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Attention-Based Octave Network for Hyperspectral
Image Denoising
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Abstract—Inevitable corruption and degeneration make the per-
formance of subsequent high-level semantic tasks in hyperspectral
images (HSIs) unsatisfactory. Despite that many denoising meth-
ods have been proposed, significant room for improvement still
remains. To better suppress noise and preserve the HSI spatial–
spectral structure, we propose an attention-based Octave dense net-
work. A separable spectral feature extraction module is introduced
to extract the spatial–spectral features consistent with the structure
prior. The extracted features are fine-tuned by the attention module
in both channel and spatial domains; then, several dense denoising
blocks are elaborately employed to focus on noise feature learning;
in order to focus on high-frequency features, which usually have
more noise information, we introduce the Octave kernel to imple-
ment these blocks. Experiments based on simulated and real-world
noisy images demonstrate that the proposed method outperforms
the existing traditional and learning-based methods in both quan-
titative evaluations and visual effects, benefiting the subsequent
classification task. In addition, the effectiveness of each module is
proven by ablation experiments. Our source code is made available
at: https://github.com/LbzSteven/AODN.

Index Terms—Attention module, hyperspectral image (HSI)
denoising, octave network, separable feature extraction.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) have high spectral res-
olution and hundreds of channels, which allow them to

have abundant information in both spectral and spatial domains.
HSIs have been applied in numerous remote sensing applica-
tions, such as ground object classification [2], unmixing [3],
and anomaly detection [4]. However, limited by the imaging
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condition, HSIs usually suffer from various corruptions and de-
generations. Contaminated observations will seriously impede
subsequent high-level vision tasks. As a result, it is of great
importance to denoise HSIs before performing high-level tasks.

In recent decades, a number of methods have been proposed
to obtain noise-free HSIs from noisy observations [5]–[24].
The preliminary denoising strategy is to simply apply natural
image denoising methods [5]–[7] to process noisy HSIs band
by band. However, this strategy ignores the spectral correlation
between adjacent bands, which may cause spectral distortion in
the results.

To explore spectral–spatial information and suppress noise,
numerous methods, such as wavelet [8], nonlocal similarity [9]–
[11], sparse representation [12], [13], and low-rank decomposi-
tion [14]–[17], [22]–[24], have been proposed. Despite the sig-
nificant improvements obtained, considerable efforts for manual
parameter tuning and computational time are required. Mean-
while, the noise level usually must be determined to achieve
more accurate results. In summary, it is necessary to develop a
more flexible and robust denoising method for HSIs.

Recently, with the rapid development of deep learning, HSIs
have been extensively studied for computer vision, including im-
age denoising. For example, DnCNN [25] learned the nonlinear
features via residual connection. Mao et al. [26] presented a deep
fully convolutional encoding–decoding framework for image
restoration. However, due to the high spectral correlation among
HSIs, directly applying these methods to hyperspectral denois-
ing may not obtain satisfactory results [27]. In [27], a bandwise
denoising network aided by adjacent bands was proposed to
improve the denoising performance. Based on this work, in [28],
nonlocal blocks and channel attention were introduced to capture
the global features. In [29], a network with channel attention and
residual connection was proposed. Dong et al. [30] proposed a
3-D denoising network equipped with separable convolution.
Song et al. [31] proposed an unsupervised model using wavelet
directional CycleGAN. These methods achieved good results,
but significant room for improvement remains.

From the signal processing perspective, the high-frequency
component is considered to contain more noise and fine details,
and the low-frequency component contains more content. To the
best of our knowledge, no existing denoising methods in convo-
lutional neural network (CNN)-based HSI denoising decompose
high-frequency features from original features and separately
process both parts. In addition, different from a simple 3-D
feature block that has equal dimensions, the spectral dimension
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contains the information of sampling bands and the spatial di-
mension contains the height and width information of terrestrial
object, that is, structural difference exists between spectral and
spatial domains and a traditional vanilla 3-D convolution kernel
cannot explicitly represent this difference.

In this article, to overcome the shortcomings mentioned
above, we propose an attention-based Octave dense network
(AODN). We use multiscale separable convolution to extract in-
formation in adjacent bands, attention mechanism is introduced
to guide feature learning in both spatial and channel domains,
and we design a new denoising block combining the Octave
convolution and dense connection to reduce the redundancy of
low-frequency information. Our main contributions are summa-
rized as follows.

1) A new feature extractor with multiscale separable convo-
lution is proposed to explore the adjacent spatial–spectral
information and reduce the model scale.

2) A novel dense denoising block aided by the Octave kernel
and the attention mechanism is proposed to suppress noise.
The Octave kernel is introduced to extract high-frequency
features, enabling the network to locate the noise infor-
mation. It is the first attempt to introduce the attention
mechanism to guide the network to focus additional at-
tention on meaningful feature maps for noise suppression
in both spatial and channel domains.

