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Self-Similarity Features for Multimodal Remote
Sensing Image Matching

Xin Xiong , Guowang Jin , Qing Xu , and Hongmin Zhang

Abstract—Multimodal remote sensing image matching is a chal-
lenging task because of the existence of significant radiometric
differences. To address the problem, we develop a novel multimodal
remote sensing image matching method based on self-similarity
features. The offset mean filtering method is proposed first to
calculate the self-similarity features fast based on the symmetry
of the self-similarity. The self-similarity features are presented
through a multichannel self-similarity map (SSM) and a corre-
sponding multichannel symmetric SSM. On this basis, we develop
the image matching method, including a feature detector named
improved maximal self-dissimilarities (IMSD) and a feature de-
scriptor named oriented self-similarity (OSS). The IMSD detector
is designed by introducing the two multichannel SSMs into the max-
imal self-dissimilarities (MSD) detector for feature point detection.
The OSS descriptor is proposed based on the orientations of the
self-similarities extracted from the multichannel SSMs. We conduct
experiments with a variety of optical, synthetic aperture radar,
and light detection, and ranging data. Our results demonstrate
the advantages of our proposed IMSD detector and OSS descrip-
tor in comparison with state-of-the-art detectors and descriptors,
respectively. The image registration results further confirm the
effectiveness of the proposed method.

Index Terms—Image matching, improved maximal self-
dissimilarities (IMSD), multimodal remote sensing images, offset
mean filtering (OFM), oriented self-similarity (OSS).

I. INTRODUCTION

INCREASINGLY, remote sensing technologies require using
multiple sensors to observe specific and different charac-

teristics of the earth’s surface. These measures can be active,
such as synthetic aperture radar (SAR) and light detection and
ranging (LiDAR), or passive, such as optical, infrared, mul-
tispectral, and hyperspectral. The data acquired by them can
provide information about the structure (optical, SAR), elevation
(LiDAR), and material content (multispectral and hyperspectral)
of the objects in the image [1]. For many applications of remote
sensing (e.g., image fusion [1], image segmentation [2], and
image classification [3], etc.), observations from heterogeneous
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sources need to be coupled and jointly analyzed, because their
complementarity helps to achieve a more comprehensive de-
scription of a scene unachievable using single modality data [4].
In such applications, image matching is a fundamental step, of
which the goal is to extract reliable corresponding features from
two or more images of the same scene [5]. Because of the differ-
ent imaging mechanisms of various sensors, the characteristics
of the same ground scene typically vary in different images.
Therefore, multimodal image matching is a challenging task, as
the radiometric differences are extremely significant [6], [7].

Image matching has always been given attention, and remark-
able advancements have been made in past decades. Generally,
existing image matching methods can be classified as area-based
and feature-based [8]. Area-based methods compare predefined
templates in images through similarity metrics to search for
optimal correspondences. Among various similarity metrics,
two basic and widely used techniques are normalized cross
correlation (NCC) [9] and mutual information (MI) [10]. The
methods of this type can avoid the complicated process of feature
extraction and, generally, can achieve high matching accuracy;
however, they are sensitive to geometric differences and have
the disadvantage of high computational complexity [11], [12].

Compared with area-based methods, feature-based methods
are more robust to geometric differences [13]. These methods
generally consist of three main steps—namely, feature detection,
feature description, and feature matching. In these methods,
salient image features such as points, lines, regions, and edges
are usually first extracted and the similarity of the feature de-
scriptors is subsequently compared to obtain correspondences,
of which point feature is the simplest and most common. Over
the past decades, numerous feature-based methods, such as
scale-invariant feature transform (SIFT) [14], speeded-up robust
features (SURF) [15], and oriented FAST and rotated BRIEF
(ORB) [16]–[18] have been developed for point matching. As
a classic algorithm, SIFT first constructs the difference of the
Gaussian (DoG) scale space to extract feature points, and subse-
quently uses the gradient histogram to describe the features. With
invariance to scale, rotation, and brightness, SIFT is effective
for matching visible images. However, difficulties occur when
working with multimodal images because of its sensitivity to
nonlinear radiometric differences. Some variants of SIFT, such
as principal component analysis SIFT (PCA-SIFT) [19], affine
SIFT (ASIFT) [20], adaptive binning SIFT (AB-SIFT) [21], and
SAR-SIFT [22] have been also proposed. As these are designed
to manage various specific problems, such as large geometric
differences and severe image speckles, they are also vulnerable
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to complex radiometric differences. Therefore, these SIFT-based
methods have limited capability for matching multimodal im-
ages.

Recently, several methods have been proposed for multi-
modal image matching. These methods are robust to nonlinear
radiometric differences by capturing the structures and shape
properties of the image. Among these, two common types are
based on phase congruency (PC) and local self-similarity (LSS).

Morrone and Owens [23] revealed that the image features
usually occur at the points of maximum PC, whereas, much later,
Kovesi [24] improved the calculation model of PC. Ye et al. [25]
built the orientation representation of the PC model and, on
this basis, proposed the histogram of oriented phase congruency
(HOPC) descriptor for multimodal image template matching.
Subsequently, Ye et al. [26] introduced the minimum moment
of phase congruency-Laplace (MMPC-Lap) detector and local
histogram of oriented phase congruency (LHOPC) descrip-
tor for matching optical images with radiometric differences.
Fan et al. [27] presented the phase congruency structural de-
scriptor (PCSD) by grouping PC maps to match SAR and optical
images. Fu et al. [28] developed a dense descriptor named his-
tograms of oriented magnitude and phase congruency (HOMPC)
based on oriented PC maps for multisensor image matching.
Li et al. [29] proposed a multimodal image matching method
named radiation-invariant feature transform (RIFT). In RIFT, the
maximum index map (MIM) is built based on the PC model for
feature description. PC-based methods have been demonstrated
to be robust to nonlinear radiometric differences. However, the
computational complexity of the PC model is relatively high,
particularly for large-size images [30].

