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Abstract—With the help of endmember spectral library, sparse
unmixing techniques have been successfully applied to hyperspec-
tral image interpretation. The inclusion of spatial information in
the sparse unmixing significantly improves the resulting fractional
abundances. However, most existing spatial sparse unmixing algo-
rithms are sensitive to noise and produce unstable solutions. To
alleviate this drawback, a new robust double spatial regularization
sparse unmixing (RDSRSU) method is proposed, which simultane-
ously exploits the spatial structure information from hyperspectral
images and estimated abundance maps to mitigate the negative
influence of noise on unmixing, so as to achieve robust sparse
unmixing. To this end, a precalculated spatial weighting factor
is introduced to maintain the original spatial information of the
hyperspectral image. Meanwhile, the total variation spatial reg-
ularizer is used to capture the piecewise smooth structure of each
abundance map. The experimental results, conducted by two sets of
simulated data, as well as Cuprite and Mangrove real hyperspectral
data, uncover that the proposed RDSRSU algorithm can offer
better antinoise ability and obtain more accurate results over those
gave by other advanced sparse unmixing algorithms.

Index Terms—Double spatial regularization, hyperspectral
unmixing, sparse unmixing, superpixels, total variation (TV).

I. INTRODUCTION

S PECTRAL unmixing is an important technique for hy-
perspectral image interpretation. Hyperspectral unmixing

extracts pure spectral signatures (endmembers) and estimates
their proportions (abundances) in mixed pixels [1]. Unmix-
ing methods usually depend on the expected mixing mode.
Compared to nonlinear mixture model, linear mixture model
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(LMM) has computational tractability and flexibility [2]. Many
hyperspectral unmixing methods based on LMM have been pro-
posed, including the longstanding geometry-based [3]–[7] and
statistics-based [8], [9] unmixing methods. These two classes of
unmixing techniques directly extract or generate endmembers
from hyperspectral images, where the former relies on the pure
pixels for each material present in the given scene, and the
latter may produce artificial endmembers not associated with
true materials.

Sparse unmixing, as a semisupervised linear spectral unmix-
ing method, is proposed to address these issues [10]. It assumes
that the pure spectral signatures of materials in mixed pixels are
in a known library, and then transforms the unmixing problem
into finding the optimal linear combination of component spectra
that can model the hyperspectral image in the spectral library. In
fact, there are only a few materials present in a mixed pixel,
which is much smaller than the size of the spectral library,
resulting in a sparse abundance vector [11], [12]. Some sparse
unmixing algorithms focus on exploring sparse characteristics
from the spectral perspective. For instance, the �1 often acts
as a regularizer to yield sparse estimated abundances. Further-
more, the �2,1 [13] regularizer imposes collaborative sparsity
on abundance vectors, and �p (for 0 < p < 1) [14] regularizer
strengthens the sparse-inducing of fractional abundances in the
procedure of unmixing. In addition, the reweighted sparse un-
mixing technology further enhances the sparsity of abundance
solutions in various weighting ways [15], [16], such as double
reweighted sparse unmixing (DRSU) [17]. On the whole, these
sparse regression based hyperspectral unmixing methods have
obtained promising results.

Previous works have confirmed that integrating the rich spa-
tial information of hyperspectral images into the classic sparse
unmixing formulation can guide the abundance estimation more
accurately [18]. The famous total variation (TV) is included in
the sparse unmixing model as a regularization term on account
of spatial homogeneity among adjacent pixels, such as sparse
unmixing via variable splitting augmented Lagrangian and total
variation (SUnSAL-TV) [19] and DRSU-TV [20]. Nonlocal
sparse unmixing [21] exploits all possible spatial information
provided by similar structure in the entire image through the
nonlocal means method. In [22], a constraint related to abun-
dance estimation error is incorporated into the collaborative
sparse model to reduce the influence of noise on the unmixing
result. In [23], the local spectral similarity preserving regularizer
is created to obtain the similarity of abundance vectors in a local
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spatial area. In [24]–[29], superpixel segmentation technology
is utilized to obtain the spatial region with adaptive changes
in shape and size. Spectral spatial weighted sparse unmixing
(S2 WSU) [30] introduces the spectral-spatial weighting factor
into the �1 regularizer sparse unmixing framework to exploit
both spatial and spectral information contained in hyperspec-
tral images. Due to the inclusion of spatial information, these
algorithms alleviate the negative impact of noise to a certain
extent, and have achieved favourable results. However, when the
hyperspectral image is interfered by high noise, these spatially
regularized unmixing methods have limited improvement in
accuracy, and the estimated abundance is usually inaccurate and
variable, resulting in insufficient stability of the algorithm.