3) Extensive experiments were conducted to demonstrate
that the proposed network can effectively remove the noise
in both simulated and real scenarios and achieve better
qualitative and quantitative results than several state-of-
the-art methods.

This paper is an extension of the conference paper [1]. Com-
paring with the conference version, this work has thefollowing
improvements. Firstly, more systematic description about the
theory part was presented. Secondly, we redesigned the exper-
imental parts. More SOTAs were added into comparison and
ablation studies were performed and presented.

The rest of this article is organized as follows. Section II
describes the HSI degradation model and then introduces the
existing HSI denoising methods. In Section III, the proposed
model is elaborated. The simulated and real-data experimental
results are presented in Section IV. Finally, Section V concludes
this article.

II. RELATED WORK

A. Hyperspectral Noise Degradation Model

An observed HSI is a 3-D data tensor Y ∈ RM×N×B , in
which M and N represent the spatial resolution and B denotes
the spectral resolution. The HSI degradation model can be
formulated as follows:

Y = X +D (1)

where X ∈ RM×N×B is the noise-free data we attempt to re-
cover and D ∈ RM×N×B represents the additive noise, such as
Gaussian noise. Therefore, the denoising problem can be treated
to reconstruct X from the noisy observation Y .

B. Traditional Hyperspectral Denoising Methods

Existing hyperspectral denoising methods can be roughly
divided into three categories: band-by-band methods, transform
domain methods, and model-optimization-based methods.

1) Band-by-Band Methods: Band-by-band methods directly
apply natural image denoising methods to HSI denoising, such
as block matching and 3-D filtering [5], weighted nuclear norm
minimization [6], and expected patch log likelihood [7]. How-
ever, these methods only focus on the spatial information and
fail to adopt the high correlations between the spectral bands,
which usually lead to unsatisfactory results.

2) Transform Domain Methods: Transform domain methods
try to obtain noise-free HSIs by transforming them with various
basis functions. For example, Atkinson et al. [8] used discrete
Fourier transform and wavelet-based estimation schemes for
hyperspectral imagery; Rasti et al. proposed a denoising model
using 3-D wavelets [18] and another method using first-order
roughness penalty in a wavelet domain [19]. Othman and
Qian [20] proposed a hybrid approach of spatial and spectral
wavelet shrinkage on the derivative domain to suppress noise.
However, these methods need to manually select the transform
function, and the differences in the geometrical characteristics
are ignored.

3) Model-Optimization-Based Methods: To make full use
of the prior information of HSIs in both spatial and spec-
tral domains, several methods have been proposed, such as
total variation [21], nonlocal similarity [9]–[11], sparse rep-
resentation [12], [13], and low-rank tensors [14]–[17], [22]–
[24]. Specifically, Zhang [21] applied a cubic total variation
model to denoise HSIs. Maggioni et al. [9] modified nonlo-
cal block matching methods into a volumetric data pattern.
Peng et al. [10] considered the nonlocal similarity over space and
the global correlation across spectra using nonlocal tensor dictio-
nary learning. He et al. [11] combined spatial nonlocal similarity
and global spectral low-rank property (NGmeet). Lu et al. [12]
improved noise-free estimation by utilizing spectral and spatial
information via sparse representation. Li et al. [13] proposed a
joint spectral–spatial distributed sparse representation for HSI
denoising. Zhang et al. [14] proposed an HSI restoration method
based on low-rank matrix recovery. Renard et al. [15] exploited
low-rank matrix approximation to reduce spectral dimension-
ality. Wei et al. [16] proposed total-variation-regularized low-
rank matrix factorization. Chang et al. [17] proposed hyper-
Laplacian regularized unidirectional low-rank tensor recovery
for multispectral image denoising (LLRT). Rasti et al. [22]
proposed to use Stein’s unbiased risk estimator to select all the
parameter sparse and low-rank modeling (HyRes). Zhuang and
Bioucas-Dias [23] presented a fast algorithm based on low-rank
and sparse representation to suppress noise (FastHyDe). Zhang
et al. [24] proposed a restoration model combining total variation
regularization and nonlocal low-rank decomposition.

Despite the promising results achieved, laborious parameter
adjustment prevents most of the methods’ usage in practice, and
there is still room for improvement. Therefore, it is urgent to
develop a robust, flexible, and efficient architecture to denoise
HSIs.
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Fig. 1. Overall network structure of the AODN.