Shechtman and Irani [31] proposed the LSS descriptor for ob-
ject detection, retrieval, and action detection. This descriptor has
been applied successfully also to remote sensing image match-
ing [32]–[34]. Tombari et al. [35] designed the maximal self-
dissimilarities (MSD) detector, which was inspired by LSS and
could achieve stable detection results under complex radiometric
differences. Ye et al. [36] introduced a feature descriptor named
the dense LSS (DLSS) by integrating multiple LSS descrip-
tors for optical-to-SAR image template matching. Our previous
work [37] improved the DLSS descriptor by designing a novel
descriptor named the rank-based local self-similarity (RLSS),
which used rank values instead of correlation values. Sedaghat
et al. [30], [38] extended the LSS descriptor to distinctive-
order-based self-similarity (DOBSS) descriptor and histogram
of oriented self-similarity (HOSS) descriptor, respectively, to
match multisensor optical images. Chen et al. [39] designed
the center-symmetric local-ternary-pattern (CSTLP) descriptor
based on the self-similarity descriptor. By capturing the shape
properties of images, LSS-based methods are less sensitive to
complex radiometric differences. However, descriptors derived
from LSS have relatively low discriminative capability [33]. In
addition, owing to the numerous sum of squared differences
(SSD) operations, their computational efficiency needs to be
improved [40].

Other recently popular methods for multimodal image match-
ing are learning based. One of the ideas is to use the Siamese
convolutional neural network (CNN) and its variants to achieve

patch matching of multimodal images. Merkle et al. [41] trained
a Siamese CNN on optical and SAR image patches. Hughes et
al. [42] identified corresponding patches with a pseudo-Siamese
CNN for SAR and optical images. Baruch and Keller [43]
combined the Siamese and pseudo-Siamese network to register
visible and near-infrared images. Zhang et al. [44] designed a
Siamese fully CNN to learn descriptors for multimodal image
patch matching. Another idea is to add preprocessing steps
for matching based on deep networks. After the preprocessing,
multimodal images can be effectively matched by hand-crafted
methods. Merkle et al. [45] trained a conditional generative
adversarial network (cGAN) to generate artificial SAR-like
image patches from optical images. Zhang et al. [46] applied
the image transfer algorithm based on VGG-19. Ma et al. [47]
used VGG-16 to calculate the approximate spatial relationship
of multimodal image pairs. The learned features perform better
than hand-crafted methods on some specific tasks, but they face
some difficulties. On the one hand, it is very challenging to
design a suitable network [46]. On the other hand, large and
diverse datasets are needed for training to achieve excellent
matching performance [44].

Our study focuses on solving the limitations in the LSS-based
method. First, to improve computational efficiency, we pro-
pose the offset mean filtering (OMF) method to calculate self-
similarity features fast. Using the OMF method, the obtained
self-similarity features are presented through a multichannel
self-similarity map (SSM) and a corresponding multichannel
symmetric SSM. Second, to enhance the discriminative capa-
bility, we propose a novel feature descriptor named oriented
self-similarity (OSS) based on the extracted multichannel SSMs.
The main contributions of this study are the following.

1) The OMF method is proposed to calculate the multichan-
nel SSM and the multichannel symmetric SSM fast, which
expresses the self-similarity features of the image. Based
on the symmetry of the self-similarity, OMF can avoid
redundant calculations, thereby significantly reducing the
computational cost.

2) The improved MSD (IMSD) detector is designed by in-
troducing the extracted two multichannel SSMs into the
MSD detector for robust feature point detection. Since the
multichannel SSMs can be easily and directly embedded
in the MSD detector, the IMSD detector can achieve
enhanced computational efficiency.

3) The OSS descriptor is proposed by extracting the orienta-
tion information from the multichannel SSMs to enhance
the distinctiveness and robustness against significant ra-
diometric differences. The main reason for the poor dis-
criminative capability of LSS-based descriptors is that
they are sensitive to the position errors of the feature
points. This is because the feature point is used as the
central pixel to calculate self-similarity with all of the sur-
rounding pixels in the local region of feature description.
On the two multichannel SSMs, each pixel is used as the
central pixel to calculate its own self-similarity. The OSS
descriptor transforms the multichannel SSMs into an index
map of orientations with minimum self-similarity values,
and extracts the histogram of the index map to describe the
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Fig. 1. Flowchart of the proposed multimodal remote sensing image matching
method.

point features. Therefore, it has enhanced discriminative
capability.

The rest of this article is organized as follows. The proposed
multimodal image matching method is introduced in Section II.
The experimental results of the proposed method are presented
in Section III. Finally, Section IV concludes this article.

II. METHODOLOGY

This section introduces the OMF method and subsequently
details the proposed multimodal remote sensing image matching
method. The proposed matching method includes three steps.
First, the IMSD detector is designed to extract reliable and
sufficient feature points. Second, the OSS descriptor is proposed
to distinctively describe these features. Finally, the nearest-
neighbor distance ratio (NNDR) matching strategy followed by
the fast sample consensus (FSC) [48] algorithm is performed
to identify the effective matches. The flowchart of the proposed
method is shown in Fig. 1.

A. Offset Mean Filtering

Two basic studies closely related to self-similarity are the LSS
descriptor [31] and the MSD detector [35]. The self-similarity
concept was first used to develop the LSS descriptor, which
leverages on self-similarities between the central pixel and its
surrounding pixels to provide a shape representation within a
local feature region. The LSS descriptor is robust to the radio-
metric variations by capturing the shape structures of the image.
In LSS, the similarity between pixels is measured by the SSD

Fig. 2. Schematic of calculating the self-similarity of pixel p relative to pixel
q. The red and green squares represent image patches centered on p and q,
respectively.

of the image patches centered on them. The self-similarities of
a pixel are defined as the similarities between the pixel and its
surrounding pixels. The self-similarity concept was developed
further in the MSD detector for feature detection. MSD high-
lights the pixels that are most dissimilar from nearby ones within
their surroundings. In MSD, the self-similarity is extended from
local to global, as the feature detection process needs to be
performed on the entire image. In addition, a particular form
of box filtering is designed to calculate the self-similarities of
all pixels with a reduced computational complexity.

