 and A change in the range
of 0.1~0.5 and 0.0001~0.001 for SD1, and 0.001~0.01
and 0.0001~0.001 for SD2. Therefore, comprehensively
consider the change of SRE and RMSE, 7 = 0.2 and
A =0.001 to SD1 and 7 = 0.01 and 2 = 0.0001 to SD2
are further used for our proposed unmixing model in the
simulated datasets with 30 dB.

To analyze the influence of the penalty parameter, the
regularization parameters 7 and A are fixed, and the
transformation range of parameter ; is the same as 7
and A. The SRE and RMSE as a function of the penalty
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Performance of SBWCRLRU obtained by different reweighting strategy. (a) SRE of SD1. (b) RMSE of SD1. (¢) SRE of SD2. (d) RMSE of SD2.

parameter p are presented in Fig. 11. It can be seen
that SRE reaches the maximum value and RMSE is the
minimum value when g is 0.9 for SD1, and 0.1 for SD2.
As a consequence, the optimal x4 1is set in the following
simulation experiments.

Effectiveness of the weighting strategy: The influence of
the weighting strategy on the unmixing effect is shown in
Fig. 12. It can be concluded that without weighting and
with a single weighting strategy the unmixing effect is
worse than with sparse and low-rank weighting together.
Moreover, the SBWCRLRU algorithm with both weights
produces an overall robust convergence and stability be-
havior.

Number of superpixels: The influence of the number of
superpixels on the sparse unmixing accuracy under the
different SNR levels is discussed. The simulation test is
carried out with SD1 and SD2 by selecting the cluster size
among the target integer values \/N/K € {2,...,15}.
The SRE (dB), and RMSE by SBWCRLRU algorithm
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with different value of number superpixels are presented utilized to fully enhance the abundance sparse and spatial
in Fig. 13. It can be observed that while the count of su- consistency. The experiments on both simulated and real data
perpixels increases, the SRE value first increases (RMSE  illustrated that the proposed algorithm SBWCRLRU efficiently
value decreases), but when a certain number is reached, improved the performance of hyperspectral unmixing and over-
the SRE achieves the maximum value (the RMSE valueis came the problem of edge blur caused by the TV regular-
minimum). Obviously, selecting the appropriate number ization. More important, the proposed method showed im-
of superpixels is an inevitable requirement for unmix- proved results in visual quality and quantitative comparison.
ing in SBWCRLRU. In the simulation experiments, each  The related future research lies on exploitation of a more effi-
superpixel is composed of a certain number of pixels, and cient optimization algorithm to circumvent the computational
satisfactory results can be obtained in the range of 50 to  complexity.
300.

5) Convergence analysis: Here, the objective function values
in each inner loop iteration and SRE values in each outer
loop iteration over simulated data at all SNR levels are The optimization problem of the proposed SBWCRLRU al-
recorded. The convergence curves are described in Fig. 14. gorithm can be written as
As shown in Fig. 14(b) and (d), all the objective function

APPENDIX

values decrease monotonically with the increase of the 1 s

number of iterations, which verifies the convergence of argmin = ||[DX — YH% + A Z | X k”a 01

the SBWCRLRU. Fig. 14(a) and (c) show that the relative x 2 k=1 o

error between restored abundance X and the truth abun- s R

dance X, becomes smaller when the number of itera- i Z Z Xkl + lr, (X). (15)

tions increases, and after 60 outer iterations, SBWCRLRU
is able to obtain a stable solution, which indicates the
stability of our method.

k=1 j=1

Equation (15) is a nonconvex and nonsmooth optimization
problem, and the ADMM is introduced to settle this problem.
VL. CONCLUSION First., itis necessary to divide Y' i'nto S superpixejls as r'equired,
and introduce variable P as auxiliary. Then, (15) is equivalently

In this article, the SBWCRLRU was proposed for hyper-  jawritten by some substitutions, given by

spectral image analysis. Superpixel-based method promoted

adjacent pixels to have similar constituent endmembers and S
corresponding fractional abundance. Moreover, weighted col- arg minl Py — Y||% +A Z 1Pokll, 54
laborative sparse regression and reweighted LRR strategy were QP 2 st s
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S R
+7Y D NPkl + Cry (Pa)

k=1j=1

subject to: Py =Q,B=0Q,P=Q

where, )‘25:1 | P2 k|la,2,1 accounts for the weighted col-
laborative sparse regression in data for each superpixel,
Dy Ele | P5 i ||p,« calculates the submatrices reweighted
nuclear norm for each superpixel, to make notations more con-
cisely, given by

=DQ, P (16)

P D —I 0 0 O
| P I |0 -10 0
P= P ,G= I , B= 0 0 —-I0
Py I 0 0 0 —1I
and
1 2 S
9(P.Q) =3P =Yz +Ar Z P2,k ]l 40,1

T Z Z 1P klly, . + LR (Py).