C. CNN-Based Hyperspectral Denoising Methods

In recent years, CNN-based methods have shown their po-
tential in image denoising [25], [26], [32], [33]. Due to the
properties of hyperspectral resolution and spectral correlation,
directly applying these methods to HSI denoising cannot obtain
satisfactory results. To preserve more spectral information
and reduce computational cost, several attempts have been
made [27]–[30], [34], [35]. In [27], an auxiliary adjacent spec-
tral branch was introduced to guide band-by-band denoising,
which achieved impressive results. SSGN [34] applied spatial–
spectral gradients to address mixed noise. ENCAM [28] tried
to learn global information with nonlocal blocks. ARDN [29]
and ENCAM used a channel attention module to guide the
feature tuning. Meanwhile, some methods restored the HSI
data with a 3-D block, but the network structures must be
modified once the number of bands changes. 3-D dilated kernels
were introduced by Liu and Lee [35]. However, their model is
unable to handle all of the data due to memory constraints and
must randomly select some bands of HSIs to conduct training
and experiments. The methods with vanilla 3-D kernels do
not consider the difference between the spatial and spectral
domains while extracting features from adjacent bands. Dong
et al. [30] proposed a 3-D denoising architecture with separable
kernels to reduce the computational costs. Additionally, no exist-
ing methods explicitly decompose high-frequency features that
contain more noise and detailed information. Compared with
these methods, the proposed method can fully extract spectral
information with a separable convolution extraction model and
focus additional attention on high-frequency features via Octave
convolution.

III. PROPOSED METHOD

A. Network Architecture

The architecture of the proposed AODN is illustrated in Fig. 1.
The input of AODN is composed of a noisy band with a size of
W ×H and auxiliary adjacent bands with sizes of W ×H ×
K. K/2 bands in front of current band and K/2 bands behind
current band, totallyK bands, are selected as the adjacent bands.
For the first K/2 or the last K/2 bands in the spectrum, we
simply use the firstK bands or the lastK bands as their adjacent
bands, respectively.

A spatial extraction module is introduced to learn spatial
information from the noise band, and a separable spectral feature
extraction module is introduced to learn spatial–spectral infor-
mation from adjacent bands. This strategy is flexible since HSIs
from different bands can be processed with a unified structure,
which means we process each band one by one.

After the concatenation and attention module, six denois-
ing blocks are cascaded to extract noise features. Several skip
connections are used, which have been proven effective in solv-
ing the vanishing gradient problem in HSI denoising [26]. The
residual ϕi can be defined as follows:

ϕi = yi − xi (2)

where yi is the observed corrupted ith band data and xi is the
corresponding ith noise-free data.

The mean squared error is employed as the loss func-
tion, which is formulated as a training group with N pairs
{yi, si, xi}N of image data, yi and si represent the ith noisy
data and its adjacent spectral data, respectively, and xi is the
ground truth of the ith data. The loss function is as follows:

Lθ =
1

N

N∑
i=1

‖F (yi, si, θ)− ϕi‖22 (3)

where ϕi is the ground truth of the ith residual, N denotes the
number of training samples,F (·) represents the AODN network,
and θ represents the trainable parameter set.

B. Separable Spectral Feature Extraction Module

The separable feature extraction module is demonstrated in
Fig. 2, which can learn spatial spectrum from two branches.
Both branches apply multiscale kernels to extract features from
multiple scales. The upper branch uses vanilla 2-D convolu-
tion to learn spatial information. The lower branch attempts
to learn auxiliary spatial–spectral features from a 3-D input
tensor. Generally, vanilla 3-D convolution is suited for extracting
feature maps from 3-D input, but 3-D convolution will cause
extra computational expense. In addition, there are structural
differences between interspatial and spectral features, which are
difficult to extract properly using a vanilla 3-D convolution.

As we mentioned above, spatial and spectral features are
different in the structure prior and are not represented well by
vanilla 3-D kernels. To tackle this problem, the spectral branch
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Fig. 2. Feature extraction module.

Fig. 3. Proposed attention module. (a) Overall framework of the attention
module. (b) Channel attention module. (c) Spatial attention module.

applies 3-D separable convolution to learn spectral informa-
tion. The proposed separable feature extraction module extracts
two features separately, with 1-D kernels focusing on spectral
information and 2-D kernels focusing on spatial information;
thus, the spectral and spatial information are represented ap-
propriately, which conforms to the structure prior. Additionally,
the separated kernel reduces the total number of parameters,
easing the network training. After that, the learned features
are concatenated, processed by an attention module and fused
by a convolution. The fused feature consists of fine extracted
multiscale spatial–spectral information, which can be used in
later denoising blocks.

C. Attention Module

The proposed attention module is shown in Fig. 3. As shown
in Fig. 3(a), the attention module consists of two parts. The first
channel module learns the channel attention map MC to refine

features in channel domain. Then, the spatial attention module
learns the spatial attention map MS to refine the features in
spatial domain. The overall process can be described as follows:

F ′ = MC(F )⊗ F

F ′′ = MS(F
′)⊗ F ′ (4)

where ⊗ denotes elementwise multiplication, F is the input
feature, F ′ is the feature tuned by the channel attention mod-
ule, and F ′′ is the output feature. This block has been proven
effective in enhancing the channelwise and spatialwise feature
representation ability of CNNs [36].

