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Stratifying Forest Overstory and Understory for 3-D
Segmentation Using Terrestrial Laser Scanning Data

Zengxin Yun and Guang Zheng

Abstract—Accurately and rapidly segmenting tree crowns from
a three-dimensional (3-D) perspective is of great significance to pre-
cision forest management, and better understands the carbon and
water cycles between the soil–plant–atmosphere system. However,
it remains challenging to group points into individual trees from
a 3-D perspective in the forest stand with highly overlapped tree
crowns and abundant understory. The objective of this article was
to extract the overstory and understory of individual trees from
terrestrial laser scanning (TLS) data considering the vertical forest
structure and overlapped tree crowns processing strategy suitable
for various crown shapes and sizes. Our results showed that 1) the
proposed algorithm had better performance in the low overlapping
rate (OR) coniferous (F1-score: 0.96) and broadleaf (F1-score: 0.91)
forest stands, while the F1-score decreased down to 0.89 and 0.65 in
the high OR for coniferous and broadleaf forest stand, respectively;
2) a multistation TLS data produced better (F1-scores: 0.85–1)
segmentation results than those obtained from single-station TLS
data (F1-scores: 0.67–0.83) in coniferous forest stands; and 3)
the vertical forest structure profiles affected the final forest 3-D
segmentation accuracy. Our article provides a solid foundation for
precision forestry and natural resources management.

Index Terms—Forest segmentation, forest structure, terrestrial
laser scanning (TLS).

I. INTRODUCTION

FOREST ecosystem, accounting for 30% of the global non-
ice covered land, is one of the most important terrestrial

ecosystems on the earth and plays a crucial role in the carbon
and water cycles of soil–plant–atmosphere biospheres [1], [2].
Forest inventory is the basis and prerequisite for monitoring
forest resource dynamic changes accurately and efficiently [3],
[4]. Separating individual tree crowns has become a prerequisite
for estimating forest structural parameters, including tree height
[5], diameter at breast height (DBH) [6], crown volume [7], and
biomass estimation [8]. These parameters are essential inputs
to some process-based forest carbon and water cycle simulation
models [9], [10].
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Overall, traditional methods to delineate tree crowns included
field-based methods and remotely sensed data-based methods.
The most common field-based method is to record the number
and locations of trees manually in the forest. However, the time-
consuming and labor-intensive nature and personal subjective
factors of the field-based inventory measurements limit their
application in the broader spatial scales with high accuracy
[11]–[13]. There are two different kinds of methods based on
the types of remotely sensed data: 1) Raster imagery-based
methods: some studies have delineated tree crowns based on
the two dimensional (2-D) images by applying existing digital
image processing techniques [14], [15], for example, those
methods based on edge detection [16], region growing [17], and
watershed segmentation [18]. However, they fail to capture the
vertical profile of the 3-D forest structure, which is essential to
characterize forest structural parameters [10], [19]. Moreover,
the image interpolation processing procedures introduce errors
to the forest structural parameters estimation [20]. 2) Point data-
based method: the advance of the light detection and ranging
(lidar) technology allows mapping forest structure from a 3-D
perspective in a nondestructive manner [21], [22]. Aerial laser
scanning (ALS), terrestrial laser scanning (TLS), and mobile
laser scanning (MLS) are the most commonly used platforms in
the domain of small-footprint lidar systems [23], [24]. TLS and
MLS capture detailed 3-D structures of understory and lower
canopy components with high spatial resolution at millimeter
level, and while ALS records more upper components of forest
with relatively low-density point cloud data at point spacing of
decimeter level [25]–[27]. Some crown delineation algorithms
had been developed for ALS data successfully [21], [28]–[30].
However, the inherent differences from ALS’s system and data
characteristics require specific algorithms developed for TLS
and MLS data [8], [23]. Tree crowns segmentation based on
TLS and MLS data can be used to model tree stems, DBH esti-
mation, and characterize overstory and understory distribution
with high accuracy [31]–[34]. Some researchers have attempted
to segment tree crowns based on the voxel data structure. For
example, Xi et al. [35] adapted an anchor-free deep learning
model, CenterNet, to detect individual tree crowns from TLS
data. But the smaller or larger trees with overlapped areas
could not be detected effectively due to the limited samples. In
addition, they ignored the effect of understory on segmentation.
Luo et al. [36] proposed an approach based on the deep pointwise
direction to extract individual trees from MLS data. However,
there were still some separation errors at the boundaries of the
instance-level trees especially the overlapped areas. However,
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TLS can be placed in the high-density forest with overlapped
regions where vehicles cannot reach, but MLS was mainly used
to obtain roadside trees information [37]. Others grouped points
into individual trees with identified tree stem locations directly
based on the point information without converting points into
voxel structure. For example, Tao et al. [8] used a density-based
spatial clustering of applications with noise (DBSCAN) algo-
rithm to identify trunks, and then segmented the crowns accord-
ing to the distance of points to the trunk based on the Dijkstra’s
shortest path algorithm [38]. Cabo et al. [39] approximated the
individual tree crown boundaries with the Voronoi diagram [40],
but they failed to define the real boundaries of tree crowns
accurately. However, it remains challenging to segment tree
crowns using TLS data due to the complexity of vertical forest
structure (overstory–understory) [41]–[43], species differences
[44]–[46], and understory abundance [42]. Few studies have
considered the existence of understory when extracting trees
based on TLS data. The occlusion of the understory will affect
tree stem identification, crown segmentation, tree height, and
crown width estimation [8], [42], [43], [47], [48]. The heavily
overlapped tree crowns with varied sizes further challenge the
tree crowns segmentation. Hyyppa et al. [49] and Popescu
et al. [50] noticed that ignoring the overlapping problem would
underestimate tree crown size and volume. Tao [51] realized that
accurate segmentation of overlapped tree crowns affected forest
aboveground biomass and crown volume estimation accuracy. It
is still an unsolved question about better segmenting tree crowns,
especially in the overlapped areas from a 3-D perspective.
Therefore, in this article, we proposed a method to extract the
individual overstory and understory considering the effect of
understory and overlapped tree crowns. The overall goal of this
article is to segment forest from TLS data, and the specific goals
are to: 1) develop an algorithm to segment forest trees using TLS
data; and 2) investigate the effects of overlapping rate (OR), the
number of TLS scanning stations, forest types, vertical forest
structure, and point density on the accuracy of 3-D tree crowns
segmentation. Flowchart of tree crowns segmentation was at
Fig. 1. The whole process of trees segmentation can be divided
into two modules. The first is tree trunk identification (searching
sphere technique) after the forest stratification processing (over-
story and understory). The second is to refine the segmentation
result using multiple planes segmentation technique based on
the result of coarse segmentation (spacing-based clustering).