Fig. 2 shows a schematic of calculating the self-similarity of
pixel p relative to pixel q. In the figure, pixel p is on the image
I . Pixel q is in the neighborhood (radius is r) of p. The pixel
distance and angle between p and q are ρ and θ, respectively.
l represents the side length of the square image patches for
calculating similarities.

Although optimized in MSD, the computational efficiency of
the aforementioned work is still limited, because they extract
the self-similarity features in a pixel-by-pixel manner, result-
ing in numerous redundant calculations. We propose the OMF
method to further improve the computational efficiency of the
self-similarity in a channel-by-channel manner. The method
includes mainly two steps, namely subimage construction and
mean filtering.

1) Subimage Construction: The subimage is constructed by
cropping the input image. For an image I with width W and
height H , the central subimage SubIc and the offset subimage
SubIq can be obtained separately by cropping, as shown in
Fig. 3. Considering the lower left corners of images as the
references, the horizontal and vertical offsets ofSubIc are both r,
and those of SubIq are r + ρ cos θ and r + ρ sin θ, respectively.

2) Mean Filtering: After obtaining the subimage, the SSM
Sq corresponding to q can be calculated as follows:

Sq = meanFilter (|SubIc − SubIq|) (1)

where meanFilter(·) represents the mean filtering operation.
Essentially, (1) uses the sum of absolute differences (SAD) in-
stead of the SSD to calculate the self-similarity values. The oper-
ation has been proven to improve computational efficiency [40].
The window size of the mean filter is equal to the size of image
patches. Herein, the window is circular (2 pixels in radius) rather
than square (l × l pixels) to enhance rotational invariance [30].
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Fig. 3. Example of subimages construction. (a) Central subimage (red square).
(b) Offset subimage (green square).

In addition, the size of Sq is equal to the size of the subimage,
and the borders need to be padded to ensure that Sq is the same
size as I .

For each pixel in the neighborhood of p, a corresponding SSM
can be obtained. Note that the self-similarity is symmetric, i.e.,
the self-similarity of p relative to q is equal to the self-similarity
of q relative to p. Therefore, the qth SSM and the (N + 1− q)th
SSM are almost the same with only pixel displacements, q =
1, 2, . . . , N . That is

SN+1−q(x, y) = Sq (x− r cos θ, y − r sin θ) (2)

where N is equal to the number of pixels in the neighborhood.
Here, the neighborhood is circular, as the circular neighborhood
is robust under the rotation changes. Therefore, N is expressed
as follows:

N ≈ round
(
πr2

)
(3)

where round(·) represents the rounding operation.
Taking into account the symmetry of the self-similarity, we

only need N2 OMF operations to obtain a multichannel SSM
{Sq}1C to express the self-similarity features of the entire image.
C is the number of channels, C = N2. On {Sq}1C , every pixel p
contains C values {sqp|q = 1, 2, . . . , C}. According to (2), each
SSM in {Sq}1C corresponds to a symmetric SSM. Therefore, C
symmetric SSMs can be obtained, and they form a multichannel
symmetric SSM {Sq}C+1

N .
Fig. 4 shows the process of extracting the self-similarity

values of pixel p. After obtaining {Sq}1C and {Sq}C+1
N , the

channel values (pixels) at point p, including effective values
(pixels) and symmetric values (pixels) corresponding to {Sq}1C
and {Sq}C+1

N , respectively, are extracted, and these pixels are
arranged by channel indices to form the self-similarity features
of p in its circular neighborhood.

We recommend that the radius of the neighborhood r is 4,
which will be discussed in Section III-D. The corresponding
number of channels C is 24. Fig. 5 details the neighborhoods of
a pixel, with the orange square representing the pixel. The green
and gray squares represent effective and symmetric pixels in the
neighborhood, respectively. The numbers in the squares in (b)
represent the channel indices.

Compared with the pixel-by-pixel calculation method used in
MSD [35] (a particular form of box filtering), OMF calculates
the self-similarity features in a channel-by-channel manner and
reduces the calculation burden by half based on the symmetry of
the self-similarity. The computational complexity of obtaining
self-similarity features can be reduced from O(W ·H ·N · l2)
to O(W ·H ·N) through a particular form of box filtering.
Using OMF, the computational complexity will be reduced
further to O(W ·H ·N2). Therefore, the calculation efficiency
is improved.

Fig. 6 shows the calculation times for the particular form of
box filtering method and the proposed OMF method versus the
image size. The two methods use neighborhoods with the same
size and shape when calculating self-similarity features. The
image size varies from 400 × 400 to 1200 × 1200. One can
observe that the OMF method takes about half less time than
the particular form of box filtering method, which proves the
effectiveness of OMF in improving efficiency.

B. IMSD Detector

In this section, we present a novel feature detector named
IMSD to extract reliable and sufficient feature points in the
multimodal images. The IMSD detector is an improved version
of the MSD detector, which calculates the self-similarity features
using the proposed OMF method. Evidently, the IMSD detector
can achieve high computational efficiency, which is attributed
to two factors. First, the smaller circular neighborhood with
a radius of 4 pixels replaces the square neighborhood of 11
× 11 pixels used in MSD. Second, the OMF method is used
considering the symmetry of the self-similarity.

After obtaining {Sq}1C and {Sq}C+1
N , the self-similarity val-

ues of each pixel can be extracted, as shown in Fig. 4. The feature
response λ of point p is expressed as follows [35]:

λ(p) =
1

k

k∑

i=1

sip (4)

where s1p, . . . , s
k
p are the smallest k self-similarity values, k =

4. By performing the local nonmaximal suppression on λ, the
feature points can be obtained.

To detect multiscale feature points, a multiscale Gaussian
pyramid is constructed for the input image. Compared with the
pyramid established by direct downsampling in MSD [35], the
Gaussian pyramid enhances the robustness of the detector to
noise. In addition, it is helpful to improve the discriminative
capability of the proposed OSS descriptor, which will be dis-
cussed in Section III-C. The image is first Gaussian smoothed
and subsequently downsampled.

