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Understanding the Drivers of Land Surface
Temperature Based on Multisource Data:

A Spatial Econometric Perspective
Menghang Liu , Haitao Ma , and Yu Bai

Abstract—Urban thermal condition has seriously affected the
quality of residents’ daily life and triggered some environmental
issues. Understanding spatial patterns of land surface temperature
(LST) and its driving mechanism is important for the sustainable
development of cities. Taking Beijing as an example, this study
employed spatial econometric models to investigate spatial and
temporal heterogeneity of LST from 2014 to 2018 based on mul-
tisource remote sensing and statistical data. The global autocorre-
lation Moran’s I index showed the existence of significant positive
correlations of LST among regions, indicating the regions with high
thermal environments are spatially adjacent. The temperature of
a region would increase by more than 0.6% for every 1% increase
in LST of surrounding areas based on the spatial Durbin model.
In terms of spatial interactions of influencing factors, elevation,
normalized difference vegetation index, modified normalized dif-
ference water index, nighttime light, and fossil energy consumption
of neighbors exhibited significantly positive spatial agglomeration
effects on local LST, whereas albedo, GDP, and population density
of adjacent areas had negative effects on LST in local areas. Partic-
ularly, the indirect effects of drivers were greater than their direct
effects, indicating urban thermal condition was an interregional
issue and joint control measures should be adopted to mitigate the
urban heat island effects as a whole.

Index Terms—Beijing, direct and indirect effects, land surface
temperature (LST), spatial durbin model (SDM).

I. INTRODUCTION

IN RECENT decades, China has experienced the expansion of
urban scale and population, and it is currently in the stage of

rapid urbanization [1], [2]. According to the report published by
United Nations in 2018, more than 55% of the world’s population
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live in urban areas, and this proportion is expected to increase
to 68% by 2050 [3]. High population agglomeration and rapid
urban spread have remarkably accelerated the alteration of the
land surface. Natural features such as vegetation and water bod-
ies have been replaced by impervious materials and buildings.
These impervious surfaces with high thermal capacity led to
a significant changing trend in land surface temperature (LST),
which has altered the original urban energy balance [4]–[7]. This
transition poses a threat to social and environmental issues, such
as human health [8], energy consumption [9], heat waves [10], air
pollution [11], and climate change [12]–[14]. Therefore, a deep
investigating of the spatial patterns of LST is critically significant
to support eco-friendly and sustainable urban planning.

LST is a result of the interaction of multiple influencing
factors, thus understanding the driving mechanisms of these
factors is a prerequisite for targeted mitigation. Numerous
studies have concluded that LST is distinct significantly from
various land use types [15], [16]. Impervious surfaces, such as
residential and industrial land use, modify the urban microcli-
mate in built-up areas, whereas vegetation, water bodies, and
wetland parks can be regarded as “cold islands” to mitigate
the local heat island effects. The transformation of land cover
alters water infiltration and thermal conductivity. Consequently,
landscape pattern metrics have been widely used to measure the
relationships between land use type and LST [17]–[20]. Some
surface biophysical parameters based on remote sensing, such
as normalized difference vegetation index (NDVI) and modified
normalized difference water index (MNDWI), are successfully
applied to qualitatively describe land cover characteristics, due
to its effectiveness to acquire broad scale and long time series
data on the Earth’s surface. The easy access, wide coverage, and
high resolution of remote sensing pave the way for urban thermal
environmental research. Meanwhile, socio-economic indicators
are been considered as a complement of remote sensing data
in terms of investigating driving factors on LST [21]–[24]. The
agglomerations of population and economic activities trigger
urban thermal environments. Human activities consume large
quantities of fossil fuel resources for urban construction, and
anthropogenic heat emissions further increase the thermody-
namic properties of the land surface. Besides, the land surface
has a greater tendency to absorb solar radiation by contrast
with water bodies, and has a lower albedo [25]. Differences in
topography, such as slope and elevation, also play an important
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role in controlling the amount of radiation absorbed by the
surface [26], and would fundamentally alter the land surface
thermal condition. It is crucial to conduct a comprehensive
analysis of multisource data to explore interaction mechanisms
of LST.