II. MATERIALS

A. Study Sites

There are two different sites with homogeneous and hetero-
geneous forest in southern Finland and the Pacific Northwest.

The first study site was located in the Evo natural homoge-
neous forest (61.19°N, 25.11°E) with dominant tree species of
Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies
L. Karst), silver birch (Betula pendula Roth), and downy birch
(Betula pubescens Ehrh.) [Fig. 2(a)]. The average DBH in the
Evo forest varied from 10 to 35 cm with understory. We selected
six different forest plots with 32 m× 32 m with varying numbers

Fig. 1. Flowchart of 3-D tree crown segmentation.

of trees. The average overstory and understory height at six plots
were 9.52–22.77 m and 2.11–6.63 m, respectively (Table I).

The second study site was the Washington Park Arboretum
(WPA) (122°17′46′′ W, 47°38′08′′ N), a well-managed urban
heterogeneous forest [Fig. 2(b)] located south of the University
of Washington campus in Seattle, WA, USA There are more
than 4600 species with a maximum tree height of 64.7 m. The
dominant tree species at the WPA were Douglas fir (Pseudotsuga
menziesii), Western hemlock (Tsuga heterophylla), Western
red cedar (Thuja plicata), Big-leaf maple (Acer macrophyl-
lum), Monkey puzzle (Araucaria araucana), Southern magno-
lia (Magnolia grandiflora), and New Mexican locust (Robinia
neomexicana). We set up three circular plots with radii of 30 m
in the WPA site. The average overstory and understory height at
three plots were 16.28–30.93 m and 5.96–6.75 m, respectively
(Table I).

B. Datasets

1) Terrestrial Laser Scanning Data: The Evo data is the open
data from the EuroSDR TLS international Benchmarking project
[52]. The TLS data were collected in April and May 2014, using
the Leica HDS6100 with a laser wavelength of 650–690 nm
and a field of view of 360° (horizontal) × 310° (vertical). The
distance measurement accuracy was ±2 mm at 25 m away from
the scanner. The angle increment was 0.036° in both horizontal
and vertical directions, which resulted in a point spacing of
15.7 mm at 25 m away from TLS (Table II). TLS collected
data at the center point first, and four additional corner points
in each squared forest plot with a 5-min long TLS scanning in
each location. Six artificial spheres with a radius of 198 mm were
used as reference targets for data registration in each plot. All
five scans in each plot were registered using targets and merged
as multiscan TLS data with an average registration accuracy of
2.1 mm.

In the WPA site, the TLS data were collected using the Leica
Scan Station 2 system with a laser wavelength of 532 nm. Among
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Fig. 2. Study sites used in our article. (a) Study site 1: Evo forest in Finland. (b) Study site 2: WPA forest, in Washington State, USA.

TABLE I
PLOTS INFORMATION OF EVO FOREST AND WPA FOREST

OR represents the overlapping rates of tree crowns. Evo-LC1, Evo-LC2, and Evo-LC3 are the low-density coniferous plots in the Evo forest. Evo-HC4, Evo-HC5, and Evo-HC6
are the high-density coniferous plots in the Evo forest. WPA-LB1 is the low-density broadleaf plot at WPA. WPA-LM2 is the low-density mixed tree species plot at WPA.
WPA-HB3 is the high-density broadleaf plot at WPA.

each forest plot, the TLS scanner was set up at the center position
with a whole field of view (i.e., horizontal: 0°–360° and a vertical
scan angle of −45°–90°). The minimum angle resolution was
0.3 mm (3e-06 radians) with a scanning speed of 50 000 pts/s.
The laser sampling spacing was set at 0.1 m at 30 m (Table II).

2) Validation Data: To validate the computer-based tree
crowns segmentation, we visually identified the tree stem lo-
cations, heights, and total tree number for both overstory and
understory based on TLS data in two study sites (Table I). To
ensure accuracy, we used order from plot edge to center for

measuring the trees in the 3-D software (CloudCompare). For
example, we manually measured the trees located at the plot edge
without occlusion, and carefully cut out these trees measured.
We repeated this process in the rest point cloud to measure
all the trees in the center of the plot. For trunk position, three
people recorded the coordinates of overstory trunks at 1.3 m,
and the coordinates of understory trunks at 0.5 m from three
different directions. Three people measured the distances from
treetop to the ground points identified manually to evaluate
the obtained tree height. The mean values of trunk positions
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TABLE II
PARAMETERS OF TERRESTRIAL LASER SCANNER

and distances were viewed as the actual values. Three people
manually measured the tree crowns’ width in the North–South
and West–East directions. We took the average crown width as
the final result, and calculated the OR between the nearest trees.
Section III-C described the detailed calculation method of the
OR. The average OR at the plot was set as the OR of a forest
plot. We divided all the forest plots with varying overlapped tree
crowns into two groups: low-density (low OR, OR< 27.1%) and
high-density (high OR, OR > 27.1%, which was half of the OR
maximum value at all the plots) (Table I).

III. METHODS

A. Tree Trunk Identification

Tree trunk identification was the first step of trees segmenta-
tion, including seed points identification and trunks tracing.

