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Abstract—Marine debris impacts negatively upon the marine
environment and the survival of marine life because they are some
difficult-to-degrade substances, and most of them will sink into the
deep sea and continue to exist in the ocean. Autonomous under-
water vehicles can clean up the deep-sea debris to some extent.
However, the efficient detection method plays a critical role in the
collection rate. This article establishes an efficient deep-sea debris
detection method with high speed using deep learning methods.
First, a real deep-sea debris detection dataset (3-D dataset) is
established for further research. The dataset contains seven types
of debris: cloth, fishing net and rope, glass, metal, natural debris,
rubber, and plastic. Second, the one-stage deep-sea debris detec-
tion network ResNet50-YOLOV3 is proposed. In addition, eight
advanced detection models are also involved in the detection process
of deep-sea debris. Finally, the performance of ResNet50-YOLOV3
is verified by experiments. Furthermore, the applicability and
effectiveness of ResNet50-YOLOV3 in deep-sea debris detection
are proved by the experimental results.

Index Terms—Deep convolutional neural network, deep-sea
debris detection, deep-sea debris detection dataset, sea floor.

I. INTRODUCTION

tention around the world, and marine debris is one of the
main culprits for the harsh marine environment. Along with the
expansion of human activities on the coast and ocean and the
increase of garbage [1], most of the debris has been flowed to
the ocean and finally sinks to deep ocean. Compared with the
garbage on the ocean surface, the marine environment and the
survival of organisms will be more severely threatened by the

T HE marine environment has received more and more at-
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deep-sea debris [2], [3]. Fortunately, autonomous underwater
vehicles (AUVs) can complete garbage collection and cleaning
on the seabed by manipulating a robotic arm, but it needs a strong
deep-sea debris detection performance as a support [4]. There-
fore, accurate automatic deep-sea debris detection capabilities
are necessary for AUVs.

For now, some studies have been carried out around the
classification and detection of marine debris. Traditional ma-
chine learning algorithms were used to classify marine plastic
garbage on the beach [5]. A reversed linear spectral unmixing
methodology has been applied to the detection of garbage float-
ing in the ocean [6]. Satellite remote sensing technology [7],
[8], as well as unmanned aerial vehicle systems [9], [10], is
usually used to obtain image data of garbage on the sea surface
and beach [11], and then, spectral feature analysis [12], plastic
index [13], along with LIDAR [14] is adopted to realize the
identification and detection of beach and sea surface debris. With
the excellent performance of Faster R-CNN [15], SSD [16], and
other detection networks on classical detection datasets [17],
[18],itis also a trend that seabed garbage is detected using these
networks [19]-[21], and certain effects have also been achieved.

However, most marine garbage detection only focuses on the
sea surface and beach; there are few comprehensive studies
on the detection of deep-sea debris. Although some detection
networks have begun to be used to detect underwater garbage,
these have not achieved satisfactory results. Fulton ef al. [21]
only detected the plastic waste, and the category is single;
Valdenegro-Toro [19] did not use a complete deep learning
detection network.

One of the reasons for the above situation is the lack of real
deep-sea debris detection datasets, which has led to the scarcity
of research on deep-sea debris detection. Deep-sea garbage
data need to be captured in a real deep-sea environment by
using professional diving equipment and high-precision cam-
eras, which requires huge manpower and material resources.
Although there are current studies that create a marine garbage
dataset by simulating the deep-sea environment in a water tank
and use it to train garbage detection algorithms [19], it is not
clear whether it is applicable to the natural marine environment.
Another important reason is the serious interclass similarity and
intraclass variability of deep-sea debris [4], which brings great
difficulties to research related to deep-sea garbage detection.
Different from sea garbage and beach garbage, deep-sea debris
is always on the bottom of the sea and is eroded by sea water,
and its appearance is severely deformed. Coupled with the
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influence of ocean light and attachments, the characteristics
of the same type of seabed garbage in the capture imaging
are no longer uniform, and different types of seabed garbage
may form feature similarities. This is the main reason for the
scarcity of research on submarine garbage and the difficulty and
challenge of deep-sea garbage detection than terrestrial garbage
detection [22]. Therefore, those networks that have achieved
the ideal detection of ocean or beach surface garbage are also
difficult to achieve accurate detection of deep-sea debris due
to this characteristic of deep-sea debris [21]. Consequently, the
algorithms or models that can accurately detect deep-sea debris
should be further studied.

Furthermore, Considering the harshness and complexity of
the deep-sea environment, it is necessary to improve the effi-
ciency of AUVs in cleaning and collecting garbage in the deep
sea. Therefore, the detection speed of the detection model assem-
bled in AUVs for deep-sea garbage should also be considered.

In view of the above, the main work and contributions of this
article are as follows.