In this article, a new robust double spatial regularization
sparse unmixing (RDSRSU) is proposed to address the afore-
mentioned issues. The proposed RDSRSU method consists of
two parts. For the first part, the simple linear iterative clustering
(SLIC) [31]–[33] algorithm is employed to segment the hy-
perspectral image into many homogeneous superpixel blocks,
whose shape and size are adaptive. For each superpixel block,
all the elements in it are averaged, and the obtained average
value is assigned to all the elements as a new value. That is,
each element in a superpixel set has the same value. Based
on this, we obtain a reconstructed coarse hyperspectral image.
Subsequently, the reconstructed image is unmixed by solving
the sparse constrained optimization problem, thus, the corre-
sponding coarse abundance map is estimated. Then, a spatial
weight is constructed based on the coarse abundance map, each
entry of which is inversely proportional to the �2 norm of
a row vector in the abundance matrix. The spatial weight is
designed to promote the spatial correlation between pixels and
the rowwise sparsity of abundance solutions. For the second
part, the nonisotropic TV regularization is introduced to promote
piecewise transitions in estimated abundances among adjacent
pixels. The main contributions of this article are summarized as
follows.

1) A new precalculated spatial weight is proposed for robust
sparse hyperspectral unmixing. It is derived from the
reconstructed coarse hyperspectral image, and the image
reconstruction aims to alleviate the negative impact of
noise via the local spatial homogeneity of the pixels in
the superpixel set. Therefore, the new spatial weight can
still remain the precise spatial information of the image
even under high noise interference.

2) Another spatial regularizer, i.e., the TV term, is intro-
duced to impose sparsity on the difference domain of the
abundance map, which further promotes the neighboring
spatial homogeneity and smoothness of the image. The
proposed method shows apparent improvement in un-
mixing performance and affords the potential to enhance
antinoise ability by including dual spatial constraint on
top of the classic sparse regression formulation.

The rest of this article is organized as follows. Section II
presents the sparse unmixing formulations and several vari-
ant sparse unmixing models. Section III describes in detail
the proposed RDSRSU technique and its solution process. In
Sections IV and V, we exhibit the experiment results and give

a comprehensive evaluation. Some conclusions and future re-
search routes are drawn in Section VI.

II. BACKGROUND

A. Linear Mixture Model

Let Y = [y1, . . . ,yn] ∈ Rd×n be the observed data, where
d and n are the number of bands and pixels, respectively. Let
A ∈ Rd×m be the known library with m spectral signatures.
We assume that the spectra of all potential endmembers can be
found in the spectral library A, then LMM can be described as

Y = AX+N s.t. X ≥ 0 (1)

whereX = [x1, . . . ,xn] ∈ Rm×n is the abundance matrix,N ∈
Rd×n is noise and model error, and X ≥ 0 denotes the abun-
dance nonnegativity constraint (ANC). The abundance sum-
to-one constraint (ASC) of the form 1Tx = 1 is not explicitly
enforced herein due to the defects stated in [10].

B. Sparse Unmixing

From the physical meaning of abundance, we know that each
row in the abundance matrix represents fractional abundances
with regard to a substance in the spectral library, and each
column represents the proportion of entries in the library in a
pixel. In practical terms, there are only a few spectral signatures
involved in modeling an image compared to the entries in the
library, which results in the presence of many zeros in fractional
abundances [34], [35]. That is, the abundance matrix is inher-
ently sparse. Therefore, hyperspectral unmixing is transformed
into a sparse linear regression problem related to abundance
estimation, which is formulated as follows:

min
X

1

2
||Y −AX||2F + λ||X||0 s.t. X ≥ 0 (2)

where ‖ · ‖F is the Frobenius norm, ||X||0 counts the nonzero
components in X, and λ ≥ 0 is a constant penalty parameter.
The optimization problem (2) is NP-hard. SUnSAL [10] takes
a convex relaxed strategy for computing problem (2), which
replaces the �0 norm with the �1 norm, and obtains the convex
optimization problem as follows:

min
X

1

2
||Y −AX||2F + λ||X||1,1 s.t. X ≥ 0 (3)

where ||X||1,1 =
∑n

j=1 ||xj ||1, xj is the jth column vector
of X. The �1 norm regularization essentially imposes sparsity
on each abundance vector in an independent manner, rather than
considering the correlation between each pixel and its neighbors.

Taking account of the spatial-contextual information,
SUnSAL-TV incorporates the nonisotropic TV regularizer into
the aforementioned classic sparse unmixing formulation. The
SUnSAL-TV optimization problem is, thus,

min
X

1

2
||Y −AX||2F + λ||X||1,1 + λTVTV(X) s.t. X ≥ 0

(4)
where TV(X) ≡∑

p,q∈N ||xp − xq||1,N is the set of horizontal
and vertical neighboring pixels in the image, and λTV ≥ 0 is



LI et al.: ROBUST DOUBLE SPATIAL REGULARIZATION SPARSE HYPERSPECTRAL UNMIXING 12571

Fig. 1. Flowchart of the proposed RDSRSU method (HSI means hyperspectral image).

a regularization parameter. The minimization of TV term pro-
motes piecewise smooth transitions in the abundance map of the
same endmember among neighboring pixels [19].

III. PROPOSED ROBUST DOUBLE SPATIAL REGULARIZATION

SPARSE UNMIXING ALGORITHM

A. Formulation of Proposed RDSRSU Model

Previous studies have shown that the integration of spatial
information, whether in unmixing procedure itself or as a pre-
processing step, contributes to improving the accuracy of the
abundance estimation [36], [37]. The weighting factor related
to the spatial location is introduced into the spectral unmixing
model, which is a simple way to exploit spatial information [30].
In addition to the spatial proximity, the similarity of abundance
vectors is another effective way to explore the spatial corre-
lation of pixels [38], [39]. Nonetheless, most existing spatial
regularization strategies are designed on estimated abundances.
When hyperspectral data is seriously contaminated by noise, it
is difficult to accurately estimate abundances by only relying
on the abundance itself to be updated iteratively during the
unmixing process. Even if spatial regularization is implemented,
estimated abundances with large deviations are still hard to
correct, resulting in inaccurate and unstable solutions. In other
words, such algorithms are vulnerable to noise.