1) Channel Attention: As shown in Fig. 3(b), this module
aggregates feature maps with both average pooling and max
pooling along the spatial domain. The channel attention module
forwards them through a shared multilayer perceptron (MLP)
that has only one hidden layer. The hidden layer size is set to
C/16× 1× 1, where C is the input channel size. The outputs
of two branches are merged to obtain the channel attention map
MC . The process can be described as follows:

MC(F ) = σ(W1(W0(F
C
avg)) +W1(W0(F

C
max))) (5)

where σ is the Sigmoid activation function and W1 and W0

are the shared MLP parameters. FC
avg ∈ R1×1×B and FC

max ∈
R1×1×B are the features generated by average and max pooling
operations in spatial domain, respectively.

2) Spatial Attention: As shown in Fig. 3(c), spatial atten-
tion focuses on the interspatial domain. First, average pool-
ing and max pooling operations along the channel axis are
employed to generate the descriptors: FS

avg ∈ RM×N×1 and
FS

max ∈ RM×N×1. Two descriptors are concatenated and fed
into a vanilla convolution. The spatial attention process can be
described as follows:

MS(F ) = σ(f [FS
avg;F

S
max]) (6)

where σ is the Sigmoid activation function and f is a 2-D
convolution with a 7 × 7 kernel.

Since our proposed attention module is dedicated to fine-
tuning the learned features from both spectral and spatial in-
formation and the spatial feature and separable spectral feature
extraction modules only extract the corresponding feature, we
only apply the attention module after the feature concatenation
and each denoising block.

D. Octave Dense Denoising Block

In natural images, information can be decomposed into differ-
ent frequencies. Higher frequencies usually contain fine details
and noise information that are indispensable for image restora-
tion, while lower frequencies usually contain global structural
information and are redundant in most cases [37]. Chen et
al. [37] proposed an Octave convolution block to reduce re-
dundancy in the feature map and focus on the high-frequency
parts, which usually contain noise information. The Octave con-
volution can restore “slowly” by varying features at a lower res-
olution while reducing both memory and computational costs.

This characteristic has made it feasible for Octave networks to
be applied in HSI high-level tasks [38]–[40]. Meanwhile, Octave
convolution can focus on high-frequency features and learn more
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Fig. 4. Octave convolution kernel.

noisy information. Based on this consideration, to the best of
our knowledge, the model proposed in our article is the first
attempt to apply an Octave network to the HSI denoising task.
As shown in Fig. 4, Octave convolution can not only process both
frequency tensors, but also enable efficient interfrequency com-
munication. The red lines represent intrafrequency channel in-
formation updating, and the green lines represent interfrequency
channel information exchange. In the Octave kernel, the ratio α
represents the low-frequency proportion. The α× c channels
are the low-frequency features, whose spatial resolutions are
reduced to 0.5H × 0.5 W, and the (1− α)× c channels are
the high-frequency features, whose spatial resolutions remain
H ×W . Octave convolution has the exact same parameters as
vanilla convolution, but it can reduce the computational and
memory costs by reducing the low-frequency features.

Specifically, assuming that the input and the output
of an Octave block are Xi = {XH

i , XL
i } and Xi+1 =

{XH
i+1, X

L
i+1}, respectively, H represents the high-frequency

group and L represents the low-frequency group. In the Oc-
tave network,XH

i+1 = XH→H
i +XL→H

i andXL
i+1 = XL→L

i +
XH→L

i , where XA→B
i represents a convolutional update from

group A to group B. Specifically, XH→H
i , XL→L

i means in-
trafrequency forward propagation and XL→H

i , XH→L
i means

interfrequency forward propagation. Additionally, the Octave
kernel can be split into two components W = [WH ,WL]. Each
component can be separated into intra- and interfrequency parts,
which are defined as WH = [WH→H ,WL→H ] and WL =
[WL→L,WH→L], respectively. Thus, XH

i+1and XL
i+1 can be

computed as follows:

XH
i+1 = XH→H

i +XL→H
i

=
∑

(WH)TXi

=
∑

(WH→H)TXH
i + upsample

(∑
(WL→H)TXL

i

)

XL
i+1 = XH→L

i +XL→L
i

=
∑

(WL)TXi

=
∑

(WH→L)T pool(XH
i ) +

∑
(WL→L)TXL

i (7)

where T represents the transpose operation, pool(·) represents
the average pooling operation, and upsample(·) represents the
upsampling operation. The denoising block is shown in Fig. 5,
in which we use an Octave dense structure. For the high- or
low-frequency channel alone, the output of each layer has the

same number of channels, and the input of the channel is the
concatenation of all the outputs from the previous layers. The
Octave kernel is applied to update information in the same
channel and exchange information between channels. The Oc-
tave dense structure leverages features more effectively to make
the parameter transfer frequently. After the dense structure, an
attention module is applied to refine the feature map. The block
also applies residual connection to avoid vanishing gradients.