1) Considering the lack of datasets that can be used for deep-
sea debris detection, a 3-D dataset (deep-sea debris detec-
tion dataset) is constructed based on the online deep-sea
debris database [23]. The debris categories of this dataset
are divided into seven categories: cloth, fishing net and
rope, glass, metal, natural debris, rubber, and plastic. The
debris in the database is captured by submarine cameras
in the real deep-sea environment, so the 3-D dataset has
authenticity and applicability.

2) In order to promote the research of deep-sea debris de-
tection methods and improve the accuracy and speed
of the model for deep-sea garbage detection, the detec-
tion network ResNet50-YOLOV3 is proposed, which is a
one-stage detection network with ResNet50 as the back-
bone (feature extractor) and YOLOV3 [24] as the feature
detector.

3) SSD [16] and Faster R-CNN [15] detectors are used
as comparative detectors, and three classic classification
networks ResNet50, VGG16, and MobileNetV?2 are used
as the backbone. Further experimental results show that
compared with the other eight detection models, the pro-
posed ResNet50-YOLOV3 can maintain a considerable
detection speed while maintaining the highest detection
results. Finally, the experimental analysis also reveals the
influence of different backbones on the detection results
of submarine garbage.

This study is among the first that detect multiclass deep-sea
debris using deep learning. The rest of this article is organized in
the following format. The technical details and characteristics
of the proposed ResNet50-YOLOV3 method are described in
Section II. Section III reports experiments and discussions.
Section IV concludes this article.

II. METHODOLOGY

Detection networks can be summarized into two types at
present. One is a two-stage network represented by R-CNN [25]
and Faster R-CNN. The other is a one-stage network represented
by RetinaNet [26] and SSD. The two-stage networks first
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propose the proposed area and then classify the proposal and
return the exact coordinates. It has high detection accuracys;
the detection speed is not satisfactory. On the contrary, the
one-stage networks have a faster detection speed in that it
completes the recognition/regression in one time, but this is at
the cost of loss of accuracy.

To produce excellent deep-sea debris detection effects in
terms of speed and accuracy, the ResNet50-YOLOV3 detection
network is introduced in this article to detect deep-sea debris.
In this detection network, a multiscale detector called YOLOV3
(you only look once-v3) is applied, which can achieve a high
detection speed while ensuring the accuracy of detection. In
addition, as a residual network with strong feature abstraction
ability, ResNet50 [27] is chosen as the backbone of the network,
which can further improve the detection accuracy. ResNet50-
YOLOV3 is an end-to-end network, i.e., a one-stage network,
which can achieve the speed versus accuracy tradeoff. The de-
tailed structure of the network will be introduced in this section.

A. Network Structure

1) Overall Architecture: The structure of ResNet50-
YOLOV3 is depicted in Fig. 1. It can be divided into two parts:
feature extractor (backbone) and feature detector (multiscale
detector). The image to be detected is mapped out a series of
low-level and high-level features through the feature extractor.
Then, these low-level and high-level semantic features are
further encoded by the feature detector to achieve the final
target detection.

The input size of the network follows default size 416 x 416
of YOLOV3 [24]. The image is first subjected to 7 x 7 con-
volution and 3 x 3 max pooling to complete the preliminary
processing, and then, the features flow through four kinds of
ResBlock blocks. Each block contains three, four, six, and three
ResBlocks, respectively. It is noted that 1 x 1 convolution is
required on the branch of the first ResBlock of each block
to unify the scale to facilitate subsequent add operations. The
batch normalization and the ReLU function are carried out after
convolution.

The finally generated features with a scale of 13 x 13 x 2048
have the advanced features and the most abstract image informa-
tion and are subsequently processed by YoloBlock to generate
13 x 13 x 512 features. On the one hand, the features are used to
obtain the deepest prediction result with a scale of 13 x 13 x 36
through 3 x 3 and 1 x 1 convolution. On the other hand, it is
subjected to a double upsampling operation and then to a concat
operation with the penultimate layer features of the backbone.
Similarly, the 26 x 26 x 1280 feature map obtained by the con-
catoperation flows into YoloBlock, and then, a branch undergoes
two convolutions to obtain a shallower prediction result with a
scale of 26 x 26 x 36. The other branch is upsampled to perform
concat operation with the 52 x 52 x 512 shallow features of the
third-to-last layer of the backbone, which is used to generate a
shallow prediction result with a scale of 52 x 52 x 36.

The number of channels of the detection results is 36,
which can be regarded as 3 x (4 + 1+ 7). It represents the
results of seabed garbage detection and will be discussed in
Section II-A3b.
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Fig. . ResNet50-YOLOV3 structure.