In order to improve the noise robustness of the unmixing
algorithm, a new spatial weight is built on the noise reduc-
tion preprocessing hyperspectral image, as an alternative to the
traditional weight merely built on the estimated abundance, to
guide the abundance estimation. More specifically, a coarse

hyperspectral image is reconstructed by virtue of the similarity
of pixels in the origin hyperspectral image in both location and
spectrum, which is similar to the mean filter and plays a role in
image denoising. Subsequently, the coarse-scale weight guide
matrix is predictively established based on the reconstructed
hyperspectral image. Since the weight guide matrix is obtained
from an approximate denoised image, it is robust to noise.
Then, the new spatial weight is rowwise calculated from the
weight guide matrix, and the precalculated spatial weight is
introduced into the �1 regularizer in the unmixing model to
induce the estimated abundance to converge toward the preiden-
tified endmember rows. It should be noted that the new spatial
weight is also insensitive to noise. Combining the traditional TV
regularizer to impose sparsity on the difference domain of the
abundance map, a RDSRSU method is proposed.

The flowchart of RDSRSU method is shown in Fig. 1. First of
all, a coarse hyperspectral image is constructed, which is derived
from the superpixel segmentation of the original hyperspectral
image. Suppose that Y ∈ Rd×n is the original hyperspectral
image, and it is divided into s superpixel blocks by the SLIC
algorithm [31], [33]; Yt ∈ Rd×nt(t = 1, . . . , s,

∑s
t=1 nt = n)

is the tth superpixel block, containing nt pixels, and yk ∈
Rd×1(k = 1, . . . , nt) is any pixel (column) inYt. With these as-
sumptions in place, the coarse image Ỹ ∈ Rd×n is reconstructed
as follows:

ỹk =
1

nt

nt∑
k=1

yk (5)
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where ỹk represents any column in the coarse pixel Ỹt corre-
sponding to the superpixel block Yt. It should be noted that the
columns in the same coarse pixel have the same values, and the
superpixel blocks in the original image are mapped to the coarse
pixels in the reconstructed image one by one.

Subsequently, the weight guide matrix X̃ can be obtained by
using alternating direction method of multipliers (ADMM) [40]
to unmix the coarse hyperspectral image. For simplicity, we
solve the following optimization problem:

argmin
˜X

1

2
||Ỹ −AX̃||2F + λ||X̃||1,1 s.t. X̃ ≥ 0. (6)

The coarse hyperspectral image averages all the elements in
each homogeneous region, which alleviates the impact of noise
effectively, so the resulting weight guide matrix is insensitive to
noise.

Furthermore, considering the rowwise sparsity of the abun-
dance matrix, the spatial weight W is constructed as follows:

W(i,j) =
1

||X̃(i, :)||2 + ε
, i = 1, . . . ,m, j = 1, . . . , n (7)

whereW(i,j) is the element in the ith row and jth column ofW,

X̃(i, :) is the ith row vector of X̃, and ε > 0 is an additional small
constant to avoid singularities. Each entry of W is inversely
proportional to the �2 norm of a row in the weight guide matrix.

The constructed spatial weight is introduced as a priori into
the model (4), and the RDSRSU model is proposed

min
X

1

2
||Y −AX||2F + λ||W �X||1,1 + λTVTV(X)

s.t. X ≥ 0 (8)

where � denotes the Hadamard product of two variables.
The precalculated spatial weight is obtained from the recon-

structed coarse pixel image based on superpixel, which implies
the spatial and spectral information of the image. Moreover, the
spatial weight enables estimated abundances to concentrate on
a few lines, resulting in the rowwise sparse abundance matrix.
The nonisotropic TV regularizer imposes spatial consistency on
estimated abundances. The spatial weight focuses on pixels in
homogeneous regions of the image, while the TV term focused
on the relationship of the abundance vectors among adjacent
pixels. The dual spatial constraints provide the potential to
enhance antinoise ability and improve unmixing performance.

B. Optimization by the ADMM

We solve the optimization problem related to the proposed
RDSRSU model by ADMM. Define

HX ≡
[
HhX

HvX

]

whereHh andHv denote two linear operators that, respectively,
calculate the differences between the horizontal and vertical
neighboring pixels of X. Then, the optimization problem (8)

can be rewritten as

min
X

1

2
||Y −AX||2F + λ||W �X||1,1+

λTV||HX||1,1 + ιR+(X) s.t. X ≥ 0 (9)

where ιR+(X) =
∑n

j=1 ιR+(xj) is the indicator function, i.e.,
ιR+(xj) is zero if xj is non-negative and +∞ otherwise.