In order to explore the nexus between LST and its drivers,
ordinary least-squares (OLS) regression has typically been used
[27], [28]. However, traditional regression analysis based on
the independent assumption of variables may neglect the spa-
tial heterogeneity and spillover effects of LST, thus, substan-
tially hindering insight into the interpretation of urban ther-
mal condition. The thermodynamic properties of the land sur-
face have significant spatial aggregation and diffusion effects
because of heat conduction and cross-ventilation. That is, it
presents strong spatial autocorrelation among thermal intensity
and distribution. Moreover, an increasing number of litera-
tures use cross-sectional data, which are more likely to cause
multicollinearity problems and reduce the accuracy of results
[29]. Spatial econometric models, specifically the spatial panel
data model, are effective for identifying the impact of deter-
minants on LST, which can capture the impact of adjacent
areas on urban thermal environments and reflect interregional
spatial heterogeneity.

A large body of studies have adopted a gridded unit to conduct
research [30]–[33], mainly because the LST data derived from
remote sensing is raster imagery. However, the application of
raster-based data could come across problems during choos-
ing the appropriate spatial resolutions. Some scholars analyzed
spatial-temporal characteristics of LST from the perspective of
landscape patches [34], [35], which may hinder the implementa-
tion of mitigation strategies in administrative districts. In China,
regulatory planning has been considered as an indispensable
complement of urban planning [8]. The district unit, regarding
as the basic regulatory unit of shaping urban morphology, plays
a significant role in land use planning and public infrastructure
construction. Previous studies mainly used local climate zones
[36], urban function zones [37], and urban green space [38]
as the study units for analysis, and explored the heterogeneity
of LST in different classified zones. These special units may
concern land use configuration of the urban area, but ignore
the implementation of mitigation strategies because regulatory
planning is formulated at the administrative level. With this
regard, we employ the averaged LST within the district unit
to analyze urban thermal environments at the district level [39],
which facilitates the plan formulation. And the driving factors
can also be enriched by the data of the local statistics department.

In this article, we investigate the spatiotemporal patterns of
LST and its related factors in Beijing at the district level via
multi-source remote sensing and statistical data. There are three
main contributions of this research as follows.

1) Considering the complexity and comprehensiveness of
LST, we observed the impacts of multisource data, namely,
solar radiation, topographical features, surface biophysi-
cal parameters, and socio-economic indicators, on local
thermal environments.

2) We incorporated the spatial spillover effects into the em-
pirical study, which has supplemented the spatial features
of LST to a certain extent.

Fig. 1. Location of the study area.

3) We explored the distribution and determinants of LST
focusing on the basic district level to strengthen the im-
plementation of regional planning.

II. STUDY AREA AND DATA

A. Study Area

Beijing (115°25′E-117°30′E, 39°28′N-41°05′N), the capital
city of China, lies in north China plain and includes 16 adminis-
trative districts with the area of 16 410 km2 (see Fig. 1). It has a
temperate continental monsoon climate with humid-hot summer
and dry-cold winter. The terrain is high in northwestern and
low in southeast. Beijing has undergone rapid urbanization with
the intensive expansion of built-up area and population in the
21st century, significantly altering urban climate characteristics.
The increasing LST may further cause other urban issues and
pose serious threats to residential comfort and sustainable urban
development. Accordingly, it is of great importance to compre-
hensively investigate the spatiotemporal patterns and drivers of
LST in Beijing.

B. Variables and Data Source

1) Dependent Variable: This article takes LST as the ex-
plained variable. LST data can be acquired through the retrieval
of remote sensing images. Previous studies present that Moder-
ate Resolution Imaging Spectroradiometer (MODIS) data have
been widely used in LST inversion research [2], [40], [41]. The
data used in the article was derived from 8-day MODIS daytime
LST data (MOD11A2) products based on a split-window algo-
rithm. We obtained LST data in Beijing from 2014 to 2018 at
1 km spatial resolution, provided by the National Aeronautics
and Space Administration (NASA).1

2) Independent Variables: Based on the existing literature
and data availability, this article selects ten variables under four

1[Online]. Available: https://earthdata.nasa.gov

https://earthdata.nasa.gov
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TABLE I
VARIABLES OF LST USED IN THIS ARTICLE

dimensions as the explanatory variables to understand the spatial
agglomeration effect of Beijing’s LST at the district level (see
Table I).