1) Seed Points Identification: To avoid the effects of forest
understory on identifying tree trunk seed points, we first strat-
ified overstory and understory layers based on the predefined
height threshold. We filtered the ground points using the cloth
simulation filter (CSF) algorithm [53], then the lowest point
method was used to extract more accurate ground points from
the CSF filtering result [54]. A digital terrain model (DTM)
with a resolution of 0.5 m was generated through interpolating
ground points using the ordinary Kriging method provided by
the ArcGIS software. We then obtained the height-normalized
points by subtracting the corresponding terrain elevation from
the DTM model and vegetation points by removing all ground
points. A sixth-order polynomial curve function was fitted to the
vertical profile of point density in each height bin with a fixed
interval to determine the stratification surface. The sixth-order
polynomial curve function used was

y = B +

6∑
i=1

Aix
i. (1)

B is the intercept of the polynomial. Ai (i = 1 …6) is the
corresponding coefficient of xi, and their values are determined
by the least square method. We obtained the initial dividing
height (H0) where the first-order derivation was zero, and the
second-order derivation was larger than zero [Fig. 3(a)] [42],
[55], [56]. If multiple values of H0 were detected, the ones would
be invalid if they were near to treetop. The stratification surface

could be produced by adding the DTM with the height threshold
H0 [Fig. 3(a)]. Then, we extracted the points from the bin with
heights ranging from H0 to H0 + 0.2 m to detect tree trunks
of the overstory by assuming the tree trunks were cylindrical
geometric objects. The cylindrical geometric object in 3-D space
was approximated as (2):

(x− xi0)
2 + (y − yi0)

2 + (z − zi0)
2 − r2

=

[
l{i (x− xi0) +mi (y − yi0) + ni (z − zi0)

]2
(
li
2 +mi

2 + ni
2
) (2)

where pi0(xi0, yi0, zi0) (i = 1, 2, …, Q) is the ith geometric

center point of the cylinder with the axis
−⇀
L i(li,mi, ni); Q is

the total number of tree trunks detected in the height bin ranging
from H0 to H0 + 0.2 m; and r is the cross-sectional radius
of the cylinder. We detected the cylindrical tree trunks within
the extracted height bin using the RANdom SAmple Consensus
(RANSAC) algorithm [57] with the total least square method.
By doing this, we obtained the unknown parameters of the
cylindrical mathematical model [Fig. 3(b)]. Then, we labeled
the points constituting a cylinder as tree trunk points and used
the point pi0(xi0, yi0, zi0) as the first seed point for each tree
trunk. The model distance threshold (MDT) is defined as the
maximum distance between a given point and geometric cylinder
model. It is critical for controlling the final extracted results in
the RANSAC algorithm.

2) Trunk Tracing: To obtain the trunk points, starting from
the first seed point pi0(xi0, yi0, zi0) as the center point, two
searching spheres with the radii of R1 and R2 (R2 > R1 and
R2 > r) were applied to each tree to identify tree trunk points
in both upward and downward directions [Fig. 3(c)]. R1 was
defined as the radius of the inner searching sphere used in the
trunk point identification. The tree trunk diameter within this
horizontal slice was a good reference for the value of R2. The
value of R2 would determine the thickness of the horizontal slice
and further the level of details of tree trunk curvature.

As for the upward direction, we computed the geometric cen-
ter point pi1(xi1, yi1, zi1) for all the points within the horizontal
slice whose heights ranging from zi0 + R1 to zi0 + R2 (a new
sphere center could replacepi0 at the next step). Then the vector−−−⇀pi0pi1 was the growing direction of the tree trunk in local 3-D
space. The pointpi1(xi1, yi1, zi1)would be the new center of the
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Fig. 3. Schematic diagram of tree segmentation. (a) H0 determined using statistics method. (b) Trunk seed point identification. (c) Trunk points identification.
(d) Schematic diagram of the crown segmentation process. (e) Changing points determination at Height = i and Height = j. (f) Segmentation plane—α determined
by calculation.

two searching spheres to identify tree trunk points consecutively.
Meanwhile, we also computed the maximum distance Di1_max

between the points within a horizontal slice and geometric
center. The iterative process would stop if the maximum distance
within a horizontal slice was larger than the reference threshold,
larger than the value of r. Usually, the upward searching process
stops at the crown base height. The same searching spheres
algorithm was also applied to the downward direction with the
starting seed point pi0(xi0, yi0, zi0). By computing the geomet-
ric center point p′

i1(xi1, yi1, zi1) for all the points within the
horizontal slice whose heights ranging from zi0–R2 to zi0–R1,
the iterative process would continue until reaching the ground
surface. Finally, we identified and extracted tree trunk points
from the ground surface to crown base height at plot level and
stored them separately.

B. Forest 3-D Crown Segmentation

After extracting all tree trunks points, we then segmented tree
crowns for both overstory and understory by following two steps:

1) Initial Segmentation: For each identified tree trunk point
set, we first sorted the rest of the points in the forest plot in
the height-increasing order. We computed the minimum 2-D
distances (dmin−1) between a to-be-classified point and the
identified tree point set (I). The point would not belong to the
tree if the dmin−1 was larger than the threshold Dt. It would be
moved to the classified point set (U). The determination of Dt
could refer to the effect of spacing threshold in research [28]. For
the point whose dmin−1 values were smaller than the threshold
Dt, we computed the 3-D minimum distance between the point
and the point sets-I (dmin−2) and U (dmin−3). The point would
belong to the point set that had a smaller distance. For example,

if the dmin−2 < dmin−3, the point would be allocated to the
point set-I. We would repeat the above process for all of the
rest to-be-classified points iteratively until they were all labeled.
Based on the identified tree trunk point sets at the forest plot
level, we could group all individual tree points to obtain the
preliminary segmentation results.

2) Overlapped Area Division: For the overlapped areas of
the preliminary segmentation results of the trees, we first con-
ducted the horizontal point cloud slicing with a height interval
of larger than neighbor point distance (NPD) [58] (for example,
0.3–0.5 m). We detected the number of point clusters for each
horizontal slice using the DBSCAN algorithm [59]. The neigh-
bor radius is a crucial parameter of the DBSCAN algorithm.
Multiple overlapped areas could be identified within a single
slice bin.

