
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022 247

Analyzing Effects of Crops on SMAP Satellite-Based
Soil Moisture Using a Rainfall–Runoff Model in the

U.S. Corn Belt
Navid Jadidoleslam , Member, IEEE, Brian K. Hornbuckle , Senior Member, IEEE, Witold F. Krajewski ,

Ricardo Mantilla, and Michael H. Cosh, Senior Member, IEEE

Abstract—L-band microwave satellite missions provide soil
moisture information potentially useful for streamflow and, hence,
flood predictions. However, these observations are also sensitive
to the presence of vegetation that makes satellite soil moisture
estimations prone to errors. In this study, the authors evaluate
satellite soil moisture estimations from Soil Moisture Active Passive
(SMAP) and Soil Moisture Ocean Salinity and two distributed
hydrologic models with measurements from in situ sensors in
the Corn Belt state of Iowa, a region dominated by annual row
crops of corn and soybean. First, the authors compare model and
satellite soil moisture products across Iowa using in situ data for
more than 30 stations. Then, they compare satellite soil moisture
products with state-wide model-based fields to identify regions of
low and high agreement. Finally, the authors analyze and explain
the resulting spatial patterns with Moderate Resolution Imaging
Spectroradiometer vegetation indices and SMAP vegetation optical
depth. The results indicate that satellite soil moisture estimations
are drier than those provided by the hydrologic model, and the
spatial bias depends on the intensity of row-crop agriculture. The
work highlights the importance of developing a revised SMAP
algorithm for regions of intensive row-crop agriculture to increase
SMAP utility in the real-time streamflow predictions.
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I. INTRODUCTION

IN THIS study, we address the temporal and spatial variability
of uncertainties of satellite-based soil moisture maps. Our

motivation is to explore the potential of soil moisture estimates
for improving real-time streamflow and, thus, flood prediction
over a large domain of an agricultural region. Soil moisture
controls the partitioning of rainfall into runoff and infiltration,
and thus, accurate knowledge of its state in time and space seems
crucial for skillful streamflow prediction.

The Iowa Flood Center (IFC) [1] operates a high-resolution
rainfall–runoff model over the state of Iowa. The model parti-
tions the landscape into hillslopes and channel links that form a
river drainage network [2]. The model keeps track of the water
content in the top soil column at the hillslopes, which is the
basis for runoff generation and delivery to the drainage network.
Satellite-based soil moisture estimates present an opportunity
to “correct” the model-based soil moisture states in space and
time. To fully realize this opportunity, we need to understand the
uncertainties in the satellite-based estimates and how they vary
in space and over time. The temporal variability is especially
acute in Iowa, where there is a pronounced cycle of vegetation
growth (row crops of corn and soybean), and it has been well
established that vegetation contributes to the uncertainty in the
satellite soil moisture.

We have explored some aspects of this uncertainty/variability
in several previous studies over Iowa. For example, we demon-
strated that there is information in the satellite soil moisture
about runoff generation [3], spatial variability [4], and the poten-
tial for useful correction of streamflow predictions [5]. We have
also demonstrated that there is seasonal bias in satellite-based
soil moisture retrieval [6]. Here, we build on those earlier studies.

Satellite soil moisture missions provide an unprecedented
opportunity to study the global water cycle (see, e.g., [7]–[9]).
They offer information on soil moisture that improves flood and
drought predictions (see, e.g., [3], [10], and [11]). Two current
L-band soil moisture missions are Soil Moisture Ocean Salinity
(SMOS) and Soil Moisture Active Passive (SMAP), which have
been in operation since 2010 and 2015, respectively [12], [13].
In situ soil moisture sensors provide more frequent observations
in time compared to satellite soil moisture estimations, but they
are generally sparse in space (see, e.g., [14] and [15]). Never-
theless, these measurements play a key role in the evaluation
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of satellite soil moisture estimations (see, e.g., [16] and [17])
and model predictions (see, e.g., [18]). Antecedent rainfall in
hydrologic studies has been a common proxy for soil moisture
conditions (see, e.g., [19] and [20]). Distributed hydrologic mod-
els use space-time rainfall data as one of their hydrometeorologic
forcings to keep track of soil moisture with coherence in space
and time (see, e.g., [21] and [22]).