The number of pyramid layers L is closely related to the input
image size as follows [49]:

L = floor (log2 (min(W,H))− 2) (5)

wherefloor(·) represents the rounding operation toward negative
infinity.
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Fig. 4. Process of extracting the self-similarity features of a pixel. (a) Input image. (b) Multichannel SSM. (c) Multichannel symmetric SSM. (d) Effective values
(pixels). (d) Symmetric values (pixels). (e) Self-similarity values in the neighborhood of pixel p.

Fig. 5. Example neighborhoods of a pixel. The radius of the neighborhood r
is 4. The orange square represents the central pixel. The green and gray squares
represent effective and redundant pixels in the neighborhood, respectively.

Fig. 6. Calculation time taken from the particular form of box filtering method
and the proposed OMF method versus the image size.

For the ith layer, the standard deviation of the Gaussian
function is expressed as follows:

σi = σ0f
i−1, 1 ≤ i ≤ L (6)

where σ0 is the initial standard deviation, and we set σ0 = 1.2
based on the discussion in Section III-D. f is the scale factor,
f = 213.

C. OSS Descriptor

When the feature points are detected, a novel feature descrip-
tor called OSS is designed for them. The proposed descriptor first
extracts the orientation information from the two multichannel
SSMs to form an index map and subsequently transforms the
index map into a GLOH-like grid to generalize the descriptor
values. The proposed descriptor involves mainly two steps:
orientation assignment and grid representation.

1) Orientation Assignment: To render the descriptor invari-
ant to rotation, orientation assignment should be conducted for
each feature point. Similar to the method in MSD [35], a his-
togram generation method based on the self-similarity values is
used to assign dominant orientations. Specifically, for the feature
point p, 36 points (with an interval of 10◦ and covering 360◦)
are sampled uniformly on a circle (neighborhood edge of p) with
p as the center and r as the radius, as shown in Fig. 7(a). The
self-similarity values of p relative to these points are s1p, . . . , s

36
p ,

respectively. These values can be extracted from {Sq}1C and
{Sq}C+1

N as shown in Fig. 4, and are stretched linearly to the
range of [0, 1], as follows:

ŝip =
max

{
s1p, . . . , s

36
p

}− sip

max
{
s1p, . . . , s

36
p

}−min
{
s1p, . . . , s

36
p

} , i = 1, . . . , 36.

(7)
Subsequently, an orientation histogram with 36 bins (covering

360◦) is generated, as shown in Fig. 7(b). The stretched values
are added into the histogram based on its angle to p. The local
peak(s) of the histogram (within 80% of the highest peak) is/are
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Fig. 7. Process of the orientation assignment. (a) 36 uniformly sampled points
on a circle with p as the center and r as the radius. (b) Orientation histogram
generation and dominant orientation assignment. The red point is the interpolated
peak.

selected as dominant orientation(s) of p. Finally, a parabola
is fitted to the three histogram values closest to each peak to
interpolate the peak location for improved accuracy.

2) Grid Representation: To construct the descriptor, grid
representation should be implemented to divide the feature-
centric local region into multiple grid bins. Specifically, for
feature point p, multiple circular local regions (radius R) are
extracted from both {Sq}1C and {Sq}C+1

N . R = 36 is recom-
mended based on the discussion in Section III-D. Subsequently,
the extracted local regions are transformed into an index map of
orientations with minimum self-similarity values. Finally, the
index map is divided into multiple bins based on a descriptor
grid, and a specific distribution histogram with No bins is built
for each grid bin to generate descriptor values. The process of
grid representation is shown in Fig. 8.

A key issue in the above process is to generate the index map.
For each point in the local region, the neighborhood of the point
is divided into 2No orientation bins. The start orientation of
the division is the dominant orientation of the feature (central)
point. The bin index numbers are marked counterclockwise
1, 2, . . . , 2No. The mean value of the self-similarity values is
calculated in each of first No bins, and the bin index number
corresponding to the bin with the smallest mean value is regarded
as the index value of the point. The self-similarity features in the
last No bins are ignored because they are redundant information
according to the symmetry of the self-similarity. Therefore, the
index value can be 1, 2, . . . , No. Fig. 8(b)–(e) shows examples
of generating the index values of three points. In Fig. 8(b),
the neighborhood is divided into eight orientation bins, that is,
No = 4. As shown by the green sector in Fig. 8(c)–(e), the third
bin of v1,the fourth bin of v2, and the first bin of v3 have the
smallest mean values, respectively. Therefore, the index values
of v1, v2, and v3 are 3, 4, and 1, respectively. Each point in the
local region can generate an index value, and a local index map
can therefore be obtained. We recommend No = 8 based on the
discussion in Section III-D.

Another key issue is to choose the descriptor grid. Among
the well-known descriptor grids, the GLOH grid (as used in
SAR-SIFT) is more adaptable to geometric distortion than the
square grid (as used in SIFT) [21]. As the proposed OSS
descriptor requires relatively large local region to ensure the

Fig. 8. Process of grid representation. (a) Extracted circular local regions. (b)
Divided and numbered neighborhood. (c)–(e) Index values of points v1, v2, and
v3, corresponding to the bins (green sectors) with the smallest mean values of
the self-similarity values. (f) Index map. (g) Divided index map.