Based on the DBSCAN algorithm, we were able to identify
the changing point where the number of multiple point clusters
merged into one. Therefore, we needed to apply the DBSCAN
algorithm in two vertical directions (i.e., from bottom to treetop
and from treetop to bottom) to identify all possible changing
points of the number of point clusters in overlapped areas. Then,
we connected the two neighbor changing points to construct a
new vector, and further produced a segmentation plane combin-
ing the vector determined by the two geometric center points
of two-point clusters [Fig. 3(d)], for example, for given two
individual trees with overlapped areas. In the bottom to treetop
direction, for the horizontal slice bin at the Height = i, the
bottom of the overlapped areas [Fig. 3(e)], the two-point clusters
produced by the DBSCAN algorithm could produce a new vector−−−−−⇀
C1iC2i using their geometric centers C1i and C2i. We could
detect the boundary point (P1) by connecting the two geometric
center points of two-point clusters in this vector direction. The
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number of point clusters produced by the DBSCAN algorithm
changed from two to one at this height. By doing this, we could
detect the changing points P1 and P3 [Fig. 3(e)] by slicing tree
crowns iteratively from bottom to treetop. We could identify the
changing points P2 and P4 when going through the horizontal
slice bins from the treetop to the bottom using the DBSCAN
algorithm. A new vector

−⇀
f can be obtained based on P 1P 2

and
−−−−−⇀
C1jC2j . The segmentation plane was constructed based

on the normal vector −⇀n and a point on the segmentation plane
[Fig. 3(f)]:

−⇀
f =

−−−⇀
P 1P 2 ×−−−−−⇀

C1jC2j (3)

−⇀n =
−⇀
f ×−−−⇀

P 1P 2 (4)

A(x− x0) +B(y − y0) + C(z − z0) = 0 (5)

where (A, B, C) is the normal vector −⇀n . (x0, y0, z0) is the
coordinate of point P1. (x, y, z) is the coordinate of a point on the
plane-α (

−−−⇀
P 1P 2). Coordinate values in point cloud were taken

into (5) iteratively and compared equation result with 0. Points
satisfied equation result > 0 and equation result < 0 were on
the plane’s different sides, and points satisfied equation result =
0 were on the plane. Crown intersection parts in the forest can
be separated from each other in this way. Trees segmentation
schematic can be seen in Fig. 3.

Moreover, we could also obtain the consecutive segmenta-
tion plane-β (

−−−⇀
P 3P 2) and plane-γ (

−−−⇀
P 4P 3). Based on all three

segmentation planes, we could effectively divide the overlapped
regions between two trees. In the case of multiple overlapped tree
crowns, we would follow the procedures designed for two tree
crowns described in Sections III-B.1 and III-B.2 at a time. After
processing all possible combinations of the multiple tree crowns
and grouping the points belonging to the same tree crown, we
would achieve the final crown segmentation results for the trees.

For the understory points, a horizontal slice bin would be set
up at the height (30% of the maximum height) to detect the seed
point for each understory crown using the DBSCAN algorithm.
Each clustering obtained was considered as an understory seed
point. Once all seed points were found, we would follow the
similar segmentation procedures described in Section III-B to
allocate points of the forest understory.

3) Accuracy Assessment: To evaluate the accuracy of 3-D
forest crown segmentation, we computed the recall (r), precision
(p), and F1-score parameters as follows (6), (7), (8):

r =
TP

TP + FN
(6)

p =
TP

TP + FP
(7)

F1 = 2× r × p

r + p
(8)

where TP is the number of correctly extracted tree locations;
FN is the number of falsely extracted tree locations; FP is the
number of falsely extracted nonexisting tree locations; r repre-
sents the completeness of crown segmentation; p describes the

correctness of crown segmentation; and F1-score is the overall
accuracy considering both commission and omission.

C. Sensitivity Analysis

MDT and R2 are the key parameters affecting seed points and
trunk points identification. By applying different MDT values
ranging from 0 to 0.03 m with a step of 0.002 m, we investigated
the effects of MDT on seed point identification for forest stands
with and without understory. Moreover, we changed searching
radii ranging from 0 to 1.5 m with a step of 0.05 m to test the
effects of searching radius R2 on forest types. The individual
coniferous and broadleaf trees’ heights were 21.8 and 25.1 m,
and the crown widths were 5.3 and 20.2 m, respectively.

We changed the values of the neighbor radius from 0 to 1
m with a step of 0.03 m to explore their effects on identifying
changing points using the DBSCAN algorithm. Three different
groups (coniferous, broadleaf, and coniferous + broadleaf) with
varied ORs and different tree species were used as test data.
Then, we calculated a parameter named “changing point offset,”
defined as the offset distance between the actual changing points
identified by visual inspection and the changing points produced
from a computer-based algorithm:

Offset

=
√

(ΔD2
1 +ΔD2

2 + . . . . . .+ΔD2
i + . . . . . .+ΔD2

n) /n

(9)

where ΔDi
2 represents the 3-D Euclidean distance between the

ith visual-based changing point and computer-based changing
point, and n is the total number of the changing points.

We conducted overlapping experiments using three groups
with different tree species to investigate the effects of OR. The
sum of half the crown width of two trees was denoted by q.
Distance between two trees at different overlapping degrees was
calculated and denoted by q’, then we used q’ and q to describe
the overlapping degree of two trees:

OR = 1− q′

q
(10)

where OR is a variable that defined the overlapping degree of
two trees: 1) we conducted the overlapping experiments based
on two coniferous trees (height: 21.8 m and crown width: 5.3 m)
with the distance from 5 m (OR = 0) to 1.25 m (OR = 0.75)
with a step of 0.625 m (OR = 0.125); 2) we used two broadleaf
trees (height: 25.1 m and width: 20.2 m) using distance from
20 m (OR = 0) to 5 m (OR = 0.75) with a step of 2.5 m (OR =
0.125); and 3) a broadleaf tree (height: 25.1 m and crown width:
20.2 m) and a coniferous tree (height: 24.3 m and crown width:
11.25 m) were used with the distance from 15 m (OR = 0) to
3.75 m (OR = 0.75) and a step of 1.875 m (OR = 0.125).

To investigate the effects of point density, we thinned the point
cloud of different tree species using the method [58] to NPD =
0.01, 0.02, 0.04, 0.06, 0.08, and 0.1 m. Using the point cloud
with varying NPDs, we changed the values of neighbor radius in
DBSCAN from 0.15 to 1 m with a step of 0.06 m, and Dt values



12120 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

in the initial segmentation part from 0 to 1.5 m with a step of
0.1 m to explore their effects on segmentation.

IV. RESULTS

We applied the proposed algorithm on the nine plots (Evo-
LC1, Evo-LC2, Evo-LC3, Evo-HC4, Evo-HC5, and Evo-HC6)
at Evo, and three plots (WPA-LB1, WPA-LM2, and WPA-HB3)
at WPA. Detailed information about plots was in Table I. For
tree trunk identification, we recorded the H0 values for stratifi-
cation surfaces and the tree trunks number correctly identified
and incorrectly identified, respectively. For forest 3-D crown
segmentation, we recorded TP, FP, and FN value, and calculated
the value of r, p, F1-score for analysis and comparison.