In order to split the original optimization problem into several
subproblems, auxiliary matrices U, V1, V2, V3, V4, V5 are
introduced, and the equivalent problem of (9) is formulated as

min
U,V1,V2,V3,V4,V5

1

2
||Y −V1||2F + λ||W �V2||1,1

+ λTV||V4||1,1 + ιR+(V5)

s.t. V1 = AU,V2 = U,V3 = U,V4 = HV3,V5 = U.
(10)

A compact form of problem (10) is

min
U,V

g(U,V) s.t. GU+BV = 0 (11)

where V ≡ (V1,V2,V3,V4,V5)
T , g(U,V) ≡ 1

2 ||Y −
V1||2F + λ||W �V2||1,1 + λTV ||V4||1,1 + ιR+(V5),
G = (A, I, I,0, I)T , and

B =

⎡⎢⎢⎢⎢⎢⎢⎣
−I 0 0 0 0

0 −I 0 0 0

0 0 −I 0 0

0 0 H −I 0

0 0 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎦ .

The augmented Lagrangian for optimization problem (11) is

L(U,V,D) = g(U,V) +
μ

2
||GU+BV −D||2F (12)

where μ > 0 is a penalty parameter, and D =
{D1,D2,D3,D4,D5} is the Lagrangian multipliers.
L(U,V,D) is iteratively optimized for U and V under the
framework of ADMM. In each iteration, following subproblems
are solved sequentially.

The optimization subproblem with regards to U is

U(k+1) ← argmin
U

μ

2
||AU−V

(k)
1 −D

(k)
1 ||2F

+
μ

2
||U−V

(k)
2 −D

(k)
2 ||2F

+
μ

2
||U−V

(k)
3 −D

(k)
3 ||2F

+
μ

2
||U−V

(k)
5 −D

(k)
5 ||2F . (13)

U is obtained by taking the partial derivative of U in problem
(13), and the solution is

U(k+1) ← (ATA+ 3I)−1(AT (V
(k)
1 +D

(k)
1 )

+ (V
(k)
2 +D

(k)
2 ) + (V

(k)
3 +D

(k)
3 )

+ (V
(k)
5 +D

(k)
5 )). (14)
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The V subproblem is decoupled into five subparts. Calculate
V1 as

V
(k+1)
1 ← argmin

V1

1

2
||Y −V1||2F

+
μ

2
||AU(k+1) −V1 −D

(k)
1 ||2F . (15)

Solve problem (15) in the same way as problem (13), and get

V
(k+1)
1 ← 1

1 + μ
[Y + μ(AU(k+1) −D

(k)
1 )]. (16)

V2 is calculated as follows:

V
(k+1)
2 ← argmin

V2

λ||W �V2||1,1

+
μ

2
||U(k+1) −V2 −D

(k)
2 ||2F . (17)

The solution to V2 is obtained

V
(k+1)
2 ← soft(U(k+1) −D

(k)
2 ,
λ
μ
W) (18)

where soft(·, τ) denotes the soft-threshold function y 	→
sign(y)max{|y| − τ, 0}.

Calculate V3 via the following problem:

V
(k+1)
3 ← argmin

V3

μ

2
||U(k+1) −V3 −D

(k)
3 ||2F

+
μ

2
||HV3 −V

(k)
4 −D

(k)
4 ||2F . (19)

The solution to (19) is

V
(k+1)
3 ← (HTH+ I)−1(U(k+1) −D

(k)
3

+HTV
(k)
4 +HTD

(k)
4 ). (20)

The subproblem for V4 is

V
(k+1)
4 ← argmin

V4

λTV ||V4||1,1+μ

2
||HV

(k)
3 −V4 −D

(k)
4 ||2F .

(21)
The solution to (21) is the soft threshold

V
(k+1)
4 ← soft(HV

(k+1)
3 −D

(k)
4 ,
λTV

μ
). (22)

The subproblem for V5 is

V
(k+1)
5 ← argmin

V5

ιR+(V5) +
μ

2
||U(k+1) −V5 −D

(k)
5 ||2F .

(23)
The solution to V5 is

V
(k+1)
5 ← max(U(k+1) −D

(k)
5 , 0). (24)

And finally, we update the Lagrange multipliers as follows:

D(k+1) = D(k) − (GU(k+1) +BV(k+1)). (25)

For clarity, we summarize the proposed RDSRSU algorithm
and show its pseudocode in the Algorithm 1.

The RDSRSU algorithm iteratively updates the auxiliary vari-
ables and Lagrange multipliers in the ADMM framework, and
its convergence is difficult to prove. Fig. 2 shows the residual

Fig. 2. Residual ||GU(t) +BV(t)||F as a function of iteration times for the
proposed algorithm.