IV. EXPERIMENTAL RESULTS

A. Datasets and Implementation Details

1) Datasets: Three datasets were used for the simulated
and real-data experiments, including the Washington DC Mall
dataset, the Pavia University (PU) dataset, and the Indian Pines
(IP) dataset. The pixel levels of these images were normalized
to [0,1].

The Washington DC Mall dataset was collected by the Hyper-
spectral Digital Imagery Collection Experiment, with a spatial
resolution of 1208 × 303 and 191 bands. The images were
cropped into two parts: one with a size of 1080× 303 for training
and the other with a size of 200 × 200 for testing.

The IP dataset was collected by the Airborne Visible Infrared
Imaging Spectrometer with a spatial resolution of 145 × 145
and 220 bands.

The PU dataset was acquired by the Reflective Optics System
Imaging Spectrometer with a spatial resolution of 610 × 340
and 103 bands. The IP and PU datasets contain real noise and
were employed for the real-data experiments.

During the training phase, the images in the training set
were cropped into patches with a size of 40 × 40, and the
stride was set to 40. The simulated noisy data were generated
by adding Gaussian noise. Data augmentation was performed,
which includes resizing scale [0.5, 1, 1.5, 2] times, flipping along
the horizontal and vertical directions and rotating 0◦, 90◦, 180◦,
and 270◦.

2) Parameter Setting and Network Training: PyTorch was
adopted to implement the proposed model. The number of
adjacent bands, K, was set to 64, and the low-frequency ratio α
was set to 0.2. Adam [41] was employed as the optimizer with
momentum parameters of 0.9, 0.999, and 10−8. The Kaiming
initialization method in [42] was introduced to initialize the
parameters, and the learning rate was initially set to 10−5. The
training process took 100 epochs. We train our network on a PC
with an i9-10900X CPU and an NVIDIA 2080Ti with 11-GB
memory.

3) Comparative Methods and Quantitative Indices: Several
state-of-the-art methods were compared, including four popular
similarity or low-rank-based methods BM4D [9], LLRT [17],
HyRes [22], and FastHyDe [23], and deep-learning-based meth-
ods HSIDCNN [27] and ENCAM [28].

To quantitatively measure the denoising performance, three
widely used indices were chosen, including the peak signal-
to-noise ratio (PSNR), structural similarity index measurement
(SSIM) [43], and spectral angle map (SAM) [44]. Usually,
higher PSNR and SSIM mean higher reconstruction achieve-
ment, and lower SAM means a smaller difference between the
spectral structures of ground truth and the denoised result.
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Fig. 5. Proposed Octave dense denoising block.

TABLE I
EFFECT OF DIFFERENT ADJACENT BANDS K IN THE PROPOSED AODN

B. Hyperparameter Experiments

In this section, we discuss the effects of hyperparameters
in the proposed network architecture. There are two important
hyperparameters in AODN: the number of adjacent bands K
and the low-frequency ratioα in Octave kernels. A random noise
level (“σn = rand(100)”) was to perform the test. PSNR, SSIM,
and SAM are introduced to evaluate the denoising performance,
and FLOPs were employed to evaluate the model complexity.
The quantitative results listed in the following tables are the
average of the results of ten repeated experiments. The best
results are marked in bold.

1) Number of Adjacent Bands K: As we mentioned above,
the number of adjacent bands K affects the amount of auxiliary
spectral information. A larger K can include more auxiliary
spectral information from more bands but raises the computa-
tional cost and has a negative impact on the model flexibility.
As shown in Table I, when the network had no adjacent band,
it requires the least computational resources but performed the
worst. As K increases, the FLOPs raise slowly since the com-
putational cost is mainly determined by the denoising module
rather than the feature extraction module. As K increases from
zero, the quantitative results improve dramatically. The gains
become small and tend to be saturated when K > 64. Then, as
K continues to grow, the performance declines. The possible

TABLE II
EFFECT OF DIFFERENT LOW-FREQUENCY RATIO α IN THE PROPOSED AODN

TABLE III
EFFECT OF EACH COMPONENT IN THE PROPOSED AODN

reason lies in that too many spectral bands make it hard for the
network to focus on the current noisy band.