A. Result of Tree Trunk Identification

By applying our proposed the trunk identification step, we
obtained the ground, stratification surfaces, tree trunks for the
forest plots Evo-LC1 [Fig. 4(a)], Evo-LC2 [Fig. 4(b)], Evo-LC3
[Fig. 4(c)], Evo-HC4 [Fig. 4(d)], Evo-HC5 [Fig. 4(e)], Evo-HC6
[Fig. 4(f)], WPA-LB1 [Fig. 4(g)], WPA-LM2 [Fig. 4(h)], and
WPA-HB3 [Fig. 4(i)]. We obtained the ground by filling the
missing areas generated by the occlusion of vegetation (Fig. 4).
The H0 for dividing the nine forest plots into overstory and
understory layers were 7.78, 5.88, 5.07, 4.86, 5, 2.52, 2.33, 6.48,
and 0 m, respectively. The height threshold at plot Evo-LC1 was
the largest, and that at plot WPA-HB3 was 0 m because of no
understory at this plot. It was found H0 at low-density forest
plots was higher than those at high-density forest plots. Trunks
could be extracted from the point cloud accurately (Fig. 4), and
obvious differences in trunks extraction were found at each plot.
The number of those mistakenly extracted as trunks from point
cloud at nine plots was 0, 1, 3, 12, 11, 29, 0, 2, and 4, respectively.
Compared to those of low-density plots and high-density plots, it
was found that more points were misidentified as trunks at high-
density plots than low-density plots. Compared with the Evo
forest and WPA forest, it was found that trunk points extracted
from Evo were more comprehensive than the WPA forest.

B. Result of Forest 3-D Crown Segmentation

By applying our proposed forest 3-D segmentation algorithm,
we obtained the trees segmentation results for overstory and
understory, and DTM for forest plots Evo-LC1 [Fig. 5(a)], Evo-
LC2 [Fig. 5(b)], Evo-LC3 [Fig. 5(c)], Evo-HC4 [Fig. 5(d)], Evo-
HC5 [Fig. 5(e)], Evo-HC6 [Fig. 5(f)], WPA-LB1 [Fig. 5(g)],
WPA-LM2 [Fig. 5(h)], and WPA-HB3 [Fig. 5(i)]. Statistics in-
formation of the overstory segmentation results was in Table III.
At Evo forest plots, r, p, and F1-score ranged from 0.91 to 1,
0.81 to 1, and 0.85 to 1, respectively. By adding up TP, FN, and
FP values in the low-density plots and high-density plots, it was
found that r, p, and F1-score at high-density forest plots were
lower than those at low-density forest plots with r decreased by
0.04, p decreased by 0.11, and F1-score decreased by 0.07. At
WPA forest plots, r, p, F1-score decreased with the number of
trees from 0.83 to 0.59, from 1 to 0.71, and from 0.91 to 0.65,
respectively. The poorest segmentation result was at WPA-HB3.

We calculated the average bias [49], RMSE, and the median
value between tree height estimated and true overstory height.
The average bias between tree height and estimated in Evo forest
ranged from −2.88 to −1.36 m. It means the overstory height
obtained was underestimated. Detailed average bias, RMSE, and
median information for overstory height were in Table IV. As
for the understory, statistics information of understory was in
Table III. For all the plots, plot Evo-HC5 had the most understory
extracted with 23, and no understory was extracted from plot
WPA-HB3. At Evo forest plots, r, p, and F1-score for understory
ranged from 0.65 to 0.84, 0.8 to 1, and 0.73 to 0.86, respectively.
Plot Evo-HC6 had the maximum F1-score of 0.86, and plot
Evo-LC3 had the minimum F1-score of 0.73. At WPA forest
plots, r, p, F1-score at plot WPA-LB1 were 0.71, 1, and 0.83,
respectively. r, p, F1-score at WPA-LM2 were 0.67, 0.8, and
0.73, respectively. Compared with true understory height, the
average bias between true height and the estimated ranged from
−1.67 to 1.56 m. Detailed average bias, RMSE, and median
information for understory height were in Table IV. The result
showed that understory height was overestimated in Evo forest
plots, but it was underestimated in the WPA forest.

V. DISCUSSION

A. Effect of Input Parameters

1) Effect of MDT Value: The MDT had effects on the number
of seed points identified in our stratification-based method.
Pronounced differences were found for the number of the seed
points identified (NSPI) with and without the understory layer
(Fig. 6). For plot Evo-LC3 [Fig. 6(c)], as MDT increased from
0 to 0.006 m under the two conditions, NSPI both increased
rapidly but less than the true value of 43. This could be attributed
to the lower MDT value. Most trunks were filtered because
of their more considerable distances between trunk points and
cylinder model fitted. Only tree trunks with perfect cylinders
remained, for example, the trees inside of the black ellipse
in Fig. 5(i). The trunk consisted of discontinuous points was
misidentified as the neighbor tree crown rather than the seed
point. As MDT increased from 0.006 to 0.017 m, NSPI under
two conditions was relatively stable at around 43. As MDT
increased from 0.017 to 0.03 m, NSPI under the condition of
understory increased from 46 up to 71. The larger MDT value
might result in the rapid increase of NSPI. It further caused the
understory and partial tree crown points, whose distances to the
fitted cylinder model were less than MDT, identified as trunk
points. NSPI-based stratification surface was relatively stable at
around 43 between 0.006 and 0.03 m, which means MDT value
had few effects on the number of seed points identified. Overall,
similar variation processes were found at other plots in Fig. 6. It
is recommended to use our method to identify seed points and
trunk points identification before tree segmentation and avoid
the effect of the understory.