Fig. 9. Descriptor grid. (a) Regular GLOH grid. (b) Proposed denser GLOH-
like grid.

distinctiveness (discussed in Section III-C), we recommend a
denser GLOH-like grid, as shown in Fig. 9. The proposed
GLOH-like grid involves two parameters, i.e., the number of
radial bins Nr and the number of angular bins Na. The larger
the Nr or Na the denser will be the grid. The density of
the grid should be appropriate to ensure the distinctiveness of
the descriptor and, more importantly, excessive density is not
considered as it can lead to an over-dimensional descriptor,
resulting in low computational efficiency. Nr = 4 and Na = 10
are recommended based on multiple experiments to balance the
distinctiveness and the computational efficiency, as shown in
Fig. 9(b). As a result, the dimension of the OSS descriptor is
(NrNa −Na + 1)No = (4× 10− 10 + 1)× 8 = 248.
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TABLE I
DETAILS OF EXPERIMENTAL DATASETS

D. Matching Algorithm

After feature detection and description, the NNDR matching
strategy is adopted to select the initial matches by using the
distance between feature descriptors. Furthermore, the FSC al-
gorithm is used to remove outliers from the initial matches [48].
FSC can robustly extract effective matches from a large number
of outliers in few iterations. However, the small distance ratio
threshold dh of FSC is extremely sensitive to the multimodal
image scene, which controls the size of the sample set. Instead
of subjectively fine-tuning dh, the top 300 matches with the
smallest distance are selected as the sample set. In addition, the
effective matches are identified with an affine transformation
model between the reference and sensed images by considering
an empirical threshold of T0 = 3

√
2 pixels.

III. EXPERIMENTS AND RESULTS

In this section, we present the evaluation and validation of
the proposed multimodal image matching method. First, the
experimental data sets are introduced. Subsequently, the IMSD
detector and OSS descriptor are evaluated, and the parameters
of the proposed method are discussed. Finally, the proposed
method is applied to image registration.

A. Datasets

The experimental data include nine multimodal image pairs
that can be divided into three categories, namely 1) visible-to-
infrared (V-I); 2) visible-to-SAR (V-S); and 3) LiDAR-to-visible
(L-V). Image pairs V-S 1, L-V 1, and L-V 2 are disclosed
in [25]. Each category contains three image pairs with significant
radiometric differences. In each category, the first pair has
almost no rotation and scale differences, whereas the second
pair has a significant rotation difference with little or no scale
difference, and the third pair has a significant scale difference
with inconspicuous rotation difference. In addition, these image
pairs contain a variety of medium resolution and high resolution
remote sensing images from Google map, airborne sensors, and

spaceborne sensors, such as Landsat TM, GaoFen (GF) 1, GF 2,
TerraSAR-X, GF 3, and Worldview 2. The images have different
spectrums or polarizations and cover different scenes, including
suburban and urban areas. The descriptions of the datasets are
presented in Table I.

Category V-I: V-I 1 to V-I 3 are visible and infrared data.
V-I 1 and V-I 2 are two pairs of medium resolution images
covering suburban areas. There is a temporal difference over
1 year between the images in the two pairs. During the period, the
river areas in them changed. These changes make the matching
more difficult. V-I 3 is a pair of medium resolution images
located in an urban area.

Category V-S: V-S 1 to V-S 3 are composed of visible and SAR
data covering suburban areas. V-S 1 contains a pair of medium
resolution images. The SAR image in the pair suffers from strong
speckles, which increases the difficulty of the matching. V-S 2
and V-S 3 are two image pairs of high resolution images.

Category L-V: L-V 1 to L-V 3 are three pairs of high resolution
LiDAR and visible data covering urban areas. They have obvious
local geometric distortions caused by the relief displacement of
buildings. The LiDAR image used in L-V 1 is an interpolated
raster intensity map. The intensity map has significant noise,
which increases the difficulty of the matching. The LiDAR
images used in L-V 2 and L-V 3 are the interpolated raster height
maps. These height maps have a sawtooth effect at the edge of
the building, which makes the matching more challenging.

B. Detector Evaluation

To evaluate the performance of the IMSD detector, compar-
ative experiments are conducted with three popular detectors
(DOG [14], SAR-Harris [22], and MSD [35]). The evaluation
criteria and experimental results are detailed in the following
sections.

1) Evaluation Criteria: The repeatability rate is used as
criterion to evaluate the performance of the detectors [50]. A
higher repeatability rate corresponds to more stable detection
under imaging conditions changes. The repeatability rate is
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defined as follows:

Repeatability rate =
C

(Mr +Ms)/2
(8)

where C represents the number of corresponding feature points.
Mr and Ms represent the number of feature points in the
reference and sensed images, respectively.

The corresponding feature points should satisfy both the
location and scale conditions [26]. The location condition is
expressed as follows:

‖H · (x1, y1)− (x2, y2)‖2 ≤ T1 (9)

where (x1, y1) and (x2, y2) denote the feature points in the
reference and sensed images, respectively. H is the projection
transformation model between two images, which is computed
from 40–60 manually selected and well-distributed check points.
T1 is the threshold of the location error, which is empirically set
to 2

√
2.

The scale condition is given as follows:
∣∣∣∣∣1− s2

min
(
σ2
1 , σ

2
2

)

max (σ2
1 , σ

2
2)

∣∣∣∣∣ ≤ T2 (10)

where σ1 and σ2 denote the scales of the feature points in the
reference and sensed images, respectively. s is the scale ratio
of the two images (s ≥ 1). T2 is the threshold of the scale
difference, which is recommended to be set to 0.4.

The processing time (PT) is used as the criterion to evalu-
ate the computational efficiency. A smaller PT corresponds to
higher efficiency. The PT is counted using a laptop with Intel(R)
Core(TM) i7-8750H 2.20 GHz CPU, 32 GB RAM, and NVIDIA
Quadro P1000 graphics card, using MATLAB R2018b software.

2) Experimental Results: The proposed IMSD detector, and
the DOG, SAR-Harris, and MSD detectors are compared by
conducting feature detection experiments on nine image pairs
(see Table I). DOG and SAR-Harris are feature detectors based
on gradient information. MSD and IMSD are feature detectors
that use self-similarity information. Compared with the MSD
detector, the IMSD detector calculates self-similarity features
using the OMF method and establishes the Gaussian pyramid
instead of the direct downsampling pyramid. In the experiments,
four detectors acquire the same number of feature points by
adjusting the contrast parameters.