2) Feature Extractor: The feature extractor is the back-
bone. ResNet50 was adopted as the backbone of the network.
ResNet50 consists of a series of residual blocks (the residual
block is the ResBlock in the model in Fig. 1). Residual block
mainly introduces a shortcut connection, so that the information
of the previous residual block can flow into the next residual
block without hindrance, which improves the flow of informa-
tion. And it also avoids the vanishing gradient problem and
the degradation problem caused by the deep network [27]. The
residual block allows the strong feature extraction capabilities
of the deep network to be reflected, which enables ResNet50 to
extract more advanced features from deep-sea debris with com-
plex features, thereby facilitating debris detection. From another
perspective, the semantic information of the shallow features is
strong, and the detailed information of the object is retained well.
The shallow information is also directly transmitted backward
through the shortcut connection of the residual block so that
the detailed information of the object is retained, which is also
beneficial for subsequent detection.

We avoid choosing a too deep residual network; even if the
too deep residual network structure is stronger than ResNet50,
it will bring too low detection speed to the detection network.

.

26%26%36
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26%26 image grid

input x1
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None/1x1 Conv2D
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In addition, another motivation of this article is to explore the
impact of different classical classification networks as backbone
on the detection results. As a result, Darknet53—the original
backbone of YOLOV3—has not been used for reference. Si-
multaneously, it allows the deep-sea debris detection algorithm
to be migrated to various classic networks as much as possible
to achieve easy deployment, instead of running on a specially
designed backbone network.

3) Feature Detector:

a) Feature pyramid network (FPN): The YOLOV3
method as the feature detector of this network is the core
component. YOLOV3 is a multiscale detector since it uses the
FPN [28] structure, as shown in Fig. 2. The FPN can combine
low-resolution semantically strong features with high resolution,
semantically weak features via a top-down pathway, and lateral
connections and subsequently generate fusion features of differ-
ent scales. These different dimensional features with enhanced
high-level features and rich detailed information can have better
feature expression, which is of great benefit to object detection.
Based on this structure, YOLOV3 produced three scales of
fusion features: 13 x 13, 26 x 26, 52 x 52 and independently
detected on the three scales of fusion feature maps using the
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Fig. 2. FPN structure.
TABLE I
ALLOCATION RULE OF THE DEFAULT ANCHORS
Feature map 13;A13 26iA26  52;A52
Receptive field big medium small
116 x 90 30 x 60 10 x 13
Assigned anchors 156 x 198 62 x 45 16 x 30
373 x 326 59 x 119 33 x 23

Because the 13x13 size feature has a larger receptive field, it is
more suitable to be used to detect garbage objects with larger sizes,
so larger anchors are assigned to them. The 52x52 feature has the
smallest receptive field, and the retained image detail information
is the most complete, so smallest anchors are assigned to detect
small-scale objects

prior boxes (also called anchors) mechanism. YOLOV3 adopts
nine types of anchors and assigned three types of anchors to
each predicted feature map, as described in Table I. YOLOV3
can achieve accurate detection of small- and large-scale debris
objects with this multiscale detection method.

b) Detection idea: Specifically, the detection idea of
YOLOV3is to divide the input image into three grids of different
sizes: 13 x 13,26 x 26, and 52 x 52, as described in Fig. 1. If
the center position of the debris falls into a certain grid cell, this
cell is responsible for detecting the object. The task assigned to
the red cell is to predict the plastic in Fig. 1. Each cell predicts
three bounding boxes by means of the assigned three anchors,
and each bounding box has (5 + C) attributes. As depicted
in Fig. 3, taking the 13 x 13 grid as an example, 5 refers to
the predicted coordinates ¢, t,, t,,, t;, of the bounding box and
the confidence pg that the bounding box contains objects. C' is
equal to the number of categories (C' = 7 in this article), which
refers to the possibility p;—p7 that the objects contained in this
bounding box belong to each category. pp—p7 are all activated
by the sigmoid function.

These attributes are integrated in the last three scale prediction
feature maps: 13 x 13 x 36, 26 x 26 x 36, and 52 x 52 x 36,
which are generated by encoding with 3 x 3 and 1 x 1 convo-
lution kernels.

Directly predicting the coordinates of the bounding box will
cause inaccuracy of the coordinates [25], [29]. YOLOV3 does
not directly predict the exact coordinates of the bounding box,
but predicts the offset ¢,, t, related to the upper left corner of
the grid cell responsible for detecting the target, and the width
t,, and height ¢, of the bounding box relative to the anchors.
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The final outputs of the predicted bounding box b, by, by,
and bj, need to be refined as follows:

by =0 (ta) + ca (D
by = o (ty) + ¢y 2)
by = puwe'™ (3)
b = pre'™ (4)

where ¢, and c, represent the coordinate position of the upper
left corner of the grid where ¢, and ¢, are located, and p,,
and py, represent the width and the height of the anchor box
corresponding to the predicted bounding box, respectively. o is
the sigmoid function, which scales ¢, and ,, to between O and 1,
thereby fixing b, and b, in the cell to avoid unstable prediction
results.