Satellite soil moisture estimations, model soil moisture pre-
dictions, and in situ sensor measurements constitute three differ-
ent sources of soil moisture information. Unlike in situ sensor
observations, satellite and model estimates have a larger spatial
extent that is more suitable for understanding soil moisture
dynamics and its spatial variability (see, e.g., [4] and [23]).
Babaeian et al. [24] provide a review of different soil moisture
sensing techniques and their applications. Previous studies have
evaluated satellite soil moisture estimations with in situ sensor
measurements over the globe (see, e.g., [15] and [25]–[29]).
Some studies have compared modeled predictions with satel-
lite soil moisture (see, e.g., [30]–[32]). More recently, Beck
et al. [33] have conducted an evaluation of 18 satellites and
model soil moisture products with in situ sensors over the United
States (U.S.) and Europe.

Spaceborne L-band microwave radiometers observe bright-
ness temperatures at vertical and horizontal polarizations near
1.4 GHz, which is sensitive to water content in soil and veg-
etation. The brightness temperature is used with other land
surface variables to retrieve soil moisture (see, e.g., [34]). How-
ever, in dense vegetation conditions, where vegetation water
column density is high, brightness temperature sensitivity to
soil moisture decreases. Still, the sensitivity is significant up to
and including levels of vegetation as high as a corn crop (see,
e.g., [35]). Walker et al. [36] conducted a five-year evaluation of
SMOS satellite soil moisture in the U.S. Corn Belt, a region of
intensive corn and soybean row-crop agriculture in the Midwest
U.S. They discussed the potential sources of dry bias in SMOS
Level 2 retrievals, such as auxiliary modeled temperature and
soil surface roughness.

A few studies have characterized time-variant errors of satel-
lite soil moisture. For example, Walker et al. [6] conducted
a seasonal evaluation of SMAP satellite soil moisture in the
Corn Belt. Zwieback et al. [37] investigated the time-variable
biases introduced by vegetation misrepresentations in SMAP
soil moisture retrievals. They used a Bayesian extension of
triple collocation analysis (TCA) to study errors in soil moisture
retrievals over croplands in the U.S. More recently, Wu et al. [38]
have used TCA to study time-variant errors of SMAP and
Advanced Scatterometer soil moisture products globally. TCA
was introduced by Stoffelen [39] for estimating uncertainties in
wind data. It has been one of the common methods for estimating
error variances of the different soil moisture products, some of
which we have discussed in this introduction. However, Yilmaz
and Crow [40] showed that major TCA assumptions do not
generally hold for surface soil moisture products.

Overall, previous evaluations of satellite soil moisture esti-
mates have provided useful insights on errors and their potential
sources over the globe. However, only a few studies focus on
dominantly agricultural regions, where satellite soil moisture

products are prone to more potential errors. For example, Walker
et al. [6], [36] showed that satellite soil moisture estimations are
drier than in situ observations in the U.S. Corn Belt. However,
because of limited in situ sensors in space, it is challenging to
investigate satellite estimations and relevant errors over a large
domain. Alternatively, hydrologic model predictions driven with
radar-based rainfall could be used to gain better insights on
potential errors of satellite soil moisture in a larger spatial
extent.

In this study, we evaluate two satellite soil moisture products
with two model predictions and in situ sensor measurements
over the state of Iowa in the U.S. Corn Belt for five years (2015–
2019). First, we compare soil moisture predictions from the two
spatially distributed hydrologic models to determine whether
the model better suited for comparison with satellite soil mois-
ture estimations also has the best agreement with in situ soil
moisture observations at the soil surface. Second, we compare
satellite and model soil moisture to identify regions of Iowa of
strong/weak agreement. Finally, we compare vegetation infor-
mation from a multispectral satellite with vegetation information
from SMAP satellite soil moisture.

In the next section, we describe the study region and data.
Then, we provide details of the state-wide hydrologic models
and evaluation metrics used in this study. Afterward, we present
our findings from data analysis with interpretations followed by
a discussion of results and their relevance to previous studies.
Finally, we summarize our findings and conclude with their
implications for real-time streamflow predictions.