2) Low-Frequency Ratio α: As we mentioned above, the
ratio α represents the proportion of the low-frequency feature
in an Octave architecture. A larger α could reduce more spatial
redundancy in “slow-vary” features and accelerate the training
process. When α increases, the model complexity drops sig-
nificantly, which shows the effectiveness of the Octave kernel.
However, larger α also causes more information loss. The bal-
ance between high and low frequencies is essential for Octave
networks. As shown in Table II, when α = 0.2, the network
achieves the best results. The network with smaller α achieves
less satisfactory results because the redundancy of low frequency
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TABLE IV
QUANTITATIVE EVALUATION OF THE DENOISING RESULTS OF THE SIMULATED EXPERIMENTS

Fig. 6. Results and magnified results for the Washington DC Mall image with σn = 100 in Case 1. (a) Pseudocolor noise-free image with bands (57, 27, 17).
(b) Noisy image. (c) BM4D. (d) LLRT. (e) HyRes. (f) FastHyDe. (g) HSIDCNN. (h) ENCAM. (i) AODN.

Fig. 7. Results for the Washington DC Mall image with σn = rand(100) in Case 2. (a) Pseudocolor noise-free image with bands (57, 27, 17). (b) Noisy image.
(c) BM4D. (d) LLRT. (e) HyRes. (f) FastHyDe. (g) HSIDCNN. (h) ENCAM. (i) AODN.
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Fig. 8. Results and magnified results for the Washington DC Mall image in Case 3. (a) Pseudocolor noise-free image with bands (57, 27, 17). (b) Noisy image.
(c) BM4D. (d) LLRT. (e) HyRes. (f) FastHyDe. (g) HSIDCNN. (h) ENCAM. (i) AODN.

Fig. 9. Results and magnified results for the Washington DC Mall image in Case 4. (a) Real noise-free image band 2. (b) Noisy image. (c) BM4D. (d) LLRT.
(e) HyRes. (f) FastHyDe. (g) HSIDCNN. (h) ENCAM. (i) AODN.

Fig. 10. Spectra of pixel (87,112) in the restoration results with σn = 100 in Case 1. (a) BM4D. (b) LLRT. (c) HyRes. (d) FastHyDe (e) HSIDCNN. (f) ENCAM.
(g) AODN.
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Fig. 11. PSNR and SSIM values of the different denoising methods in each band of the simulated experiment with noise level σn = rand(100). (a) PSNR values
of band result in Case 2. (b) SSIM values of band result in Case 2.

TABLE V
NUMBER OF TRAINING AND TESTING SAMPLES OF THE IP DATASET

TABLE VI
NUMBER OF TRAINING AND TESTING SAMPLES OF THE PU DATASET

remains in the feature maps, making it hard for the network to
focus on the high-frequency features. The results with larger
α are worse, which may lie in that when the network reduces
the redundancy of low frequency, it also loses more spatial
information.

C. Ablation Experiments

In this experiment, we discuss the effectiveness of the AODN
structure. There are three main blocks, including the separable

Fig. 12. Results for the IP image. (a) Real image band 2. (b) BM4D. (c) LLRT.
(d) HyRes. (e) FastHyDe. (f) HSIDCNN. (g) ENCAM. (h) AODN.

Fig. 13. Results for the IP image. (a) Pseudocolor noisy image with bands
(2, 3, 203). (b) BM4D. (c) LLRT. (d) HyRes. (e) FastHyDe. (f) HSIDCNN. (g)
ENCAM. (h) AODN.

TABLE VII
CLASSIFICATION ACCURACY RESULTS FOR THE IP DATASET

TABLE VIII
CLASSIFICATION ACCURACY RESULTS FOR THE PU DATASET
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Fig. 14. Classification results for the IP image using SVM before and after
denoising. (a) Ground truth. (b) Noisy image. (c) BM4D. (d) LLRT. (e) HyRes.
(f) FastHyDe. (g) HSIDCNN. (h) ENCAM. (i) AODN.

feature extraction module, the attention module, and the Octave
denoising network. To show the effect of these modules, 11
variants of AODN were evaluated. These variants remove some
specific components of the module in the proposed architecture,
as shown in Table III. For examples, “no_module” means the
model does not have any proposed modules and “no_oct_att”
means the model does not contain the Octave kernel and the
attention module. The specific modules contained in the vari-
ant are marked in the second column of Table III. Especially,
“no_cha_att” means no channel attention module in the model,
and “no_spa_att” means no spatial attention module in the
model. “no_upper” means no upper spatial branch in the model,
and “no_adjacent” means no spectral branch in the model. We
used a random noise level (“σn = rand(100)”)) to conduct the
test. PSNR, SSIM, and SAM were introduced to evaluate the
denoising performance, and FLOPs were adopted to evaluate
the model complexity. The quantitative results are shown with
the mean of ten repeated experiments. The best scores are
highlighted in bold.

As shown in Table III, all three modules contribute to the
denoising performance. The separable kernel in feature extrac-
tion conforms to the HSI structure prior. The attention module
can fine-tune feature learning with elementwise multiplication.