Therefore, the final predicted bounding box we get is based
on the anchors, but it is not necessarily equal to the anchors.

B. Loss Metric

The intersection over union (IOU) is often used in the field of
object detection to measure the similarity of two boxes, which
can be described as

oy = Area (Bp N Bge) )
area (B, U By)
where B, and B, represent the predicted bounding box and the
ground-truth bounding box, respectively; the numerator repre-
sents the intersection area of the two boxes, and the denominator
represents the union area of these boxes. The larger the IOU
means the closer the two boxes are.

Since this network uses YOLOV3 as the detection method,
the training strategy developed by YOLOV3 is adopted.

1) Positive example: Calculate the IOU between the ground-
truth box and nine anchors corresponding to the cells
where the center of the object is located. The anchor with
the largest IOU is a positive example. Positive examples
generate confidence loss, coordinate loss, and class loss.

2) Negative example: Anchors whose IOU with all ground-
truth boxes is less than the threshold (0.5) are negative
examples except positive examples. Negative cases only
have confidence loss.

3) Ignored example: Anchors whose IOU with any ground-
truth boxes is greater than the threshold (0.5) are ignored
examples except positive examples. Ignored examples
does not produce any loss.

Finally, the loss function of the network can be abstractly

described as

all anchors

>

i=0

Loss =

(Coordloss + Confloss + Classloss) (6)

where C'oord;,ss denotes the coordinate loss. The confidence
loss is presented by Con fj,ss and Class,ss is calculated for
classifying loss. all anchors means the number of all anchors
generated.
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III. EXPERIMENTS
A. Dataset Description

The deep-sea debris database [23] provided by the Japan
Agency for Marine-Earth Science and Technology (JAMSTEC)
contains real deep-sea debris images and videos taken by
submersibles “SHINKAI6500,” “HYPER-DOLPHIN,” etc. As
shown in Fig. 4, the deep-sea debris in this database is widely
distributed in the global ocean and is concentrated in the Western
Pacific region. Some debris is located in the ocean depth of up
to 10900 m. These videos and images in this database have not
undergone secondary processing, fully showing the garbage in
the real deep-sea environment. At the same time, the deep-sea
garbage captured by the videos or images in this database has
different forms due to the complexity of the seabed environment
and light exposure. The above points mean that this database has
the characteristics of authenticity and diversity.

The deep-sea debris database with few deep-sea garbage
images but more deep-sea garbage videos is not suitable for
direct image detection. For this reason, the deep-sea garbage
images and videos downloaded from this online database need to
be rearranged. We extract appropriate frames from these videos
to combine with the original deep-sea garbage images to form a
new deep-sea garbage image dataset. Then, the labellmg labeling
tool [30] is used to label the newly formed image dataset to
finally construct a deep-sea debris detection dataset called 3-D
dataset.

The 3-D dataset has about 10000 images with dimensions
of 480 x 320 and contains seven types of debris images: cloth,
fishing net and rope, glass, rubber, plastic, natural debris, and
metal. Different from the previous marine garbage datasets, the
3-D dataset that inherits the characteristics of the database is
derived from the real deep-sea environment and has multiple

On the 13 x 13 feature map, the object is detected. The red cell is responsible for predicting the plastic debris. There are seven types of deep-sea debris.

TABLE II
NUMBER OF OBJECTS IN THREE SCALES OF SMALL (AREA < 632), MEDIUM
(632 < AREA< 200?), AND LARGE (AREA> 2002) IN THE 3-D DATASET

Object scales small medium large

Samples 3418 6764 4820

types of debris, which allows the detection algorithms trained
on this dataset to be practically applied. In view of the discrete
distribution characteristics of garbage individuals in the deep
sea and the tendency of the database, it is more common that the
image in the 3-D dataset contains a single garbage individual.
Part of data of the dataset is shown in Fig. 5. It can be observed
that this dataset has serious intraclass variability and interclass
similarity [4]. The category distribution of objects in the dataset
is depicted in Fig. 6. 3768 objects belong to the plastic category,
which is the highest, followed by the cloth class. The least
number is rubber and glass, 1285 and 1161, respectively. The
distribution of debris scales in this dataset is described in Table II.
The numbers of small-scale, medium-scale, and large-scale de-
bris objects are 3418, 6764, and 4820, respectively.

A deep-sea garbage attribute database is also constructed
based on the data provided by the database, as illustrated in
Fig. 7, which divides the data into seven categories. Each cate-
gory has the identification of the image or video containing the
garbage belonging to the category and also includes the latitude
and longitude of the garbage, the depth of the ocean, the shooting
time, etc. It is convenient to follow up another research.

B. Comparative Methods

Faster R-CNN with the fastest speed and best accuracy in the
two-stage detection networks is used as a comparison method.
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Fig. 4.