II. STUDY REGION AND DATA

The study domain mainly covers the state of Iowa in the
U.S. Corn Belt (see Fig. 1). More than 70% of Iowa’s surface
area is covered by cropland (mainly row crops of corn and soy-
bean) [41]. Based on historical data, Iowa climate is character-
ized as warm and humid (see, e.g., [42]) with an annual average
precipitation of 870 mm (1981–2010). Annual maximum daily
rainfall occurs in June and July [43].

We conduct our study for five years from 2015 to 2019. We use
data for each year from April 1 to October 31 to exclude periods
of frozen soil or snow cover surface conditions. Details on the
data products for this study is described as follows.

We use a Stage IV radar-based gauge-corrected product for
rainfall forcing [44] posted on a grid with approximately 4-km
resolution [45]. For evapotranspiration (ET) forcing, we use
the climatologic average from the North American Land Data
Assimilation [21].

We use hourly in situ sensor soil moisture at 5-cm depth as
the reference soil moisture observations. Fig. 1 shows a map of
the in situ soil moisture sensors and the number of available
sensors and data availability percentage for each year. The
U.S. Department of Agriculture (USDA) Agricultural Research
Service (ARS) and IFC in situ sensors are shown in green and
blue, respectively. IFC soil moisture sensors are denser in the
Turkey River basin located in northeast Iowa. ARS sensors
are only available at the South Fork watershed located in the
north central part of the state. This watershed is one of the core
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Fig. 1. Model domain and available soil moisture in situ sensors from IFC (blue) and USDA-ARS (green) and number of available in situ sensor (black) and
sensor soil moisture data availability percentage (gray) for each year from 2015 to 2019.

validation sites for the SMAP satellite mission. We calculate
average soil moisture from at least two in situ observations that
correspond to an Enhanced SMAP pixel (∼9 km scale), where
sensor observations are available.

We use soil moisture and vegetation optical depth (VOD)
from SMAP. VOD is a parameter that indicates the degree
of microwave radiation extinction (attenuation and scattering)
due to presence of a vegetation canopy. We use the Enhanced
SMAP [46] Level 3 Version 3 (L3_P_E) soil moisture provided
on EASE-Grid version 2 [47] with a 9-km grid spacing and
33-km resolution [48], [49]. We evaluate the Single Channel
Algorithm soil moisture product [50] retrieved using vertically
polarized brightness temperature (SCA-VPOL).

SMOS soil moisture [12] is posted on the Icosahedral Snyder
Equal Area grid [51] with an approximate resolution of 43 km
in space. We use SMOS Level 2 Soil Moisture Output User Data
Product (MIR_SMUDP). We rescaled the SMOS soil moisture
estimations, in space, to the SMAP Enhanced grid (∼9 km) for
this study.

SMAP and SMOS satellites’ overpass interval ranges from
12 to 36 h for a given point at approximately 6 A.M. and
6 P.M. Both satellites are L-band radiometers, while the SMAP
sensor is a real aperture and SMOS uses a synthetic aperture.
In addition, SMAP brightness temperature observations have
less RFI contamination than SMOS because of RFI filtering
hardware and software [52].

We use POLARIS soil hydraulic properties provided on a
grid with 30-m spatial resolution [53]. POLARIS is a prob-
abilistic soil property map for the contiguous U.S. We use
the median estimates of the soil properties from this database.
The soil parameters used in this study consist of residual soil
moisture (θres), porosity (θsat or soil moisture at saturation),
hydraulic conductivity at saturation (Ksat), matric suction head
at saturation (ψsat), and Brooks–Corey’s water retention curve
fitting parameter (λ).

We obtain the fraction of absorbed photosynthetically active
radiation (FPAR) and leaf area index (LAI) from the MODIS
satellite. The data are provided with a four-day interval and a
500-m spatial resolution [54]. Details of the MODIS dataset are
provided in the dataset documentation [55]. We upscaled FPAR
and LAI estimations from MODIS by averaging the observations
at 500-m resolution to the Enhanced SMAP satellite’s grid at
9-km scale.

III. METHODS

This section provides details of the two hydrologic models
followed by definitions of the evaluation metrics used.