The Octave module improves denoising results by guiding the
architecture to focus on high-frequency features. Without any
of the proposed blocks, the quantitative performance declines.
If the channel attention or the spatial attention part is removed,
the quantitative performance declines obviously.

D. Simulated-Data Experiments

In the simulated experiment, Gaussian noise and mixed noise
were simulated according to the following four cases.

1) Case 1 (Fixed noise level): In each band, the noise inten-
sities are the same. The noise level σn was set from 25 to
100 in sequence, as listed in Table IV.

2) Case 2 (Unknown noise level): In different bands, the noise
intensities are different. The noise level of each band was
generated according to a random probability distribution
(“σn = rand(100)”), as listed in Table IV.

3) Case 3 (Mixed Gaussian noise and stripes): All bands in
the HSIs were corrupted by Gaussian noise, and some of
the bands were corrupted by stripe noise. The strength of
Gaussian noise equals to that in Case 2. In our experiments,
ten bands of the original data were injected with simulated
stripe noise. The number of stripes in each band was set
to 5–15% rows.

4) Case 4 (Mixed Gaussian noise and deadlines): All bands
in the HSIs were corrupted by Gaussian noise, and some
of the bands were corrupted by deadlines. The strength of
Gaussian noise equals to that in Case 2. In our experiments,
ten bands of the original data were injected with simulated
deadlines. The number of deadlines in each band was set
to 5–15% rows.

In Table IV, averages and standard deviations of each metric
for the ten repeated experiments are listed, and the best scores
are highlighted in bold. To visualize the denoising results, the
cases of noise levels σn = 100 and σn = rand(100) are shown
in Figs. 6 and 7, and specific regions are enlarged. The cases of
mixed noise with stripes and deadlines are shown in Figs. 8 and
9. The spectral curves of pixels (87,112) in Case 1 are plotted
in Fig. 10. The results of PSNR and SSIM in different bands in
Case 2 are depicted in Fig. 11.

It can be observed that in Table IV, the proposed AODN
outperforms all other methods, obtaining notable improvements
on all the metrics, which shows that AODN can reconstruct HSIs
with higher quality in both spatial and spectral domains.

In fixed-noise-level experiments, all methods achieve good
performance, but the proposed AODN outperforms the others.
BM4D generates an oversmoothed result. As shown in the
enlarged region in Fig. 8, LLRT smooths some edge details, and
HyRes suppresses noise well in Case 1 but produces unexpected
artifacts. FastHyDe not only removes noise well but also blurs
some details. HSIDCNN and ENCAM, which benefit from the
merits of supervised learning, achieve promising results. The
proposed AODN results in better visualization than the two
learning-based methods, indicating the progressiveness of the
proposed architecture.

The spectral curve of pixels (87,112) in Case 1 is shown
in Fig. 9. BM4D, HyRes, FastHyDe, and ENCAM perform
well in noise suppression, but the bands 100–140 have worse
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Fig. 15. Results for the PU image. (a) Real image band 2. (b) BM4D. (c) LLRT. (d) HyRes. (e) FastHyDe. (f) HSIDCNN. (g) ENCAM. (h) AODN.

Fig. 16. Results for the PU image. (a) Pseudocolor image with bands (2, 3, 57). (b) BM4D. (c) LLRT. (d) HyRes. (e) FastHyDe. (f) HSIDCNN. (g) ENCAM.
(h) AODN.
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Fig. 17. Classification results for the PU image using SVM before and after denoising. (a) Ground truth. (b) Noisy image. (c) BM4D. (d) LLRT. (e) HyRes.
(f) FastHyDe. (g) HSIDCNN. (h) ENCAM. (i) AODN.

results than other bands. LLRT cannot remove noise in the
spectral domain well, and some noise still remains in bands
1–50 and 100–140. HSIDCNN performs well at suppressing
noise and preserving spectral structural information. However,
AODN continues to outperform all other methods, resulting in
higher fidelity quality among all bands.

In unknown-noise-level experiments, as shown in Table IV,
AODN continues to achieve the best quantitative results among
all methods. For visual inspection, in Fig. 10, BM4D suppresses
noise relatively well but generates a blurred effect. In the results
of LLRT and HyRes, some noise still remains. FastHyDe, HSID-
CNN, and ENCAM perform well in blind situations. AODN out-
performs all other methods in both edge and detail preservation.

Fig. 11 shows the average PSNR and SSIM values band by
band of the repeated experiments of Case 2. When addressing
blind denoising problems, BM4D and LLRT cannot suppress
noise on heavily corrupted bands. FastHyDe, HSIDCNN, and
ENCAM can achieve promising PSNR and SSIM on bands with
low noise levels and are relatively better on heavy noise bands.
HyRes performs quite well in some bands, but in the front bands,
the results are not satisfactory. AODN outperforms all the other
methods except HyRes in nearly every band. Compared with
HyRes, AODN still shows stable denoing performance.