2) Effect of R2 Value: R2 had apparent effects on trunk point
identification. It was found that the variation process had three
distinct changing stages, such as the rapidly decreasing phase,
relatively stable phase, and rapidly increasing phase [Fig. 7(a)].
For the coniferous tree, the error rate rapidly decreased as R2
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Fig. 4. Ground, stratification surfaces, and trunks obtained at each plot. Fig. 4(a)–(c) are the results of low-density coniferous plots in Evo. Fig. 4(d)–(f) are the
results of high-density coniferous plots in Evo. Fig. 4(g) is the result of the low-density broadleaf plot at WPA. Fig. 4(h) is the result of low-density mixed-species
plot at WPA. Fig. 4(i) is the result of the high-density broadleaf plot at WPA.
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Fig. 5. Overstory and understory segmentation results and DTM generated at each plot. In the segmentation results of overstory and understory, different colors
represent different trees extracted. The points inside of the black ellipse were the mis-segmented parts. Fig. 5a-Fig. 5c are the results of low-density coniferous
plots in Evo. Fig. 5d-Fig. 5f are the results of high-density coniferous plots in Evo. Fig. 5g is the result of a low-density broadleaf plot at WPA. Fig. 5h is the result
of a low-density mixed-species plot at WPA. Fig. 5i is the result of a high-density broadleaf plot at WPA without an existing understory.
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TABLE III
OVERSTORY AND UNDERSTORY SEGMENTATION RESULTS OBTAINED FROM THE PROPOSED AND EXISTING ALGORITHM

NT means the number of trees; NST means the number of segmented trees; NU means the number of understory; NSU means the number of segmented understory; TP is the
number of correctly extracted tree locations; FN is the number of falsely extracted tree locations; FP is the number of falsely extracted nonexisting tree locations; r represents the
completeness of crown segmentation; p describes the correctness of crown segmentation; F1-score is the overall accuracy considering both commission and omission.

TABLE IV
COMPARISON BETWEEN TREE HEIGHT AND ESTIMATED BASED ON EVO AND WPA DATA

O_Average, O_RMSE, and O_Median means average bias, RMSE, and the median value for overstory height and estimated. U_Average, U_ RMSE, and U_Median means
average bias, RMSE, and the median value for understory height and estimated. None means no value was here because of no understory at plot WPA-HB3.
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Fig. 6. Effect of model distance threshold (MDT) on seed points identification under the condition of understory removed by our stratification processing. The
condition of the slice with understory was not removed. (a)–(c) are the results at low-density plots in Evo. (d)–(f) are the results at high-density plots in Evo. (g) is
the result at a low-density plot at WPA. (h) is the result at a low-density plot at WPA. There is no understory at plot WPA-HB3 (i).

increased from 0.05 to 0.35 m was relatively stable when R2

ranged from 0.35 to 1 m, and then gradually increased up to
0.72 when R2 was beyond 1 m. When R2 < 0.35 m, the diameter
obtained each time was always less than the threshold, part points
from ground to treetop were included as trunk points incorrectly.
When R2 > 1 m, the trunk level obtained decreased, and upper
crown points could be collected mistakenly. Three similar phases

appeared in terms of the broadleaf tree and a similar reason for
this variation process. By analyzing the effects of R2 on the error
points rate, it is recommended that R2 should be larger than two
times the r detected in the RANSAC algorithm to ensure the
tree trunk points are included. In addition, some researchers
considered the area with the most vertical accumulation of vox-
els as a tree trunk [23]. However, the area does not represent the
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Fig. 7. Effect of R2 on trunk points identification and effect of neighbor radius in DBSCAN algorithm on changing point at different overlapping rates between
trees. R2 means the radius of the searching sphere in trunk extraction. OR is the overlapping rate between trees. (a) Effect of R2 on trunk points identification in
the coniferous tree. (b) Effect of neighbor radius on changing point in coniferous tree experiment. (c) Effect of neighbor radius on changing point in broadleaf tree
experiment. (d) Effect of neighbor radius on changing point in mixed tree species (coniferous and broadleaf trees) experiment.

proper trunk position because the trunk does not grow vertically.
Our sphere-searching technique is recommended to ensure the
accuracy of curved trunk identification.

3) Effect of Neighbor Radius in DBSCAN Algorithm: The
neighbor radius in the DBSCAN algorithm had effects on the ac-
curacy of the changing point detection. For example, comparing
the result at a fixed OR in each group, it was found that changing
point offset had similar three phases [Fig. 7(b)–(d)]. In conifer-
ous tree experiment, when OR was 0.125, rapidly decreasing,
relatively stable, and slowly increasing phases were 0.03–0.15
m, 0.15–0.63 m, and 0.63–0.99 m, respectively. The rapidly de-
creasing phase could be attributed to the smaller neighbor radius.
The smaller radius resulted in the points misallocated to multiple
individuals at the layer. Then the changing points were easily
detected mistakenly, and the larger changing point offsets were
generated. The larger radius caused a slowly increasing phase. A
larger neighbor radius caused those points in the layer to cluster
several individuals as one individual mistakenly. As the tree
shape changed vertically, the algorithm would find other points
as the changing points. The changing point offset would lead to
the deviation of the determined segmentation plane, and finally,
the points were misallocated. Similar variation processes were
found in the experiments of broadleaf and mixed tree species

(coniferous + broadleaf). However, more segmentation errors
would generate when more changing points were detected, for
example, the trees in Fig. 5(f). The larger errors were generated
from the determination of multiple changing points and then the
points allocated mistakenly.

Moreover, we identified the changing points manually from
the point cloud, which increased the changing point offset ob-
tained. Overall, the segmentation result was affected by DB-
SCAN clustering. It is recommended that the neighbor radius
should be smaller to obtain a lower changing point offset, but it
should be larger than five times the NPD.

B. Effect of Overlapping Rate Between Trees

The OR had apparent effects on the tree segmentation in the
3-D forest stand. For example, apparent differences were found
for the segmentation accuracy at Evo and WPA forest plots with
varying ORs, and segmentation accuracy decreased as ORs. For
the coniferous experiment, the error point number and error rate
increased from 0 to 18 547, and 0 to 0.35 as OR increased from
0 to 0.75, respectively (Table V). OR should be less than 0.625
to achieve better crown segmentation accuracy above 0.75 in the
coniferous trees. A similar variation process was observed in the
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TABLE V
POINTS NUMBER INFORMATION OF OVERLAPPING SEGMENTATION EXPERIMENTS AT DIFFERENT GROUPS

OR means overlapping rate.

broadleaf experiment. The error rate increased from 0 to 0.64
as the OR increased from 0 to 0.75 in the broadleaf experiment.
It means more segmentation errors appear, and the broadleaf
forest is more difficult to segment than the coniferous forest. The
error rate for the experiment using mixed tree species increased
from 0 to 0.47 as OR increased from 0 to 0.75. Summarily, the
OR affected the crowns segmentation results, and error points
number and error rate would increase as OR increased in three
experiments. This could be explained by the complex branch
structure in the forest. The higher OR always means the tree
crown intersected heavily with more points from other trees,
which caused the larger changing point offset [Fig. 7(b)–(d)],
for example, the trees inside of black ellipse in Fig 5(d). Two
trees were identified as a single tree due to their high OR
(unclear boundary) and small spacing. This was consistent with
the result in Section V-A-3. As the OR increased, the detection
accuracy of changing points would decrease. Eventually, the
points’ allocation problem appeared. Moreover, the OR varied
with tree species, crown shape and size, and canopy cover [60].
This makes it more difficult to segment the crown with heavy
overlapping areas.