A. Hillslope-Link Model (HLM)

The HLM model was developed at the IFC, and it is used as the
state-wide operational hydrologic flood forecasting model [1].
The model decomposes the landscape into hillslopes and links
that describe water movement at the hillslope and river channels,
respectively [56]. Previous studies (see, e.g., [57] and [58]) have
demonstrated successful applications of the HLM. The state-
wide hydrologic domain consists of more than 400 000 hillslopes
with median area of 0.3 km2.

Fig. 2 shows a schematic diagram for the HLM structure at
each hillslope. Hillslope processes are driven by two hydrom-
eteorologic forcings: rainfall (P) and ET. Three layers repre-
sent the ponded surface (Sp), top-layer soil storage (St), and
groundwater storage (Ss). During rainfall events, the ponding
layer (Sp) receives water and exchanges water with the top
layer and channel link with infiltration (qpt) and overland flow
(qpl), respectively. ET flux is extracted from the soil layers
and the ponded surface. Groundwater discharge contribution
to the channel is provided by the groundwater discharge flux
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Fig. 2. Schematic diagram of the HLM structure at the hillslope scale and an
example of watershed decomposition in space.

(qsl). Quintero et al. [56] provide more details of the model
formulation, and the documentation could be found.1

The HLM model provides predictions of top-layer soil storage
in units of meters for the top 20 cm of the soil. For comparison
with other soil moisture products, we convert HLM’s storage
values to the volumetric water content (cm3 · cm−3) using the
corresponding residual soil moisture and porosity.

The current structure of the HLM model does not have in-
formation on soil hydraulic properties. In the next section, we
present an implementation of the Richards’ equation in the HLM
model’s top layer to account for physically based soil parameters
and to better match the sampling depth of SMAP observations.

B. Richards’ Equation Implementation in the HLM (HLMr)

In order to better match the HLM with the satellite soil
moisture and potentially improve its performance, we created
a revised version of the HLM that we call HLMr. In the HLMr,
we substituted HLM’s top-layer formulation (St) with a solution
of Richards’ equation that describes soil water movement in a
vertical soil column [59]

∂θ

∂t
+
∂q

∂z
= 0 (1)

where soil moisture (θ) varies with depth (z) and time (t). Here,
q is the flux per unit area crossing a horizontal surface. This flux
(q) is given by the Darcy–Buckingham law

q = K(θ)

(
1− dψ(θ)

dz

)
(2)

where K(θ) is the soil hydraulic conductivity, and ψ(θ) is the
pressure head, which can be calculated from van Genuchten–
Mualem [60], [61] or Brooks–Corey’s [62] soil–water retention
curves. In this study, we use the Brooks–Corey model to estimate
unsaturated hydraulic conductivity given as

K(θ) = Ksatφ
2+3λ

λ (3)

and matric suction head by

ψ(θ) = ψsatφ
− 1

λ (4)

1[Online]. Available: https://asynch.readthedocs.io/

Fig. 3. Subsurface structure for the HLMr model (right) and vertical locations
of in situ sensors at 5, 10, 20, and 50 cm depths at each soil moisture site (left).

where λ is Brooks–Corey’s fit parameter [62], Ksat = K(θsat),
and ψsat = ψ(θsat). Normalized water content or effective sat-
uration (φ) is defined as

φ =
θ − θres

θsat − θres
(5)

where θsat is the porosity and θres is the residual soil moisture.
These two variables represent the upper and lower bounds for
soil moisture dynamic range, respectively.

Fig. 3 shows the soil layer discretization and soil moisture
sensors at each soil moisture observation site. The flux between
two layers is defined as

qi = K̂

(
1− ψi − ψi−1 − sp

Li

)
. (6)

where i is the index of the layer, Li is the layer thickness of a
given layer, and K̂ is the average soil hydraulic conductivity of
the two layers calculated by

K̂ =
LiK(θi) + Li−1K(θi−1)

Li + Li−1
. (7)

Assuming an initial zero ponding (sp = 0), if the rainfall rate
is less than the infiltration rate from the 1-cm saturated layer, then
the rainfall will only infiltrate and the top-layer soil moisture rate
of change is

dθ1
dt
L1 = qrain − qinf − ET1. (8)

If the rainfall rate (qrain) is larger than the infiltration rate (qinf)
for the 1-cm saturated top soil layer, then the rate of change for
ponding depth will be

dsp
dt

= qrain − qinf − qpl (9)

where qpl is the rate of surface runoff to the hillslope channel.
After ponding (sp > 0), the rate of soil moisture change will
also depend on the surface ponding depth given in (6).