In Cases 3 and 4, the Gaussian noise is mixed with stripes
or deadlines; BM4D, LLRT, and HSIDCNN cannot eliminate
stripe noise or deadlines well as shown in the enlarged region in
Figs. 8 and 9. Some noise still remains in the result of HyRes.
FastHyDe, ENCAM, and AODN perform well in this case.

E. Real-Data Experiments

To validate the flexibility and robustness of AODN, we con-
ducted two real data experiments on the IP and PU datasets. Both
datasets are contaminated by real noise in several bands. We

applied the model trained on the Washington DC Mall dataset
with random noise to both sets. To quantitatively evaluate the
results, we utilize the SVM classifier to perform supervised
classification with denoised data. The training sets include 10%
of the test samples randomly generated from each class. The
numbers of training data and testing data for each class on
IP and PU datasets are listed in Tables V and VI, respec-
tively. We implemented SVM with Sklearn, and its hyperpa-
rameters are set in a set (c = [0.1, 1, 10, 100, 1000], gamma =
[0.1, 1, 10, 100, 1000]). SVM iterates all the parameter combi-
nations and preserves the best result.

1) IP Dataset: The first few bands and several other bands
of the IP HSI are seriously degraded by Gaussian and impulse
noise [45]. Figs. 12 and 13 show the results of different methods,
which represent band number 2 and the pseudocolor result with
combined bands (2, 3, 203), respectively. LLRT and HyRes
cannot suppress noise well. BM4D produces oversmoothed
and residual strip noise. FastHyDe, HSIDCNN, and ENCAM
succeed in denoising, but some information is lost. AODN
reconstructs the image with fine details.

In SVM classification experiments, 16 classes are employed
to evaluate the classification accuracy. The OA and kappa coef-
ficient are given in Table VII. The original data SVM result and
denoised SVM results of the IP dataset are shown in Fig. 14.
Due to the residual noise, the results of LLRT and HyRes fail to
obtain satisfactory classification results. Although BM4D and
FastHyDe produce relatively better results, their classification
results suffer from detail loss. HSIDCNN and ENCAM succeed
in improving classification performance, but AODN obtains the
best results.

In summary, the proposed method obtains the highest OA
and kappa values of 95.66% and 0.9506, respectively. The
visualization of classification results suggests that AODN has
the best denoising results in structure preservation.
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TABLE IX
AVERAGE RUNTIME IN THE SIMULATED DATASET WITH DIFFERENT METHODS

2) PU Dataset: The noise is mainly concentrated in the first
band of PU [25]. Figs. 15 and 16 show the denoising results of
different methods, which represent band 2 and the pseudocolor
result with combined bands (97, 2, 3), respectively. As shown
in Figs. 15 and 16, all the other methods fail to achieve either
noise suppression or edge preservation, while AODN succeeds
in recovering details from noisy observations.

In SVM classification experiments, nine classes are employed
to test the classification accuracy. The OA and kappa coefficient
are given in Table VIII. The original data SVM result and
denoised SVM results of the PU dataset are shown in Fig. 17.
Again, the proposed method result has the highest OA and kappa
index values of 92.30% and 0.8993, respectively. Denoising
results also indicate that AODN reconstructs HSIs with better
edge and detail information.

F. Runtime Discussion

In this section, we discuss the efficiency of the proposed
denoising methods. Table IX presents the average runtime in the
simulated experiments. Deep-learning-based methods exhibit
less runtime than the traditional methods, such as BM4D and
LLRT, with the benefits of GPUs and end-to-end structures.
However, low-rank methods, such as HyRes and FastHyDe,
obtain relatively low computational costs and, thus, have shorter
runtime. Among deep learning methods, AODN is relatively
slower than HSIDCNN due to its deeper network and attention
module, which leads to higher computational costs. The rela-
tively low runtime complexity and high-quality results indicate
that AODN is a cost-effective end-to-end architecture.

V. CONCLUSION

In this article, we present an AODN for HSI denoising. The
proposed separative convolution feature extraction model can
extract spatial–spectral features, which are fit to the HSI data
structure prior. The attention module guides feature tuning in
both spectral and spatial domains. The Octave kernel reduces
low-frequency redundancy, which makes the architecture focus
on high-frequency noise features and reduces the computational
cost. We conducted hyperparameter experiments to choose pa-
rameters and ablation experiments to demonstrate the impacts of
each proposed module. Simulated and real-world experiments
indicate that AODN outperforms several state-of-the-art meth-
ods in both quantitative and qualitative aspects. Finally, the run-
time is discussed, which shows that our network is cost-effective.
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