Faster R-CNN abandons the previous manual selection of can-
didate proposals by R-CNN and Fast R-CNN, while it adopts
the region proposal network in the first stage, which uses nine
anchors at each point on the last feature map of the backbone
to automatically generate candidate proposals, and ultimately
regresses and classifies these proposals in the second stage. In
addition, SSD is also used as a comparison method. It uses
a pyramidal feature hierarchy [28] to generate six different
features from shallow to deep, and the six feature maps use
four, six, six, six, four, and four anchors successively to directly
predict the results. SSD as a one-stage detection network has
surpassed the detection accuracy of the two-stage detection
networks for the first time, and the detection speed far exceeds
the two-stage nets. Finally, in order to explore the influence of
different backbone structures on detection speed and accuracy,
VGG16 [31], MobileNetV2 [32], and ResNet50 are chosen as
the backbone network of each detector, as described in Table I11.
VGG16 is a basic CNN composed of a convolutional layer and
a pooling layer, with a total of 16 layers. It is a network with
a simple structure and strong applicability, which is often used
in various experiments. MobileNetV2 is a lightweight network
that uses a deep separation convolution structure and is famous
for its fast speed and better accuracy. The parameters of each

180 210 240 270 300 330 360

Global distribution map and concentrated distribution area map of the deep-sea debris database.

TABLE III
EIGHT COMPARATIVE METHODS AND RESNET50-YOLOV3

Models Parameters
VGG16-Faster R-CNN 136811934
MobileNetV2-Faster R-CNN 3040606
ResNet50-Faster R-CNN 28336798
VGG16-SSD 24547880
MobileNetV2-SSD 6380936
ResNet50-SSD 28807272
VGG16-YOLOV3 35440556
MobileNetV2-YOLOV3 23241900
ResNet50-YOLOV3 45263852

model are also depicted in Table III for reference for platform
transplanting.

C. Experimental Results

1) Experiment Settings: Models are built on Keras and run
on the computer, which has a GeForce GTX 1080Ti GPU with
a capacity of 11 G. 85% of the 3-D dataset is used for training,
and 15% is used for testing. Data augmentation technology is
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Fig. 5. Sample examples of the 3-D dataset.
The number of objects in each category of 3D dataset
Plastic 3768
Cloth 2518
Natural debris 2268
Fishing net &Rope 2003
Metal 1999
Rubber 1285
Glass 1161
0 500 1000 1500 2000 2500 3000 3500 4000
Fig. 6.  Number of each type of garbage in this dataset. It contains 15 002

objects in about 10 000 pictures.

taken to avoid overfitting. Adam was selected as the optimizer
for the models. For Faster R-CNN and SSD, the input image size
is set to 600 and 512, respectively. The large input resolution is
beneficial to the detection result [16], [29]. The scales and aspect
ratios of the anchor boxes adopt the default settings of each
detection network, which is feasible because the shape and size
of the deep-sea debris in our 3-D dataset are basically the same
as the shape and size of the objects in the COCO dataset and the
PASCAL VOC dataset that made these default anchors. We have
done experiments to formulate anchors through the k-means
clustering method [24], [29], but the effect is not good. It can
be said that these default anchors have a very good multiscale
nature. Nonmaximum suppression (NMS) is adopted, which can
eliminate low-confidence predicted boxes whose IOU values
with other predicted boxes are higher than the threshold. The
threshold is usually set to 0.5 to avoid overculling boxes and
excessive redundancy.

In the training process, transfer learning is adopted, and all
training is divided into two steps. In the first step, the pretraining
weights of the backbone on ImageNet are loaded and are frozen
to train the deeper layer of the detection network. This can speed
up the convergence speed of the models because the shallow
features are universal. In the second step, all layers of the model
are trained to fine-tune detection networks, which will produce
our final training results. When enduring the past three epochs
and the performance of the model does not improve, the action
that the learning rate decays by a factor of 0.3 will be triggered.
Training will be terminated early when there is no improvement
in model performance after ten iterations. The initial learning
rate of le-4 and the batch size of 10 are used to fine-tune the
ResNet50-YOLOV3 model.