ET is a combination of soil evaporation and transpiration from
vegetation and is either energy or moisture limited. We incor-
porate these two limits in the ET flux formulation as follows.
The total ET (ETtot) is extracted recursively starting from the

https://asynch.readthedocs.io/
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Fig. 4. ET flux coefficient and its relationship with available soil moisture
(θ) for an example soil profile with a residual soil moisture θr = 0.05.

top layer soil in the column, and it is defined as

ET1 = C1ETpot (10)

ETi = Ci

⎛
⎝ETpot −

i−1∑
j=1

ETj

⎞
⎠ , i = 2, . . . ,10 (11)

ETtot =

10∑
i=1

ETi (12)

where Ci is defined as

Ci = 0.5
Slim

(10−4 + S2
lim)

1/2
+ 0.5 (13)

where Slim is the soil moisture availability limit, and it is defined
as

Slim = θ − θr − 0.1. (14)

Equations (10)–(14) summarize the ET formulation in the
proposed model. Fig. 4 shows an example the three-stage ET
coefficient (Ci) for a given soil layer and residual soil moisture.
As shown in this figure, the ET flux from a layer will depend
on its available soil moisture. During the energy limit stage
(θ � 0.2), the ET flux from a soil layer will be higher. In the
transition stage, the matric suction will increase until there is
limited moisture available for ET. At the soil moisture limit
stage, the actual ET flux from the soil layer will be lowest.

We upscale POLARIS soil properties to the hillslope scale
by taking the median value of the available 30-meter pixels
within each hillslope. Fig. 5 shows an example upscaled soil
property map from the POLARIS database [53] for residual soil
moisture (θres) for the model domain. We also show the estimated
probability density function (in percentage) using a Gaussian
kernel to provide insight on the modality of the distribution in
space. As shown in Fig. 5, the POLARIS soil properties dataset
captures the geologic features.

We conduct numerical simulations with the HLM and the
HLMr for 2015 to 2019 following a calibration-free approach
(see, e.g., [5] and [58]). For comparisons with satellite estima-
tions and in situ sensor averages, we upscaled the model soil
moisture to the SMAP grid by calculating areal average soil
moisture for the hillslopes corresponding to SMAP pixels.

Fig. 5. Map and estimated probability density function of residual soil mois-
ture (θres) used in the HLMr model.

C. Evaluation Metrics

We evaluate and compare soil moisture data products using
different evaluation metrics described as follows.

Let o and s denote reference and simulation data vectors, and
μ and σ be the mean and standard deviation, respectively. The
Pearson correlation coefficient, r, is defined as

r =

∑n
i=1(oi − μo)(si − μs)

σoσs
. (15)

The root-mean-square error (RMSE) is

RMSE =

√
1

N

∑N

i=1
(oi − si)2. (16)

The relative RMSE (RMSEr) is defined as

RMSEr =
RMSE
μo

. (17)

The mean absolute error (MAE) is

MAE =
1

N

N∑
i=1

(|oi − si|). (18)

The Kling–Gupta efficiency (KGE) [63] is defined as

KGE = 1−
√
(r − 1)2 +

(
σs
σo

− 1

)2

+

(
μs

μo
− 1

)2

(19)

where r is the Pearson correlation coefficient of reference and
simulated soil moisture given in (15). Finally, following [64],
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Fig. 6. Estimated probability density functions and median values of different evaluation metrics for satellite and model soil moisture from 2015 to 2019.

bias is defined as

bias =
1

N

N∑
i=1

(oi − si). (20)

IV. RESULTS

In this section, first, we present the evaluations with reference
in situ soil moisture measurements over the state of Iowa.
This analysis establishes benchmarks for satellite and model
soil moisture products. In other words, we aim to identify the
soil moisture product that has the best agreement with in situ
soil moisture measurements. Then, we compare satellite esti-
mates with soil moisture time series from the best candidate
model. Finally, we provide additional analysis of the vegetation
and its signature on the soil moisture evaluations over our study
domain.