C. Effect of Scanning Locations

The scanning locations affected the accuracy of tree crowns
segmentation and tree height obtained. We tested our algorithm

on single-station data at six plots of Evo forest, apparent dif-
ferences were found for the trees segmentation results based
on the multistation TLS data and single-station TLS data, for
example, the difference in H0. H0 (7.2, 5.5, 4.71, 3.52, 4.2,
and 1.71 m) at single-station data were lower than those at
multistation data. It could be explained that fewer object de-
tails of understory were captured in single-station data than
multistation. The segmentation results of single-station data
showed that F1-score at six plots was between 0.67 and 0.8
(Table VI), which was lower than the accuracy of multistation
data. This could be attributed to the incomplete scanning, which
led to the lower detection accuracy of seed points at the plot
edge and the changing point leaning in the wrong direction.
For segmentation results of single-station data, our accuracy
(F1-score was between 0.67 and 0.8 within 15–20 m distance
to a scanner) was similar to the result of Liang [31] (F1-score
was 0.73 within 10 m distance) and Kenneth [48] (F1-score was
0.87 within 10 m distance). However, Kenneth had confirmed
that the segmentation accuracy decreased as the distance to the
scanner increased. That was the reason that the trees at the edge
of the plot could not be extracted accurately. As for tree height,
our result of tree height estimation was consistent with Brolly’s
[3] result with a mean bias of −2.76 m from single-station and
−1.59 m from multistation. Their mean bias in the two modes
was −2.9 and −1.3 m, respectively. It was found that overstory
height was consistently underestimated due to the occlusion
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TABLE VI
SEGMENTATION RESULTS BASED ON SINGLE-STATION TLS DATA IN EVO FOREST

NT means the number of trees; NST means the number of segmented trees; NU means the number of understory; NSU means the number of the segmented understory. TP is the
number of correctly extracted tree locations; FN is the number of falsely extracted tree locations; FP is the number of falsely extracted nonexisting tree locations; r represents the
completeness of crown segmentation; p describes the correctness of crown segmentation; F1-score is the overall accuracy considering both commission and omission.

TABLE VII
COMPARISON BETWEEN TREE HEIGHT AND ESTIMATED BASED ON SINGLE-STATION TLS DATA IN EVO

O_Average, O_RMSE, and O_Median means average bias, RMSE, and the median value for overstory height and estimated based on single-station data. U_Average,
U_RMSE, and U_Median means average bias, RMSE, and the median value for understory height and estimated based on single-station data.

of the tree crowns and lower vertical connectivity. However,
understory height was consistently overestimated due to the
mixing of overstory and ground points (Table VII). Tree height
estimation errors would increase as tree height and tree number
increased [61]. That was why the understory height estimated
had higher accuracy than overstory. Overall, it is recommended
to collect data based on multistation (for example, more than
three scanning locations) for better accuracy of segmentation
and structural parameters estimation.

D. Effect of Forest Types

Forest type had apparent effects on the trees segmentation
accuracy. For example, apparent differences were found for the
trees segmentation of the forest point cloud at Evo forest plots
[Fig. 5(a)–(f), Table III) and WPA forest plots [Fig. 5(g)–(i),
Table III). The average values of r, p, F1-score in Evo forest
were 0.95, 0.91, and 0.93, compared with the average values
of r, p, F1-score in the WPA forest of 0.72, 0.82, and 0.77.

It was found that the segmentation accuracy in the coniferous
forest was higher than that in the broadleaf forest. The lower
accuracy at the broadleaf forest was caused by the complex and
heavy intersection between trees with their long branches, which
always represents the high OR than coniferous forest. However,
the OR affected the segmentation accuracy, and a higher OR
means more point allocation problems as analyzed in Section
V-B. Moreover, even at the same OR, broadleaf trees had more
points allocation problems and a higher error rate than coniferous
trees [Fig. 7(b) and (c)]. For example, in Section V-A-3, it
was found that the coniferous trees experiment had the lower
changing point offset values (less than 0.8 m) at a relatively
stable phase than those two broadleaf trees group (more than
1 m) and mixed-species group (more than 1 m).

E. Effect of Vertical Forest Structure

The vertical structure affected the tree crowns segmenta-
tion accuracy due to the existence of understory in the forest.
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Fig. 8. Effect of point density (NPDs were 1, 2, 4, 6, 8, and 10 cm, respectively), and effect of varying Dt and neighbor radius in DBSCAN algorithm under
varying NPDs. Dt was the spacing threshold used in initial segmentation. NPD was the neighbor point distance of the point cloud. (a) Effect of Dt under varying
NPDs based on coniferous tree. (b) Effect of neighbor radius in DBSCAN under varying NPDs based on coniferous tree. (c) Effect of Dt under varying NPDs
based on broadleaf tree. (d) Effect of neighbor radius in DBSCAN under varying NPDs based on broadleaf tree.