Fig. 10 shows the repeatability rates of nine image pairs for
four detectors. As seen, the performances of the self-similarity-
based detectors (MSD and IMSD) are generally better than those
of the gradient-based detectors (DOG and SAR-Harris). This
result confirms that the former can adapt better to the complex
radiometric differences between images. The performance of
IMSD is superior to that of MSD. The reason for this finding is
as follows. First, the OMF method uses a circular filter window
with a radius of 2 pixels rather than a square filter window
at a size of 7 × 7 pixels (used in MSD), which increases the
position precision of the detected feature points. Second, the
Gaussian pyramid is used to replace the pyramid built by direct
downsampling, which enhances the robustness of the detector to
noise. Both these factors lead to an improved repeatability rate
for the proposed IMSD detector.

Fig. 10. Repeatability rates of nine image pairs for four detectors.

Fig. 11. Average PT of nine image pairs for four detectors.

Fig. 11 shows the average PT of nine image pairs for four
detectors. The gradient-based detectors (DOG and SAR-Harris)
show superior results compared with the self-similarity-based
detectors (MSD and IMSD) in terms of the average PT. This is
because the former only compares pixels (average image blocks)
with their nearest pixels (average image blocks), whereas the
latter compares image blocks in a larger neighborhood. Further,
the average PT of IMSD is much smaller than that of MSD,
revealing that the computational efficiency of IMSD is evidently
higher than that of MSD. Two factors explain this finding. On
the one hand, the two detectors use neighborhoods with differ-
ent sizes and shapes when calculating self-similarity features.
MSD uses a square neighborhood at a size of 11 × 11 pixels
(containing 120 pixels), whereas IMSD uses a relatively small
circular neighborhood with a radius of 4 pixels (containing
48 pixels). On the other hand, the OMF method used in IMSD
computes the self-similarity features based on the symmetry
of the self-similarity. Both these two factors result in a greatly
reduced computational cost.

C. Descriptor Evaluation

To evaluate the performance of the OSS descriptor, com-
parative experiments are conducted with seven state-of-the-art
descriptors (SIFT [14], DAISY [51], FourierHOG [52], SAR-
SIFT [22], LSS [31], DOBSS [38], and RIFT [29]). The eval-
uation criteria and experimental results are presented in the
following sections.

1) Evaluation Criteria: In our experiments, the performance
of the proposed descriptor is evaluated mainly by the precision



12448 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 12. RPC of nine image pairs for eight descriptors. (a) V-I 1. (b) V-I 2. (c) V-I 3. (d) V-S 1. (e) V-S 2. (f) V-S 3. (g) L-V 1. (h) L-V 2. (i) L-V 3.

versus recall curve (PRC) [53]. The recall and precision values
are estimated as follows:

recall =
CM

C
, precision =

CM

CM + FM
(11)

where CM and FM are the number of correct matches and the
number of false matches in the initial matches, respectively.CM
can be obtained by the method described in Section III-B, and
FM is equal to the total number of the initial matches minus
CM . By tuning the threshold of NNDR, the different recall
and precision values can be obtained in the matching process.
Herein, the threshold spans between 0.9 and 1, with a step of
0.02. Subsequently, the PRC can be obtained. A higher recall
or precision corresponds to the descriptor being more robust to
the image scene. In other words, the farther the PRC is from the
coordinate origin the superior is the descriptor performance.

2) Experimental Results: This section evaluates the perfor-
mance of the proposed OSS descriptor with experiments on
nine image pairs (see Table I). Furthermore, various advanced
descriptors, including SIFT, DAISY, FourierHOG, SAR-SIFT,
LSS, DOBSS, and RIFT, are used for comparisons. SIFT,
DAISY, FourierHOG, and SAR-SIFT are feature descriptors
based on gradient information. LSS, DOBSS, and OSS are

feature descriptors using self-similarity information. Compared
with LSS and DOBSS, OSS calculates the orientations of the
self-similarity values instead of the self-similarity intensities.
RIFT is a feature descriptor based on PC information, and it
is not sensitive to radiometric differences. In the experiments,
the IMSD detector is used to extract feature points for all the
descriptors.

Fig. 12 presents the RPC of nine image pairs for eight de-
scriptors. As seen, the proposed OSS descriptor significantly
outperforms the other descriptors in all nine image pairs, with
the main reason being that the descriptor extracts the orientations
of the self-similarity values for feature description instead of
simple gradients or self-similarity intensities. An index map is
used to capture the orientations of the self-similarities and is
extremely robust against significant radiometric differences.

After the OSS descriptor, better results are achieved by the
RIFT descriptor, but the performance of the RIFT is unstable,
and the results of some image pairs are degraded. Specifically,
for image pairs V-I 1, V-I 3, V-S 3, L-V 1, and L-V 3, the results of
the RIFT descriptor are relatively good, and are almost superior
to those of other descriptors except the OSS descriptor. But for
other image pairs, the results of the RIFT descriptor are poor
and the advantage is not obvious. There are two reasons for
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Fig. 13. Average PT of nine image pairs for eight descriptors.

this. One is that the rotation invariance of the RIFT descriptor is
unstable. The RIFT descriptor does not perform the orientation
assignment, but extracts six descriptors in different orientations
(between 0◦ and 180◦, with an angular interval of 30◦). The
image pairs V-I 2, V-S 2, and L-V 2 have obvious rotation
differences, and the rotation angles are about 40◦, 9◦, and 10◦,
respectively. The rotation angles deviate from the orientations
of the descriptors, so the results of the three image pairs are
degraded. The second is that the RIFT descriptor is sensitive
to noise [54]. The SAR image in image pair V-S 1 is affected
by strong speckles. Therefore, the superiority of RIFT is not
obvious for the image pair.

The performances of the other six descriptors (SIFT, DAISY,
FourierHOG, SAR-SIFT, LSS, and DOBSS) are poor, especially
for image pairs in Category V-S and Category L-V, which shows
that they are limited in matching multimodal image pairs.