2) Experimental Results and Discussion: MAP is the aver-
age value of AP of all classes and usually used to measure the
detection quality of different models. AP is the average precision
of all recall values between 0 and 1, describing the area under the
precision—-recall curve. The definition of precision p and recall
rate r is

TP o
P=TP 1 FP

TP
"TTP ¥ FN ®)

where TP means the number of predicted bounding boxes with
IOU greater than the threshold x, FN represents the number
of predicted bounding boxes with IOU less than or equal to
threshold « (or the number of redundant predicted bounding
boxes matching the same ground-truth bounding box), and FN is
the number of ground-truth bounding boxes that are not detected.
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~ Data ID: 6K0130C2SV3077 01474500 01481700
Submersible &Dive No: SHINKAI 6500 DIVE 0130
Photographed Area: Japan Trench
Photographed Date/Time: 1992/07/19 (LST) 14:24:30 - 14:25:02
Depth: 6277.0m
Latitude: 39.33°N
Longitude: 144.605°E

~ URL: https://www.godac.jamstec.go.jp/jedi/
static_player/e/6K0130C2SV30_01475500

Deep-sea debris

attribute database

Fishing net
&Rope

Fig. 7. Deep-sea debris attribute database.
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Fig. 8.  Confusion matrices of ResNet50-SSD/YOLOV3/Faster R-CNN. Since predicted boxes with low confidence are often not helpful to the detection results,

the boxes with a confidence lower than 0.3 were eliminated first, and then, the final predicted boxes are output by NMS processing (the same is true for the results
in Figs. 9 and 10). The matching principle of the predicted bounding box in the confusion matrix: if the IOU of the ground-truth box and the predicted box is
greater than or equal to 0.5, a match is found, and the predicted box is assigned its true label; if there are repeated matches, the best match is always selected (the
larger IOU). Objects belonging to ground truth but not detected are included in the None column of the matrix; objects detected but not belonging to the confusion
matrix are included in the None row of the matrix. (a) ResNet50-Faster R-CNN. (b) ResNet50-SSD. (c) ResNet50-YOLOV3.

Therefore, AP can be described as

TABLE IV
VARIOUS EVALUATION INDICATORS FOR DIFFERENT MODELS

n—1
AP — Z (7,,7;+1 _ ri)pinterp (Ti+1) (9) Models MAP0.5 MAP0.5:0.95 MAP().75 FPS
i=0 MobileNetV2-Faster R-CNN 65.3 36.2 35.7 16
. ~ VGG16-Faster R-CNN 71.2 419 44.1 20
Pinterp (Tit1) = D (") (10 ResNet50-Faster R-CNN 719 423 46 12
MobileNetV2-SSD 60.1 37.2 419 21
h JO .. .. VGG16-SSD 71.2 43.7 49.1 23
where p(7) is precision when 1.“ecall rate is 7. ResNetS0-SSD 787 477 517 17
Table IV shows the detection results of the models under MobileNetV2-YOLOV3 59 130 34 37
different indicators. A hlgh MAP value means a gOOd detection VGG16- YOLOV3 82.4 48.1 51.7 35
effect. Obviously, MobileNetV2 as a backbone cannot achieve a ResNet50- YOLOV3 83.4 48.4 53.8 30

good detection effect of deep-sea debris since it is a lightweight
network that abandons accuracy and pursues speed [32]. Al-
though the detection models using it as a backbone are very fast,
it is meaningless. In addition, different from the outstanding
performance of ResNet50/VGG16-YOLOV3, detection ability
of MobileNetV2-YOLOV3 is not good, which is worse than
MobileNetV2-SSD and MobileNetV2-Faster R-CNN that also
use MobileNetV2 as the backbone. In effect, MobileNetV2-
Faster R-CNN and MobileNetV2-SSD did not allow the shallow

MAP( 5 (PASCAL VOC metric) is the MAP when the IOU threshold x is 0.5,
MAP) 5.0.95 (COCO metric) is the mean value of the MAPs when « is 0.5, 0.55,
0.60, 0.90, and 0.95. MAP( .75 (strict metric) represents the MAP when « is 0.75.
FPS clarifies the number of pictures that the model can detect per second.

layers of the MobileNetV2 backbone to participate in predic-
tion, which indicates that it is not feasible for MobileNetV2-
YOLOV3 to allow the shallow features of MobileNetV2 to
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Predicted by ResNet50-Faster R-CNN

Predicted by ResNet50-Faster R-CNN

Predicted by ResNet50-SSD Predicted by ResNet50-Faster

Predicted by ResNet50-SSD

Predicted by ResNet50-Faster R-CNN

Showecases of misdetection of cloth, plastic, and metal for ResNet50-SSD/YOLOV3/Faster R-CNN. In order to facilitate the description of the misdetection,

only the detection case of a single object is shown here. The leftmost column displays the ground-truth box that belongs to the category which other objects are
misclassified as. (a) Cloth that is detected to be plastic. (b) Plastic that is detected to be metal. (c) Metal that is detected to be plastic.

participate in prediction. This is because compared with VGG16
and ResNet50, the MobileNetV?2 network tends to compress the
feature channels very low to pursue lightweight, which weakens
to acertain extent the characterization ability of shallow features.
These weak features or useless information may cause a certain
degree of interference to the high-level features after being fused
with the high-level features.