A. Benchmark Evaluation of Soil Moisture Products

Fig. 6 shows the estimated probability density functions of
evaluation metrics for the HLM and HLMr models, and SMAP

and SMOS with in situ sensor observations as the reference for
years 2015 to 2019. This figure provides a performance summary
of each soil moisture product with reference to the average of
in situ sensor soil moisture at 5-cm depth across the state of Iowa.
HLMr and HLM soil moisture show higher KGE and correla-
tion coefficients compared to SMAP and SMOS satellite-based
estimations. SMAP has lower median bias than the original
HLM model’s soil moisture but higher bias compared to HLMr.
Largest median bias corresponds to SMOS satellite-based soil
moisture product.

Fig. 6 illustrates that HLMr soil moisture shows the best
performance as compared to the HLM with respect to in situ
sensor soil moisture observations. Therefore, HLMr is selected
as the candidate for the comparisons with satellite-based soil
moisture estimations from SMAP and SMOS.

B. Temporal Comparison of Satellite-Based and Model-Based
Soil Moisture Products

Fig. 7 shows KGE values between SMAP and SMOS satellite
estimations and HLMr soil moisture time-series from 2015
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Fig. 7. Maps of KGE values for satellite-based and HLMr-model-based soil moisture products.
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to 2019. Darker red indicates better agreement between two
soil moisture time series at the SMAP pixel scale. SMAP and
HLMr show a consistent agreement in the south for all five years,
while they show poor agreement in northern regions of the
state. KGE values between HLMr and SMOS are lower than
SMAP specifically in the central and northern portion of the
domain.

Fig. 8 illustrates maps of bias values calculated for SMAP and
SMOS with respect to HLMr soil moisture from 2015 to 2019.
Blue and red colors represent higher and lower mean soil mois-
ture from satellite products compared to HLMr, respectively.
SMAP soil moisture exhibits a lower mean than HLMr soil
moisture in the north and central parts of the domain, while the
two products show strong agreement in the south and northeast.
Bias values show similar spatial patterns for SMAP and SMOS
with reference to HLMr soil moisture. However, SMOS has drier
mean soil moisture than HLMr and SMAP across the domain.

C. Potential Effect of Vegetation on Satellite-Based Soil
Moisture Accuracy

We compare vegetation patterns from MODIS satellite obser-
vations with SMAP VOD. Fig. 9 shows time series of upscaled
MODIS satellite-based LAI for all SMAP pixels over the study
domain from 2015 to 2019.

The LAI exhibits consistent and strong seasonality for the
study domain. Fig. 9 indicates that LAI peaks in June to July,
after which crops (e.g., corn and soybean) have completed their
vegetative stages and reached their reproductive stages. The
variability of LAI values at a given time is due to differences
in local climate. The FPAR has similar seasonality during study
period. In Fig. 10, we show the maps of yearly maximum FPAR
over the study domain. The FPAR ranges from 0.7 to 0.8 for the
south, while northern parts have higher FPAR values ranging
from 0.8 to 0.9. Parts of the southern region have lower FPAR
during 2017, which was a dry year. There is a consistent pattern
in space for FPAR yearly maximum values for all years. Yearly
maximum LAI values are higher in west and north-central parts
of the domain compared to other regions.

Fig. 11 illustrates maps of annual maximum VOD from SMAP
climatological VOD data for the study domain.

SMAP VOD shows a similar spatial pattern with FPAR annual
maximum maps from MODIS. The SMAP VOD maximum map
shows similar pattern with maps of the bias evaluation metric for
comparisons of SMAP with HLMr soil moisture. Furthermore,
the comparisons between SMAP and HLMr soil moisture data
with KGE values show a higher agreement for the southern
region of the domain, where SMAP has lower VOD values
compared to other regions.