The three categories of image pairs obtains different matching
results because of the differing characteristics of the images. The
results of image pairs in Category V-I are better than those of
image pairs in Category V-S and Category L-V. This is because
the difference in the imaging mechanism between images in
Category V-I is smaller than those of the other categories, and
the matching is relatively easy. The results of image pairs in Cat-
egory V-S are inferior to those of image pairs in Category L-V.
This is because the SAR images in Category V-S are affected by
speckles, and the multiplicative noise makes matching difficult.

Fig. 13 shows the average PT of nine image pairs for eight
descriptors. The result of the OSS descriptor is better than those
of the DAISY, LSS, DOBSS, and RIFT descriptors but inferior to
the results of other descriptors. This indicates the computational
efficiency of the proposed OSS descriptor is moderate among the
compared descriptors, and is superior to those of the compared
self-similarity-based descriptors (LSS and DOBSS).

D. Parameters Discussion

In this section, we discuss the parameter tuning of the OMF
method, the IMSD detector, and the OSS descriptor, respec-
tively.

1) Parameter Tuning of OMF Method: The proposed OMF
method involves one key parameter, namely the radius of the
neighborhood r. From (3), it can be seen that as r increases
the number of channels also increases rapidly, leading to a

Fig. 14. Example neighborhoods of a pixel. The radius of the neighborhood r
corresponding to (a), (b), and (c) are 3, 4, and 5, respectively. The orange square
represents the central pixel. The green and gray squares represent effective and
redundant pixels in the neighborhood, respectively.

sharp increase in computational cost. However, r should not
be too small, because it determines the amount of information
in the multichannel SSMs. The amount of information should
be sufficient for reliable feature detection and description.

Fig. 14 details the neighborhoods of a pixel, with the orange
square representing the pixel. The green and gray squares repre-
sent effective and symmetric pixels in the neighborhood, respec-
tively. The radius of the neighborhood r corresponding to (a),
(b), and (c) are 3, 4, and 5, respectively, and the corresponding
number of channels C is 14, 24, and 40, respectively. We will
discuss the influence of r on the IMSD detector and the OSS
descriptor in the following subsections.

2) Parameter Tuning of IMSD Detector: The proposed
IMSD detector involves two key parameters—namely, the initial
standard deviation σ0 and the radius of the neighborhood r. The
initial standard deviation σ0 determines the smoothing ability of
the Gaussian filtering in the Gaussian pyramid. The parameter
affects both the proposed detector and descriptor. σ0 should not
be too small or too large. The former limits the ability to denoise,
while the latter blurs the boundaries of the image. These two
cases not only reduce the position accuracy of the detected fea-
tures, but also make the extracted orientation information of the
self-similarity unreliable. The value of r should be appropriate
for reliable feature detection.

To analyze the influences of σ0 and r, independent exper-
iments are conducted on nine image pairs (see Table I) with
different σ0 and r. Each experiment has one parameter as a
variable, with the other parameter as an invariant. In the ex-
periments, σ0 = 0 means that the pyramid is established by
direct downsampling, similar to the method used in MSD. The
average repeatability rate is used as the evaluation criterion. The
experimental results are shown in Figs. 15 and 16. As seen,
the detector performs better in terms of average repeatability
rate when σ0 = 1.2 and r = 4. Herein, σ0 = 1.2 and r = 4
are selected as the default value, and the same values are also
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Fig. 15. Average repeatability rate with σ0 varying from 0 to 2.4.

Fig. 16. Average repeatability rate with r varying from 3 to 5.

recommended in the following subsection by analyzing the
influences of σ0 and r on the proposed descriptor.

3) Parameter Tuning of OSS Descriptor: The proposed OSS
descriptor involves four key parameters, namely the radius of
local regionR, the number of orientationsNo, the initial standard
deviationσ0, and the radius of the neighborhood r. Specifically, a
larger R corresponds to a richer amount of information captured
by the descriptor. If the amount of information is inadequate, it
will be difficult to describe features discriminatively; however,
if the amount of information is overlarge, the descriptor may
be sensitive to the local geometric distortion. The larger the
No, the more accurately the orientation information of the self-
similarity be extracted. However, as the neighborhood of the
point is relatively small, No should not be too large to avoid
redundancy. The value of σ0 and r should be appropriate to
ensure the extracted orientation information of the self-similarity
reliable.

To analyze the influences of these parameters, independent
experiments are conducted on nine image pairs (see Table I).
Each experiment has only one parameter as a variable, with
the other parameters as invariants. The average PRC is used as
the evaluation criterion in the experiments. The experimental
results are shown in Figs. 17– 20. As seen, as R, No, σ0, or r
increases, the descriptor perform better in terms of average PRC
untilR = 36,No = 8, σ0 = 1.2, and r = 4. Therefore,R = 36,
No = 8, σ0 = 1.2, and r = 4 are selected as the default values.

E. Application to Image Registration

In this section, we apply the proposed method to image
registration and analyze the registration performance by com-
paring it with two state-of-the-art methods: SAR-SIFT [22] and
RIFT [29].

Fig. 17. Average PRC with R varying from 30 to 54.

Fig. 18. Average PRC with No varying from 5 to 9.

Fig. 19. Average PRC with σ0 varying from 0 to 2.4.

1) Evaluation Criteria: In the experiments, the performance
of the proposed method is evaluated by three criteria: CM,
precision, and root mean square error (rmse). Different from
Section III-C, CM and precision here are calculated based on the
final matches, which are obtained after outlier removal using the
FSC algorithm. A higher value of CM or precision indicates a
better performance of the registration method; rmse is computed
with the correct matches to evaluate the positional accuracy. A
smaller rmse value corresponds to a higher positional accuracy.

2) Parameter Tuning of Matching Threshold: The matching
threshold T0 determines the sensitivity of the FSC algorithm to
errors. The value of T0 should be appropriate. If T0 is too small,
the correct matches will be eliminated. However, if T0 is too
large, the false matches will be retained.