Algorithm 1: Pseudocode of the RDSRSU Algorithm.
Step 1:

1: Input:
2: Y, A, SLIC parameters
3: Perform superpixel segmentation on Y by SLIC

algorithm
4: Calculate (5) to reconstruct the coarse image Ỹ
5: Solve the optimization problem (6) by SUnSAL

algorithm
6: Calculate (7) to obtain the spatial weight W

Step 2:
1: Initialization:
2: set k = 0, choose

μ, λ, λTV , ε > 0,U(0),V
(0)
1 , . . .,V

(0)
5 ,D

(0)
1 , . . .,D

(0)
5

3: Update iteration:
4: U(k+1) ← (ATA+ 3I)−1(AT (V

(k)
1 +D

(k)
1 )

+ (V
(k)
2 +D

(k)
2 ) + (V

(k)
3 +D

(k)
3 ) + (V

(k)
5 +D

(k)
5 ))

5: V(k+1)
1 ← 1

1+µ [Y + μ(AU(k+1) −D
(k)
1 )]

6: V(k+1)
2 ← soft(U(k+1) −D

(k)
2 , λµW)

7: V(k+1)
3 ← (HTH+ I)−1(U(k+1) −D

(k)
3

+HTV
(k)
4 +HTD

(k)
4 )

8: V(k+1)
4 ← soft(HV

(k+1)
3 −D

(k)
4 , λTV

µ )

9: V(k+1)
5 ← max(U(k+1) −D

(k)
5 , 0)

10: D(k+1)
1 ← D

(k)
1 −AU(k+1) +V

(k+1)
1

11: D(k+1)
2 ← D

(k)
2 −U(k+1) +V

(k+1)
2

12: D(k+1)
3 ← D

(k)
3 −U(k+1) +V

(k+1)
3

13: D(k+1)
4 ← D

(k)
4 −HV

(k+1)
3 +V

(k+1)
4

14: D(k+1)
5 ← D

(k)
5 −U(k+1) +V

(k+1)
5

15: Update iteration: k ← k + 1
16: until some stopping criterion is satisfied.
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Fig. 3. Actual fractional abundance of endmembers in DC1 simulated data. (a) Endmember 1. (b) Endmember 2. (c) Endmember 3. (4) Endmember 4. (5)
Endmember 5.

||GU(t) +BV(t)||F as a function of iteration times for the
proposed algorithm. As shown in Fig. 2, the residual reaches
a stable level close to zero when the number of iterations
arrives at 50. Therefore, the maximum iteration times is set to
300 in our experiments, which guarantees the convergence of the
proposed algorithm. Furthermore, when the residual meets the
error tolerance (a small positive constant, such as 1e−5), it can
be inferred that the algorithm has converged and the proposed
algorithm can be stopped.

IV. EXPERIMENTS WITH SYNTHETIC DATA

In this section, we demonstrate the effectiveness of the
proposed RDSRSU algorithm on two synthetic hyperspectral
datasets. The proposed RDSRSU algorithm will be compared
with five effective sparse unmixing algorithms, including SUn-
SAL [10], SUnSAL-TV [19], DRSU [17], DRSU-TV [20], and
S2 WSU [30] algorithms. It should be noted that SUnSAL and
DRSU are two classical spectral-based algorithms, SUnSAL-TV
and DRSU-TV are two representative algorithms that take into
account TV regularization, and S2 WSU is an advanced unmix-
ing algorithm that includes a weighted sparse regularizer. The
signal-to-reconstruction error (SRE, measured in dB) is adopted
to evaluate the quality of unmixing results quantitatively. The
SRE (dB) is defined as

SRE(dB) = 10 · log10(E(||x||22)/E(||x− x̂||22)) (26)

wherex and x̂ are the actual fractional abundances and estimated
abundances, respectively, and E(·) denotes the expectation
function. Furthermore, another metric, i.e., the probability of
success ps, is used to quantitatively evaluate the stability of the
estimation, which is calculated as: ps ≡ P (‖x̂− x‖2/‖x‖2 ≤
threshold). In [10], the result is deemed successful when ‖x̂−
x‖2/‖x‖2 ≤ 3.16 (5 dB). The higher the SRE (dB) or ps, the
better the unmixing performance.

A. Simulated Datasets

Two mineral spectral libraries are used in the simulated
data experiment, both of which are subsets of USGS library.1

The spectral library A1 ∈ R224×240 contains 240 endmembers
randomly chosen from USGS library and 224 bands uniformly
covering the wavelength range from 0.4 to 2.5 μm. The spectral
library A2 ∈ R221×222 consists of 222 endmembers with 221
bands. Two simulated data cubes were generated using particular

fractional abundances that satisfy the ANC and ASC, which are
described in detail as follows.

1) Simulated Data Cube 1 (DC1): The size of DC1 is 75× 75
pixels and each pixel has 224 bands. As described in [19],
five endmembers randomly chosen from A1 participate
in generating the test data. The actual abundance maps
for the five endmembers are exhibited in Fig. 3. Synthetic
data are subsequently corrupted by i.i.d. Gaussian noise
with signal-to-noise ratios (SNR) are 10, 20, and 30 dB,
respectively.

2) Simulated Data Cube 2 (DC2): The size of DC2 is 128×
128 pixels and each pixel has 221 bands. It is generated
using MATLAB-based hyperspectral imagery synthesis
toolbox released by the Computational Intelligence Group
at the University of the Basque University.2 Five endmem-
bers randomly chosen from the spectral library A2 are
distributed with reference to the actual abundance maps
shown in Fig. 4 to simulate the data cube 2, and then the
data are also contaminated by i.i.d. Gaussian noise with
SNR=10, 20, and 30 dB.