=1j5=1
Then, the optimization problem (16) can be further expressed
in a compact form

min g(P,Q)s.t.GQ + BP =0

s

To cope with the abovementioned model by the ADMM
framework, and the optimization of (16) is converted to settle
the following augmented Lagrangian function

Lu(Q, P, M) =g(P,Q) +

where, © >0 is a penalty parameter, and M =
[My, Mo, M3, My]* denotes the augmented Lagrange
multipliers. Then, the ADMM frameworks are derived as

QUTY = argmmﬁ (Q, P® M(t))

% IGQ+BP—M|% (17

pt+1) _ arg mgnﬁu(Q(t),P,M(t))

MED — 0 (GQ(t+1) + Bp(t+1)). (18)

The typical approach adopted to tackle this issue is to optimize
the function on one variable iteratively. The detail for each
subproblem of (18) is presented as follows. First, after removing
the constant terms, the () subproblem is equivalent to settle

2
Q(Hl) = arg min i HDQ — Pl(t) — Ml(t) H
Q 2 F

2
+ > Sle-rP-MP| . a9

i=2,3.4

It is a least-squares problem. The solution to (19) by taking
the partial derivative is simply as

QY = (DD +31) (DT (P + M)

+ PO+ M)
(20)

+ P+ M + PO+ MY

where I is the identity matrix, DT represents the transpose
of D. Then, the P subproblem is decoupled into four parts
and each part has a closed-form solution. To compute P;, the
optimization problem is performed as

P(tJFl)

= argmlnf |P, - Y%
P

1

2
+ &b — - en

A simple calculation gives
R T o (v + oD —ar)) . @2

Then, P» is computed by solving the following optimization
problem:

S

(t+1) — argmlnlz ||P2 k”az 1
Ps k=1

N -
2 F

By dividing the abundance matrix X into a predefined
number of superpixel blocks, it then can be acquired Q(*+1) =
[Q§t+1)7...,Qg+1)] and P, = [Po1,..., P, s], and the cor-
responding segmentation M (0 — [MZ(?7 oo, My (¢ )] Since col-
laborative sparsity regularization of object function (23) is
proper, strictly convex subproblem, P» reduces to the well-
known vect_soft threshold [20], [58], and the solution is ob-
tained as

)

2
mlnk||P2 kllaos +5 a HQ(tH — Py — MQ(TZ: -

(PQ(,t:U)[i] B vect_SOft“ﬁa (( ](€t+1) _ Méf}l)[l]) .2

Fork=1,...,5, i=1,...,m, vect_softy(-) is defined
by
—a,0
vect_soft, (x) = max{||z|, — o, 0} . (25)
max{ljel, — a0} + a

Next, for the Ps subproblem, it is equivalent to solve the
following minimization problem:

p(t"'l) = argmlnTZZ 1Ps,c .

Ps k=1 j=1

HH ) _ p, a0l
+2 @ ? 3 le

(26)

Before solving the P3 subproblem, abundance matrix X is
also divided into the predefined number of superpixel blocks,
and performed on the submatrices in each superpixel to enhance
the unmixing, where j = 1,..., R, and R 1is the number of
submatrices in each superpixel.

Let the singular value decomposition (SVD) of abundance
matrix X be UDiag((o1),,...,(0r),)VT, here, r=
rank(X), (z);+ =max{z,0}, U and V are the unitary
matrices corresponding to the SVD of X, and o; denote the 7
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th singular value of X, ¢ = 1,...,7. Then, the SVT [39], [40]
operator are as follows:

To,-(X) = UDiag ((o1 — 7b1) .., (0, = 7b,) ) V.

27
Then, the solution to Ps is explicitly given by
P = To2 Q)Y — MY, (28)
The subproblem with respect to P, gives
2
P i, () + £ |00 — )|
Py
(29)

The role of the /r, (P,) term is an indicator function of the
positive vector space. And the solution to P, is given by

P = max(QUHY — My, 0). (30)
Finally, the multipliers M are sequentially updated as
Ml(t+1) _ Ml(t) _ DQ(t+1) +M1(t+1)
MY = p D Q) 4 pFY =234 @31)
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