To analyze the influences of T0, experiments are conducted
on nine image pairs (see Table I) with different T0. In the
experiments, the average CM and average precision of nine
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Fig. 20. Average PRC with r varying from 3 to 5.

TABLE II
AVERAGE REGISTRATION RESULTS WITH THE MATCHING THRESHOLD

VARYING FROM
√
2 TO 5

√
2

image pairs are used as the evaluation criteria. The experimental
results are shown in Table II. As seen, as T0 increases, the
average CM increases first and then remains almost unchanged,
and the average precision continues to decrease. When T0 is
taken as 3

√
2, the average CM reaches a high value. Therefore,

T0 = 3
√
2 is set in the article.

3) Comparative Analysis: To analyze the registration per-
formance, comparative experiments are conducted on nine im-
age pairs (see Table I) with three methods: SAR-SIFT, RIFT,
and the proposed method. SAR-SIFT detects and describes
scale-invariant features based on the gradient by ratio to im-
prove the robustness to speckles. RIFT detects and describes
radiation-invariant features based on PC information, and it is
not scale-invariant. All methods use the same matching method
(NNDR and FSC). For these methods, almost all parameter
settings follow the recommendations of their author, except that
the contrast threshold is fine-tuned to ensure that they extract
approximately equal numbers of feature points.

Table III presents the comparative registration results of SAR-
SIFT, RIFT, and the proposed method for nine image pairs. The
proposed method is capable of robustly registering multimodal
image pairs and generally outperforms SAR-SIFT and RIFT in
terms of CM, precision, and rmse. This is because the proposed
method uses the IMSD detector and the OSS descriptor. The
IMSD detector can reliably detect a large number of feature
points with a high repeatability rate; the OSS descriptor can
robustly describe different features in a discriminative manner.
They exhibit excellent performances under significant radiomet-
ric differences.

The RIFT method is capable of registering almost all image
pairs, and even obtains a larger CM for the image pair V-I 1
than the proposed method. This is because the RIFT method is
based on PC features, and it is robust to nonlinear radiometric
variations. However, its overall performance is limited. Specif-
ically, the registration performances of image pairs V-I 2, V-S

TABLE III
COMPARATIVE REGISTRATION RESULTS OF SAR-SIFT, RIFT, AND THE

PROPOSED METHOD FOR NINE IMAGE PAIRS

1, L-V 1, and L-V 2 are inferior to the proposed method; the
registration performances of image pairs V-I 3, V-S 2, and V-S
3 are very poor; and image pair L-V 3 fail to register. There are
two reasons for this. One is that the RIFT method only extracts
feature points on a single scale and therefore does not have scale
invariance. Image pairs V-I 3, V-S 3, and L-V 3 have obvious
scale differences, so they are almost fail to register. Second, the
RIFT descriptor does not have stable rotation invariance and is
sensitive to noise. Image pairs V-I 2, V-S 2, and L-V 2 have
rotation differences, image pairs V-S 1, V-S 2, and V-S 3 are
affected by speckles, and image pair L-V 1 is affected by strong
noise. Therefore, the registration results of these image pairs are
degraded.

The performance of SAR-SIFT is the most vulnerable. Specif-
ically, image pairs V-I 2, V-S 1, V-S 2, and L-V 3 fail to register,
and other image pairs succeed in registering, but the performance
is poor. This is because SAR-SIFT focuses on overcoming the
image speckles and is relatively sensitive to complex nonlinear
radiometric variations.

In terms of rmse, the proposed method outperforms SAR-
SIFT and RIFT. The positional accuracy of the matching more
depends on the type of feature detector than the type of feature
descriptor [30]. Therefore, the reason for the results of rmse is
that the IMSD detector can obtain feature points with subpixel
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Fig. 21. Registration results of the proposed method for nine image pairs. (a) V-I 1. (b) V-I 2. (c) V-I 3. (d) V-S 1. (e) V-S 2. (f) V-S 3. (g) L-V 1. (h) L-V 2.
(i) L-V 3.

precision, while SAR-Harris and FAST detectors can only obtain
feature points with pixel precision.

Overall, the PT results of the proposed method are better
than those of RIFT but inferior to the results of SAR-SIFT.
This indicates the proposed method spends a moderate level
of computation time among compared methods. The results are

consistent with the average PT results of the descriptors. This is
because in the image matching process, the PT of the descriptor
construction is much greater than that of other steps.

Fig. 21 shows the registration results of the proposed method
for nine image pairs. The proposed method achieves a sufficient
number of uniformly distributed matches in multimodal image
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pairs with significant geometric (rotation and scale) and radio-
metric differences, confirming the effectiveness of the proposed
method for multimodal image registration.

IV. CONCLUSION

We propose the OMF method to calculate the self-similarity
features fast and, on that basis, propose a novel multimodal
remote sensing image matching method, including the IMSD
detector and the OSS descriptor. With IMSD, we introduce the
extracted multichannel SSMs into the MSD detector to detect
a sufficient number of feature points with a high repeatability
rate. With OSS, we utilize the orientations of the self-similarities
with a denser GLOH-like grid to describe the features discrim-
inatively. We evaluate the proposed method using a variety of
multimodal remote sensing images, including optical, SAR, and
LiDAR data. The experimental results demonstrate that IMSD
and OSS can outperform state-of-the-art feature detectors and
descriptors, and the promising results (better than those of the
compared self-similarity-based methods) of IMSD and OSS in
terms of computational efficiency reveal the effectiveness of the
OMF method. In addition, we apply the proposed method to
image registration. The registration results demonstrate that the
proposed method is robust against nonlinear radiometric differ-
ences, which further confirm the effectiveness of the proposed
method.

In the future, we will test the proposed method on more
multimodal remote sensing images. In addition, the effective
matching results motivate us to integrate the algorithm into
various remote sensing applications, such as image fusion and
change detection.
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