B. Results and Discussion

Tables I and II, respectively, exhibit the SRE (dB) and ps
values obtained by performing different unmixing algorithm on
DC1 and DC2, which cover all three SNR levels. The optimal
parameter settings for each algorithm to obtain the best scores
are given in parentheses. Moreover, for precalculating the spatial
weight for RDSRSU, the parameter of SUnSAL (in step 5 of
Algorithm 1) is set to λ = 5e-3. It is observed from Tables I
and II, the proposed RDSRSU algorithm obtains higher SRE
(dB) and ps than S2 WSU, DRSU-TV, DRSU, SUnSAL-TV,
SUnSAL in all cases. In particular, even if the data are occupied
by noise (SNR=10 dB), RDSRSU can perform well. Compared
with other algorithms, the integration of two spatial regular-
ization strategies into the sparse unmixing model provides the
potential to enhance the accuracy of abundance estimation in
two different analysis scenarios, which makes the RDSRSU
algorithm show significant advantages and strong robustness.
In the case of relatively low noise, the performance of DRSU
and S2 WSU algorithms has been greatly improved, since the
former integrates spectral weights to promote the row sparsity

1[Online]. Available: http://speclab.cr.usgs.gov/spectral.lib06
2[Online]. Available: www.ehu.es/ccwintco/index.php/Hyperspectral_

Imagery_Synthesis_tools_for_MATLAB

http://speclab.cr.usgs.gov/spectral.lib06
www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_tools_for_MATLAB
www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_tools_for_MATLAB
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Fig. 4. Actual fractional abundance of endmembers in DC2 simulated data. (a) Endmember 1. (b) Endmember 2. (c) Endmember 3. (4) Endmember 4.
(5) Endmember 5.

TABLE I
SRE (dB) AND ps VALUES OBTAINED BY PERFORMING COMPARISON ALGORITHMS AND THE PROPOSED RDSRSU ALGORITHM ON DC1

(THE RELEVANT PARAMETERS ARE LISTED OPTIMAL IN THE PARENTHESES)

TABLE II
SRE (dB) AND ps VALUES OBTAINED BY PERFORMING COMPARISON ALGORITHMS AND THE PROPOSED RDSRSU ALGORITHM ON DC2

(THE RELEVANT PARAMETERS ARE LISTED OPTIMAL IN THE PARENTHESES)

of the estimated abundance, and the latter introduces both spec-
tral and spatial weights to exploit the spatial correlation and
promote row sparsity. Moreover, DRSU-TV algorithm achieves
suboptimal results in all cases due to the simultaneous execution
of spectral reweighting and TV regularization, which proves
that the multiple constraint strategy can effectively improve the
unmixing accuracy. Overall, RDSRSU outperforms comparison
algorithms by a substantial degree, indicating that the spatial

weighted factor and TV spatial regularizer mutually improve
the unmixing accuracy.

In order to illustrate the advantages of the proposed RDSRSU
algorithm in endmember identification based on the spectral
library, we take DC1 and DC2 with SNR=20 dB as examples for
visual interpretation. Figs. 5 and 6 exhibit the actual abundances
and the results obtained by performing the comparison and the
proposed unmixing algorithms. For additional clarity, we only
show 500 pixels randomly selected from the results. A colored
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Fig. 5. Actual abundance and estimated abundances obtained by performing comparison algorithms and the proposed RDSRSU algorithm on DC1 when
SNR=20 dB.

Fig. 6. Actual abundance and estimated abundances obtained by performing comparison algorithms and the proposed RDSRSU algorithm on DC2 when
SNR=20 dB.

line in the figure represents the proportion of a endmember. It can
be seen from Figs. 5 and 6 that the estimated abundance maps of
our method have the best visual effect with few false lines. The
colored lines in these two figures are pretty close to the lines in
the actual abundance maps in quantity and location. Many noise
and false lines present in the results obtained by the SUnSAL and
SUnSAL-TV algorithms. There are obviously some outliers and
false lines in the results of DRSU and DRSU-TV. The fractional
abundance value obtained by S2 WSU is quite different from
the real fractional abundance value. It is demonstrated that the
RDSRSU algorithm has strong antinoise performance and can
accurately identify endmembers from the spectral library.

To further demonstrate the effectiveness of the proposed RD-
SRSU method, the abundance maps of endmember 5 obtained
by performing different unmixing algorithms on DC1 and DC2
with SNR=20 dB present in Figs. 7 and 8, respectively. For

intuitive comparison, we calculated the differences between the
actual abundance and estimated abundances. It can be seen from
the Figs. 7 and 8 that the abundance maps estimated by our
method are the closest to the actual abundance maps. Com-
pared with the SUnSAL and DRSU algorithms, the abundance
maps estimated by the RDSRSU and DRSU-TV algorithms
contain less noise. The abundance estimated by SUnSAL-TV is
distorted in the transition area and spatial structure details. The
S2 WSU algorithm shows a general abundance estimation effect
in these two scene data. As can be seen from the Fig. 7(d),
(f) and Fig. 8(d), (f), compared with the DRSU-TV algorithm,
the results obtained by the proposed RDSRSU algorithm retain
the finer structure and texture information of the image. This
further proves that the joint spatial weight and TV regularizer
are not susceptible to noise and can improve the unmixing
performance.
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Fig. 7. Fractional abundances of Endmember 5 obtained by performing comparison algorithms and the proposed RDSRSU algorithm on DC1 when SNR=20 dB.
Differences between the actual abundance and estimated abundances of Endmember 5. (a) SUnSAL. (b) SUnSAL-TV. (c) DRSU. (d) DRSU-TV. (e) S2 WSU.
(f) RDSRSU.