Noticeable differences were found for the segmentation results at
plots with varying understory (Fig. 5, Table III). In the Evo forest,
plots Evo-LC3, Evo-HC4, and Evo-HC5 had more understory
(understory number ≥ 20) than those (understory number ≤
20) at Evo-LC1, Evo-LC2, and Evo-HC6. For overstory, the
average values of r, p, and F1-score at Evo-LC3, Evo-HC4, and
Evo-HC5 were 0.92, 0.88, 0.9, while the average values of r,
p, and F1-score at Evo-LC1, Evo-LC2, and Evo-HC6 were
0.98, 0.94, and 0.96, respectively. The overstory segmentation
accuracy at plots with more understory was lower than those
plots with less understory. This accuracy difference could be
explained by some understory points mixed into the overstory,
which decreased the seeds identification accuracy and caused
changing point offset. For understory segmentation accuracy, the
plots with more understory had lower accuracy. For example, av-
erage values of r, p, and F1-score at the Evo-LC1, Evo-LC2, and
Evo-HC6 were 0.82, 0.89, and 0.85, respectively, which were
higher than the average value of r (0.71), p (0.85), and F1-score
(0.76) at Evo-LC3, Evo-HC4, and Evo-HC5, respectively. How-
ever, it was found that the extracted understory was incomplete,
especially the crown of the understory, and those lower shrubs
with high OR could not be extracted accurately [missegmented
understory inside of the black ellipse in Fig. 5(c)]. This could be

attributed to the irregular shape of the understory and the high
OR, which led to the difficulty in finding the changing point.
To avoid the effect of understory, some researchers removed the
understory manually from the point cloud to avoid the effect of
understory [60], but it was time-consuming and labor-intensive.
It is recommended to stratify the overstory and understory first
for better accuracy, and extract them, respectively, in the forest
with complex vertical structure.

F. Effect of Point Density

The point density affected the accuracy of tree crowns seg-
mentation. We tested our algorithm at the plot Evo-HC5 and
WPA-HB3 with different point densities (NPDs were 1, 2, 4, 6,
8, and 10 cm, respectively). Differences in F1-score were found
for the trees segmentation result under varying point densities
(Fig. 8). For example, F1-score in high point densities (NPD= 1
cm, 2 cm) was higher than those of low point densities (NPD =
8 cm, and 10 cm). Similar variation processes were found in
the coniferous and broadleaf forests. This might be attributed
to the different levels of detail recorded in the point cloud with
varying point densities. Lower NPD was beneficial to initial
segmentation and changing point identification. Dt and radius
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in DBSCAN were the two key parameters determined according
to the value of NPD. The variation process of Dt and radius in
DBSCAN were in Fig. 8. When Dt and radius in DBSCAN were
less than 0.3 m, the F1-score increased rapidly. This was because
that the lower Dt and radius in DBSCAN caused multiple
clustering individuals (high FP value). However, the larger Dt
and radius (for example, NPD > 0.9 m) in DBSCAN would
cause under-segmentation. Compared with coniferous forest,
under the varying NPD, F1-score in the broadleaf forest had a
larger varying range (0.37 and 0.39) than that of coniferous forest
(0.21 and 0.24) (Fig. 8). It means the segmentation result of the
broadleaf forest is more affected by point density. Overall, the
segmentation result was affected by point density. To guarantee
the general applicability when the input point cloud data with
various point densities, it is recommended that Dt and radius in
DBSCAN should be larger than 5.5 times of the NPD.

G. Comparison With Existing Methods

To test the performance of the proposed method, we compared
the proposed method against the existing methods:

1) Compared with Li’s method [28] tested in Tao’s study, the
F1-score of the proposed method in coniferous forest and
broadleaf forest improved 0.2 and 0.05, respectively. This
could be attributed to the processing strategy for horizontal
overlapping areas and considering the effect of vertical
structure in the forest. However, Li’s method was mainly
used to segment coniferous forest with simple geometry
structure in ALS data. The accuracy would decrease when
applying TLS data.

2) Compared with the Dijkstra-based method [8] tested in
our article, TLS data at the low-density forest (Evo-LC1,
Evo-LC2, and Evo-LC3) were segmented correctly by two
methods with high accuracy above 0.9. This was because
of low complexity and fewer overlapped areas in the low-
density forest plots. However, F1-score at high-density
forest plots was higher than those using the Dijkstra-based
method with an improvement of 0.13, 0.07, and 0.14,
respectively. In the WPA site, similar results were found
at WPA-LB1, but the F1-score at the plots WPA-LM2 and
WPA-LB3 improved 0.08 and 0.12. This may be attributed
to the larger errors generated at the comparison process of
distance from the point to trunk. However, we proposed
a strategy based on the tree’s vertical morphology to
segment overlapped areas beside the initial segmentation.

3) Compared with Xi’s method [35] based on deep learn-
ing, the F1-score of the proposed method in coniferous
forest improved by 0.15. It is because the method could
not extract trees with multiple peaks in tree crowns and
overlapped areas. Moreover, the segmentation accuracy
was limited by samples size. Thus, the smaller or larger
trees could not be detected effectively.

VI. CONCLUSION

In this article, we proposed a 3-D tree crown delineation
method to extract the overstory and understory using TLS data.

Our novelty points of the method are as follows. First, we con-
sidered the existence of understory into trees segmentation, and
decreased the effect of understory on seed points identification.
Second, we proposed a method based on multiplane for the
segmentation of overlapped tree crowns. Third, we separated and
extracted the individual overstory and understory based on the
TLS data. And we investigate the effects of OR, the number of
TLS scanning stations, forest types, vertical forest structure, and
point density on the accuracy of 3-D tree crowns segmentation.
Based on our method, we extracted the trees from different forest
stands and different TLS measurements. From our results and
analysis, we came to the following conclusions:

1) Trees segmentation result was affected by horizontal and
vertical structure of the forest. In the coniferous forest, the
accuracy based on multistation TLS data at the low-density
forest was much higher than that of the high-density forest.
The average F1-score at the low-density forest and high-
density forest were 0.96 and 0.89, respectively. Compared
with coniferous forests, it was more challenging to extract
single trees in the broadleaf forest. In the low-density
broadleaf forest and low-density mixed forest, F1-score
were 0.91and 0.75, respectively. However, in the high-
density broadleaf forest, F1-score was 0.65.

2) F1-score based on single-station data in the coniferous for-
est was between 0.67 and 0.83, which was lower than the
accuracy of multistation TLS data. The average segmenta-
tion accuracy of 0.78 at low-density plots in single-station
data was higher than that of 0.7 at high-density plots.

3) The average overstory F1-score (0.9) at plots with more
understory was lower than that (0.96) of the plots with
less understory. The average F1-score (0.85) of understory
segmentation at plots with less understory was higher than
those (0.76) at plots with more understory.
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