V. DISCUSSION

Our results for SMAP show a median RMSE of 0.085
(cm3/cm3) and a median dry bias of 0.04 (cm3/cm3). Our eval-
uation of the SMOS satellite-based product with in situ sensor
soil moisture observations shows a median dry bias of 0.065
(cm3/cm3) and RMSE of 0.1 (cm3/cm3). Walker et al. [36] found
−0.039 (cm3/cm3) and 0.062 (cm3/cm3) for bias and RMSE

for SMOS over the South Fork watershed. Overall, SMAP and
SMOS show dry bias over our study domain, while SMOS is
drier than SMAP.

Compared to satellite-based soil moisture estimations, model-
based predictions showed better agreement with the average
of in situ sensor soil moisture observations across the study
domain. The benchmark evaluations of soil moisture products
indicate that HLMr-model-based soil moisture has the best per-
formance compared to HLM, SMAP, and SMOS soil moisture
products for all evaluation metrics. This result emphasizes the
role of radar-based rainfall observations as a good indicator for
soil moisture conditions [19]. Previous studies on evaluation
of satellite-based and model-based soil moisture found similar
results, where model-based open-loop soil moisture predictions
showed better performance than satellite-based estimations (see,
e.g., [33]).

Jadidoleslam et al. [5] found that assimilation of SMAP and
SMOS satellite estimations in the original HLM model improves
streamflow predictions. Furthermore, SMAP provided a higher
degree of improvement for streamflow prediction than SMOS.
We have determined in the present study that HLMr provides
better soil moisture predictions compared to in situ measure-
ments than the original HLM used in [5]. Moreover, HLMr
has a top-layer depth that is more representative of the L-band
microwave sampling depth. Therefore, we hypothesize that data
assimilation of SMAP soil moisture in HLMr could further
increase streamflow prediction performance. A follow-up study
is needed to test this hypothesis.

We found consistent spatial patterns in KGE and bias for
SMAP soil moisture compared to HLMr soil moisture, specifi-
cally in south-central Iowa and to a lesser extent northeast Iowa.
These regions with higher KGE and lower bias for SMAP and
HLMr have strong spatial similarity with lower yearly maximum
FPAR and lower SMAP VOD used in SMAP’s SCA-VPOL soil
moisture algorithm. Landcover from USDA CropScape [65] is
shown in Fig. 12 for the 2017 growing season.

Note that the south-central and northeast regions of Iowa
have a lower percentage of land area in row crop (corn and
soybean) production than all other regions of Iowa. This is true
not only for 2017 but for all other years considered here. Higher
yearly maximum FPAR values are consistent with areas of higher
intensity row crop production since at the SMAP and SMOS
pixel scale, row crops accumulate approximately 6 kg·m−2 of
fresh biomass and more than 3 kg·m−2 of dry biomass an-
nually [66]. Consequently, we would expect lower maximum
FPAR and, thus, lower SMAP VOD in the south-central and
northeast regions. This spatial pattern suggests that SMAP soil
moisture is more accurate in regions with less row-crop agri-
culture (and less annual change in VOD) and less accurate in
regions with more row-crop agriculture (and more annual change
in VOD).

Previous studies have investigated the effect of vegetation
on soil moisture. For example, Wu et al. [38] found that the
LAI shows higher correlation with SMAP satellite soil moisture
errors calculated for croplands. For the South Fork watershed
in central Iowa, Colliander et al. [17] observed deviations in
the observed vegetation with the vegetation water content used
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Fig. 8. Maps of bias values for satellite-based and HLMr-model-based soil moisture products.
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Fig. 9. MODIS satellite-based LAI estimations for the study domain from 2015 to 2019.

Fig. 10. Maps of FPAR yearly maximums from four-day MODIS satellite-based estimations for the study domain.

by the SMAP algorithm that could be a reason for errors in
retrievals at this dominantly agricultural location. Furthermore,
Zwieback et al. [37] investigated the time-variant component
of the errors in croplands over the U.S. They attributed the
time-variable biases to misspecification of VOD in SMAP re-
trieval that exhibits seasonal error structure in the evaluations.
Our results highlights the impact of vegetation in agricultural
regions, confirm the findings of previous studies, and underscore

the need for a more robust retrieval algorithm that better accounts
for changes in vegetation in agricultural regions. Alternatively,
it may be possible to use a spatial error structure within a data
assimilation scheme to account for poor SMAP performance in
regions of intensive agriculture.