Fig. 8. Fractional abundances of Endmember 5 obtained by performing comparison algorithms and the proposed RDSRSU algorithm on DC2 when SNR=20 dB.
Differences between the actual abundance and estimated abundances of Endmember 5. (a) SUnSAL. (b) SUnSAL-TV. (c) DRSU. (d) DRSU-TV. (e) S2 WSU.
(f) RDSRSU.

TABLE III
RUN TIMES (IN SECONDS) OF DIFFERENT UNMIXING METHODS ON PROCESSING DC1 WHEN SNR=20 dB

Table III reports the time consumption of different unmixing
methods on processing DC1 when SNR=20 dB. All tests are
executed using MATLAB R2016a on a desktop computer with
3.6 GHz Intel Core i7 CPU and 32 GB RAM memory. Note
that the time of superpixel segmentation and spatial weight
calculation is not reckoned in the time of RDSRSU, since these
two steps are processed in advance, and the resulting weights are
introduced as constants and will not be recalculated or updated
during the unmixing process. From Table III, we can see that
SUnSAL takes the shortest time, while other methods are slower
because they are derived from SUnSAL. The three methods with
TV regularization spend almost the same time and are higher
than other methods due to the lagre computational cost of solving
TV term.

In addition, according to [31]–[33], the number of desired
superpixel blocks s, as a parameter of SLIC, is vital to the result
of superpixel segmentation. In the abovementioned experiments,
when SNR=10, 20, and 30 dB, s is set to 2, 2, 6 for DC1,

and 6, 30, 63 for DC2, respectively. To further analyze the
impact of superpixel segmentation on the performance of the
proposed RDSRSU method, Fig. 9 shows SRE (dB) obtained by
RDSRSU on DC1 in the case of different numbers of superpixel
blocks. When the noise level is high, dividing the hyperspectral
image into fewer superpixel blocks improves the accuracy of
the proposed algorithm. For scenes with few pixels, such as
DC1 with 75× 75 pixels, the image is even suitable to be
divided into 2 partitions in the case of low SNR. With the
increase of SNR, the proper number of blocks for superpixel
segmentation increases, and the effect of segmentation results
on the performance of the algorithm decreases. This conclusion
indirectly verifies the role of superpixel segmentation in the
RDSRSU method. To reduce the negative impact of noise, it is
necessary to average a larger superpixel block when the image
is heavily contaminated by noise. When the noise level drops,
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Fig. 9. SRE (dB) obtained by performing the proposed RDSRSU algorithm
on DC1 in the case of different numbers of superpixel blocks.

the requirements for denoising are reduced, so the influence of
superpixel segmentation is reduced.

V. EXPERIMENTS WITH REAL DATA

In this section, we describe experiments with real data where
the proposed RDSRSU algorithm and comparison algorithms
were applied to Cuprite dataset and the mangrove dataset,
respectively.

A. Cuprite Data

The benchmark Cuprite scene3 consists of 224 bands over
the interval from 0.4 to 2.5 μm. The Cuprite data used in
the experiment contains 188 bands after removing bands 1-2,
105–115, 150–170, and 223–224 (the low SNR and strong
water absorption bands), with the size of 350× 350 pixels. The
library A1 ∈ R188×240 used in this test is the same as that in
the DC1 experiment, but the interference bands are removed.
Since the actual abundance maps of this data are difficult to
obtain, we take the mineral classification map (as shown in
Fig. 104) generated by the Tricorder 3.3 software product5 [41]
as a qualitative reference to evaluate the unmixing performance
of each unmixing algorithm.

Three dominant minerals, Alunite, Buddingtonite, and Chal-
cedony, are chosen as the representatives of the Cuprite area.
The optimal settings of the parameters of different unmixing
algorithms follow the proposal in the article [30]. For the pro-
posed RDSRSU algorithm, the regularization parameters are set
to (λ = 5e-3, λTV = 1e-2). For precalculating the spatial weight,
the parameter of SLIC is set to s = 304, the parameter of SUn-
SAL is set to λ = 5e-3. Fig. 11 shows that all algorithms interpret
the Cuprite data well, and the abundance maps of these three

3[Online]. Available: http://aviris.jpl.nasa.gov/html/aviris.freedata.html
4[Online]. Available: http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
5[Online]. Available: http://speclab.cr.usgs.gov/PAPER/tetracorder

Fig. 10. USGS mineral map of Cuprite mining district in Nevada.

Fig. 11. Abundance maps of three representative minerals obtained by per-
forming comparison algorithms and the proposed RDSRSU algorithm on
Cuprite data.
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Fig. 12. Mangrove hyperspectral data. (a) UHD185 hyperspectral image. (b) Spectral reflectance profiles of seven vegetation species. (c) Classification map of
UHD185 hyperspectral image.