ResNet50-YOLOV3 achieved the highest garbage detection
results, with MAPg 5, MAPy 5.0.95, and MAP 75 as high as
83.4, 48.4, and 53.8, respectively. The high MAP 5.9.95 and
MAP 75 indicate that ResNet50-YOLOV3 has a good ability
to predict boundary coordinates, which means that it can more
accurately frame deep-sea debris. The main reason is that with
the support of ResNet50’s strong feature extraction capabilities,
YOLOV3 uses three different sizes of anchors on the three
different scales of fusion feature maps to detect, which can
make the deep-sea garbage of different sizes accurately de-
tectable. Furthermore, the predicted box is also limited to the grid
cell, which also avoids excessive offset of the predicted boxes,
making the boundary prediction of the boxes more reasonable.
SSD also uses different anchors on multiple feature maps of
different sizes to detect deep-sea garbage, so the prediction of
ResNet50-SSD is also considerable. However, even if SSD uses
multiscale anchors on multiple feature maps, these feature maps
have not undergone information fusion, resulting in a certain
loss of shallow detail information [28], which has caused certain

obstacles to the accurate prediction of the boxes. Moreover, the
SSD does not impose constraints on the prediction of coordi-
nates, and the change of the predicted box is too large, which
also leads to the inaccurate prediction of the box boundary by
the SSD. Faster R-CNN only uses anchors in final features to
detect deep-sea garbage. It does not integrate low-level fea-
tures, which makes some details of the seabed garbage lose a
lot, and the scale of anchors is simpler than that of SSD and
YOLOV3, which is more unfavorable for the detection of deep-
sea garbage. It should also be noted that these results achieved
by SSD and Faster R-CNN are performed at a higher input
image resolution (SSD: 512 x 512; Faster R-CNN: 600 x 600).
Actually, the high resolution greatly improves the detection
accuracy [16], [29]. In contrast, YOLOV3 with the lowest
resolution input image (416 x 416) only uses three feature
maps and nine anchors to achieve excellent submarine garbage
detection results.

One-stage networks such as SSD and YOLOV3 have an inher-
ent advantage in detection speed because they abandon the can-
didate region extraction stage of the two-stage networks. The de-
tection speed of MobileNetV2/VGG16/ResNet50-YOLOV3 for
submarine garbage crushes other networks. ResNet50-YOLOV3
achieves the best detection effect of deep-sea debris while also
achieving a detection speed of 30 FPS among these models. It
can be said that ResNet50-YOLOV3 achieves a balance between
detection accuracy and speed.
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Fig. 10.
R-CNN. (c) ResNet50-SSD. and (d) ResNet50-YOLOV3.

For the sake of viewing the detection of each type of deep-sea
debris for each model, we show the AP value of each type of
model.

It can be seen from the Table V that ResNet50-YOLOV3
almost achieved the highest AP value of all classes and achieved
satisfactory detection results.

The rubber category is the easiest to detect. ResNet50-
YOLOV3 has AP values of 97.6 for this category. Although

Difference between the three models in the detection of deep-sea debris. The leftmost column is the real label. (a) Ground truth. (b) ResNet50-Faster

the number of rubber categories in the 3-D dataset is the least,
however, due to its single shape and scale, it is easy for models
to accurately detect it.

VGG16-YOLOV3 has the highest AP value for glass, reach-
ing 93.6. VGGI6 is a relatively simple network model that
employs 3 x 3 convolution for feature extraction. It has more
reservations about target details. This is conducive to the de-
tection of small objects such as glass. Moreover, the FPN of
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TABLE V
AP PER CLASS FOR THESE MODELS

Model Cloth Fishing net Glass Metal Natur.al Plastic Rubber
&Rope debris
MobileNetV2-Faster R-CNN  36.5 70.9 824 628 61.2 54.2 89
VGG16-Faster R-CNN 44.1 73.5 85.7 68.7 65 67.7 93.3
ResNet50-Faster R-CNN 45.5 76.3 87.3 689 70.7 62 92.5
MobileNetV2-SSD 31.0 58.4 823 509 58.4 53.7 86.2
VGG16-SSD 46.8 72.6 88.6 649 67.9 64.6 92.6
ResNet50-SSD 52.3 76.9 928 834 74.5 74.4 96.6
MobileNetV2-YOLOV3 314 64.4 80 46.3 60.1 46.3 82.1
VGG16-YOLOV3 61.1 83.7 93.6 84.6 79.7 77.9 96.1
ResNet50-YOLOV3 61.7 86 91.6 85.2 82.5 79.4 97.6
The AP here refers to APg 5.
The bold entities means that this method has the best result of the comparison methods.
TABLE VI

YOLOV3 makes the detailed information of the glass class
merge and fuse with the advanced features of the class, which
makes VGG16-YOLOV3 an outstanding detection effect on
small-scale objects such as glass [28]. Like the rubber class, the
shape, appearance, scale, and other characteristics of the glass
class in the 3-D dataset have great uniformity, so all models are
not inferior to the detection effect of this class.