Finally, we note inherent limitations in our study similar to
other evaluation studies of satellite and modeled soil moisture
with in situ sensor measurements.
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Fig. 11. Annual maximum VOD for SMAP climatologic average used in the
soil moisture retrieval algorithm.

Fig. 12. USDA landcover map obtained from USDA CropScape for the study
domain.

The number of soil moisture in situ sensors is limited in
space and only provides information on local conditions of soil
moisture. However, our results show agreement with findings of
previous studies that evaluated satellite-based soil moisture in
our study domain (see, e.g., [6] and [36]).

Soil moisture sensors can have calibration and scaling errors,
but the magnitude of this error can and have been quantified
for this region as well as these sensors. Coopersmith et al. [67]
determined that the random error of the sensor and installation is
0.012 (cm3/cm3). Coopersmith et al. [68] determined that the
South Fork watershed network could be modeled with a simple
model with a model of less than 0.05 (cm3/cm3). Colliander
et al. [17] compared the network estimate to a large set of field
measurements during the 2016 field campaign in support of
the SMAP and found a reasonable agreement between the field
measurements and the network (less than 0.04 cm3/cm3 RMSD).
Another study from field sampling in 2014 [36] found that the

network had an RMSE of approximately 0.023 (cm3/cm3) as
compared to broad field sampling that occurred throughout the
summer of 2014.

The timestamps of satellite-based and model-based products
are not exactly the same and can have a maximum difference
of an hour. However, the timestamps of model soil moisture
and in situ sensors are matched. In this study, we have followed
recommended practices of the Committee on Earth Observing
Satellites Land Product Validation Soil Moisture Good Practices
Document [69].

VI. CONCLUSION

In this article, we evaluated satellite-based and model-based
soil moisture products with in situ sensor observations in a
dominantly agricultural region from 2015 to 2019. We used
in situ sensor observation averages to evaluate the soil moisture
estimations from SMAP and SMOS satellites, the HLM, and
an implementation of Richard’s equation in the original HLM
model (HLMr). Then, we compared the satellite-based soil mois-
ture estimations with best-performing-model-based predictions
over the state of Iowa with a dominantly row-crop agricultural
landcover. Finally, we assessed our evaluation results with re-
spect to vegetation dynamics in our study domain. The following
conclusions could be drawn from our results.

1) HLMr-model-based soil moisture provides better predic-
tions than HLM and other satellite-based soil moisture
products.

2) SMAP satellite-based soil moisture shows more consistent
performance with HLMr model predictions than SMOS
in a dominantly agricultural region with strong vegetation
seasonality.

3) The spatial patterns of bias values between SMAP and
SMOS with HLMr soil moisture show strong similarity
with the map of MODIS FPAR and SMAP VOD.

4) This spatial patterns of bias and KGE suggest that SMAP
soil moisture is more accurate in regions with less row-
crop agriculture and less accurate in regions with more
row-crop agriculture.

The effectiveness of satellite-based soil moisture data assim-
ilation in hydrologic predictions (e.g., flood and drought fore-
casts) depends on the correct introduction and handling of error
components (e.g., bias and RMSE). Our study highlights the
importance of understanding and accounting for space-variant
errors in satellite-based soil moisture and the need for an im-
proved SMAP retrieval algorithm. We hypothesize that intro-
ducing space-variant errors in a data assimilation scheme could
further improve the utility of SMAP satellite in real-time flood
predictions and overall soil moisture predictions in dominantly
agricultural regions.

VI. DATA AVAILABILITY

MODIS: https://lpdaac.usgs.gov/products/mcd15a3hv006/
Stage IV: https://mesonet.agron.iastate.edu/onsite/stage4/
SMAP: https://nsidc.org/data/SPL3SMP_E/versions/3
SMOS: https://smos-diss.eo.esa.int/

https://lpdaac.usgs.gov/products/mcd15a3hv006/
https://mesonet.agron.iastate.edu/onsite/stage4/
https://nsidc.org/data/SPL3SMP_E/versions/3
https://smos-diss.eo.esa.int/
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