Fig. 13. Abundance maps of seven representative vegetations obtained by performing different sparse unmixing algorithms on mangrove data.

minerals are similar to the reference maps, which proves the
effectiveness of the sparse unmixing methods for real datasets.
Nevertheless, some subtle differences can still be found from the
abundance maps estimated by each algorithm. The abundance
map (e.g., Buddingtonite) estimated by the SUnSAL algorithm
looks noisy, while the result obtained by SUnSAL-TV is obvi-
ously oversmooth. The results estimated by DRSU algorithm do
not show good spatial consistency (e.g., Chalcedony mineral).
The results obtained by the RDSRSU, DRSU-TV, and S2 WSU

algorithms are almost the same as the reference. However,
the proposed RDSRSU algorithm shows better performance
for Alunite and suppresses the oversmoothing phenomenon to
a certain extent. Therefore, we can conclude that the newly
proposed RDSRSU algorithm can effectively interpret the real
data.
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B. Mangrove Data

The mangrove dataset was collected by Cubert UHD185 hy-
perspectral imaging system onboard the unmanned aerial vehicle
(UAV) platform in 2016, covering part of Qi’ao Island Mangrove
Nature Reserve, Zhuhai City, Guangdong Province, China. This
area is one of the places with the most species of mangrove plants
in China. The size of the study scene is 1878× 1877 pixels with
125 spectral bands covering the wavelength range from 450 to
950 nm, as shown in Fig. 12(a) [42]. According to [42] and
[43], the mangrove species distributed in the study area mainly
include K. candel (KC), S. apetala (SA), H. littoralis (HL) and T.
populnea (TP), A. aureum (AA), A. corniculatum (AC), and A.
ilicifolius (AI). In addition, it also includes P. australis (PA),
water area (river), and boardwalks. Affected by the lighting
conditions, there are some shadows in the UAV hyperspectral
image, which are also considered to be distinct endmembers in
the experimental.

There is no available spectral library for this data, which
is essential for the sparse unmixing algorithm. Therefore, we
specially build a spectral library for the mangrove hyperspectral
data in this article. First, we determine the homogeneous region
where each type of ground object is located in the UAV hyper-
spectral image following field investigation. Each homogeneous
region can be approximately considered as a pure pixel region,
and then the average value of this region is calculated as the
spectral signature of the corresponding ground object. Finally,
the spectral library A3 ∈ R125×23 is built, which contains the
spectral signatures of mangrove species, PA, river, boardwalks
and shadows. Fig. 12(b) shows the reflectance spectrum curves
of seven typical types of vegetation in the library A3. It can
be seen that the various vegetation curves are relatively close,
which brings challenges to the unmixing task. This experiment
takes the mangrove species classification map of the study area
obtained by the support vector machine method in [42] as the
reference data [as shown in Fig. 12(c)] to analyze the unmixing
performance of each algorithm qualitatively.

In this experiment, the regularization parameters of SUn-
SAL, DRSU, and S2 WSU were empirically set to λ = 1e-4,
λ = 8e-5, and λ = 1e-4, respectively, whereas the parame-
ters for SUnSAL-TV, DRSU-TV, and RDSRSU were set to
(λ = 1e-3, λTV = 1e-3), (λ = 6e-5, λTV = 6e-5), and (λ = 1e-
3, λTV = 1e-6), respectively. In the process of precalculating
the spatial weight for RDSRSU, the parameter of SLIC is set to
s = 592, the parameter of SUnSAL is set to λ = 1e-6. Fig. 13
shows the abundance map of each typical vegetation estimated
by different unmixing algorithms, including KC, HL and TP,
AA, SA, PA, AC, and AI. The position in the image whose value
is greater than zero indicates that the vegetation is distributed
here. Fig. 13 shows that the abundance maps of all six unmixing
algorithms are close to the reference classification map, which
proves that the sparse unmixing algorithm can effectively unmix
mangrove hyperspectral data. Although it is difficult to quan-
titatively evaluate the unmixing results of each algorithm, it
can be qualitatively observed from Fig. 13 that the proposed

RDSRSU algorithm achieved approximately consistent results
with the reference classification map. As shown in Fig. 12(b), the
spectral curves of seven vegetation species are highly similar,
which makes it difficult for the sparse unmixing algorithm to
accurately find the actual endmembers from the spectral library.
Even so, the abundance maps of each endmember obtained
by the RDSRSU algorithm clearly reflect the distribution of
various types of vegetation and retain fine spatial details, which
illustrates the advantage of our method in unmixing mangrove
data.

VI. CONCLUSION AND FUTURE WORK

In this article, we have developed a novel double spatial
regularization method for robust sparse hyperspectral unmixing.
The proposed RDSRSU model depicts the spatial information of
the image from the perspective of spatial weighting constraints
and TV regularization to achieve precise extraction of spatial
information. The experiments with synthetic and real hyperspec-
tral data show that joint double spatial regularization strategy
is conducive to valid endmember identification based on the
spectral library, thereby obtaining stable and accurate unmixing
results. It draws inspiration for spatial regularized sparse unmix-
ing, especially for unmixing hyperspectral images contaminated
by high noise. In future work, we will take deep networks [44],
[45] on sparse hyperspectral unmixing and explore automatic
processing for hyperspectral data interpretation [46], [47].
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