Each model has the lowest AP value for cloth and plastic,
which shows that there is a little difficulty in detecting cloth and
plastic debris, even if the number of cloth and plastic debris in the
3-D dataset is the largest. The main reason is that deep-sea debris
has huge intraclass variability and interclass similarity [4], which
is discussed in conjunction with following confusion matrices.

As shown in Fig. 8, we select a network with the best
performance from each type of detector (Faster R-CNN, SSD,
and YOLOV3): ResNet50-Faster R-CNN, ResNet50-SSD, and
ResNet50-YOLOV3, and show their deep-sea debris detection
confusion matrices. The cases where the number of false detec-
tions is greater than 3 (not including None) are circled with
boxes. Obviously, the false detection of ResNet50-Faster R-
CNN is the most serious. The green boxes circled the common
points of the three models’ error detection. Fig. 9 is used to
illustrate this case. Apparently, the shapes, textures, and other
characteristics between these categories have strong similarity,
and even, we cannot seem to distinguish the differences between
them easily. The model cannot capture a characteristic bound-
ary between them since the feature difference between these
categories is not obvious. For other categories (especially glass
and rubber), the features between categories are highly distin-
guishable, and the features within the category are specialized,
so models can find the optimal boundary hyperplane in their
feature space and the misdetection situation will be alleviated a
lot.

Although the number of samples recalled by ResNet50-Faster
R-CNN is large, as shown in the confusion matrix in Fig. 8(a),
the price is that it generates too many false predicted boxes. It
produced 658 predicted boxes labeled cloth, 690 labeled fishing
net and rope, 383 labeled glass, 727 labeled metal, 959 labeled
natural debris, 1164 labeled plastic, and 362 labeled rubber class,
which are much more than the SSD and the YOLOV3.

F1 AND KAPPA CALCULATED ACCORDING TO THE THREE CONFUSION
MATRICES OF FIG. 8

ResNet50-  ResNet50- ResNet50-
Models
Faster R-CNN SSD YOLOV3
Cloth 39.8 57.7 65.1
Fishing net &Rope 49.7 72 84.2
Glass 60 84.7 91
F1 Metal 47.4 76.4 78.4
Natural debris 44.7 71.7 81.8
Plastic 49.8 69.8 74.7
Rubber 67.5 90.5 94.7
Kappa 0.907 0.966 0.966

The bold entities means that this method has the best result of the comparison
methods.

This problem is depicted in Fig. 10. It can be seen from the
figure that ResNet50-Faster R-CNN generates a lot of predicted
boxes to frame all seabed debris objects as much as possible,
which to a certain extent gives it a higher recall rate. However,
more boxes are redundant boxes and error-detected boxes, which
leads to a serious low precision of ResNet50-Faster R-CNN.
ResNet50-YOLOV3 uses a more conservative approach, which
avoids the generation of redundant boxes while maintaining
a high detection level. The F1 value of the three detection
models and the kappa value of the confusion matrix of Fig. 8
are described in Table VI. It is obvious that the comprehensive
detection ability of ResNet50-YOLOV3 for deep-sea debris is
still optimal.

IV. CONCLUSION

Deep-sea debris detection using deep learning methods has
been studied in this article. Given the existing problems of deep-
sea debris detection, the 3-D dataset containing seven types of
deep-sea debris and the deep-sea debris attribute database is
established. The eight detection models are compared with our
proposed method, and the following conclusions can be drawn
through experimental analysis.
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In

It is necessary to create a 3-D dataset for deep-sea debris
detection, which is conducive to the in-depth development
of subsequent deep-sea debris detection. At the same time,
deep-sea debris is affected by the special deep-sea envi-
ronment, and the garbage has strong intraclass diversity
and interclass similarity.

Compared with the other eight methods, ResNet50-
YOLOV3 not only has good deep-sea garbage detection
capabilities, but also maintains a faster detection speed.
In addition, different backbones also have a significant
impact on the seabed garbage detection effect of the model.
MobileNetV2 is not suitable as the detection backbone,
and ResNet50 is more suitable as the backbone than
VGG16.

Compared with other categories, plastic and cloth, metal
and plastic are more severely shuffled between the two.
ResNet50-YOLOV3 can obtain the best comprehensive
detection capabilities for deep-sea debris while maintain-
ing a low level of confusion.
this article, detecting various types of deep-sea debris using

deep learning is the first to be carried out. In the future, improving
the detection capabilities of deep-sea debris using deep learning
methods will be considered, and on the basis of the research

in th
will

is article, the situation of misdetection of submarine debris
be further solved. At the same time, it is also considered to

actually apply detection methods to AUVs working in the deep
sea to help detect and clean up garbage. Finally, debris detection

in vi

deos is also a future research direction.
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