1) Solar radiation. The changes in land cover alter the
heat absorption capacity of the surface. Buildings usually
reduce the albedo and emissivity of surfaces, resulting
in large surface heat storage in urban areas. Whereas
vegetation with high albedos and high Bowen ratio may
transmit little heat to the environment when exposed to
solar radiation. Albedo data were obtained from Global
Land Surface Satellite (GLASS) Albedo products, which
are retrieved with direct-estimation methods and repre-
sent surface albedo under general clear-sky atmospheric
conditions at 1 km spatial resolution [42]. The GLASS
albedo, having been proved the superiority of capturing
the variation of surface albedo than MODIS [43], [44],
were downloaded from the National Earth System Science
Data Sharing Infrastructure.2

2) Topographical features. The terrain affects the storage
of surface heat, in turn changing the intensity of LST
[14]. The ASTER Global Digital Elevation Model was
employed in the study due to its high spatial resolution of
30 m, which was derived from the Geospatial Data Cloud
of China.3 After conducting the preprocess of projec-
tion transformation and surface analysis in ArcGIS 10.5,
two topographical indicators, namely elevation and slope,
were selected as independent variables.

3) Surface biophysical parameters. NDVI is a remote sensing
indicator to distinguish vegetation and can be applied
to detect vegetation changes and explain the impact of
local thermal environments. MNDWI is used to extract
water bodies. The loss of water and wetland through
urban construction leads to an increased high thermal
conductivity. NDVI and MNDWI were selected as driving
factors to represent the urban surface characteristics, and
these indicators were computed as follows:

NDVI =
NIR− Red

NIR + Red
(1)

2[Online]. Available: http://www.geodata.cn
3[Online]. Available: http://www.gscloud.cn/

MNDWI =
Green− SWIR1

Green + SWIR1
(2)

where NIR, Red, Green, and SWIR1 represent the
near-infrared, red, green, and short-wave infrared-1 wave
bands, respectively.
Landsat-8 datasets with sunny weather and low cloud
cover were downloaded from the United States Geological
Survey (USGS).4 The datasets were first processed for
radiometric calibration and atmospheric correction. Then
NDVI and MNDWI were computed using the band math
module in ENVI 5.3. Besides, the impervious surface area
proportion can be considered as an important complement
of remote sensing indicators in terms of capturing land
cover features. It is calculated by dividing the impervious
surface area by the total area of the local administrative
unit. The impervious surfaces data were obtained from5

and the details could be found by Gong et al. [45].
4) Socio-economic indicators. Nighttime light was widely

used to assess economic development and anthropogenic
activities, thus it is regarded as an important variable
affecting LST [46]. The global VIIRS nighttime lights
annual products were employed from an open access
website6 and detailed information such as data processing
and accuracy evaluation could be found by Elvidge et al.
[47]. The concentrations of economy and population in
urban could lead to the increase of fossil energy consump-
tion, thereby resulting in the higher temperature of the
land surface. Therefore, gross domestic product, popula-
tion density, and fossil energy consumption, derived from
Beijing regional statistical yearbook,7 are also selected to
represent the impact of socio-economic activities on LST.

4[Online]. Available: http://earthexplorer.usgs.gov
5[Online]. Available: http://data.ess.tsinghua.edu.cn
6[Online]. Available: https://eogdata.mines.edu/products/vnl
7[Online]. Available: http://tjj.beijing.gov.cn

http://www.geodata.cn
http://www.gscloud.cn/
http://earthexplorer.usgs.gov
http://data.ess.tsinghua.edu.cn
https://eogdata.mines.edu/products/vnl
http://tjj.beijing.gov.cn
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III. METHODOLOGY

A. Spatial Autocorrelation

The spatial dependence of a variable exhibits its spill-over
effects between adjacent areas. The temperature of land surface
may be agglomerated in areas with intensive economic activities,
and regions close to it may have similar patterns. The most com-
monly adopted spatial autocorrelation indicator, global Moran’s
I, was selected to estimate the spatial relationship. It is calculated
by the following formula:

I =
n ·∑n

i=1

∑n
j=1 wij (xi − x̄) (xj − x̄)

∑n
i=1

∑n
j=1 wij ·

∑n
j=1 (xi − x̄)2

(3)

where n denotes the total number of study units. Wij is the
spatial weight matrix, which uses geographic adjacency to set
values. Generally, when i and j are adjacent, Wij is indicated
as 1, otherwise, the value is 0. xi and xj represent the LST of
region i and j. x̄ is the average value of LST among all regions.
I represents global Moran’s I index, the value of which ranges
from−1 to 1. Normally, the larger the absolute value of the index,
the stronger the spatial relationship. If the value is greater than
0, a positive spatial correlation exists whereas a value lower than
0 indicates a negative spatial clustering pattern. When I = 0,
there is no spatial correlation exists and LST presents a random
spatial distribution. Furthermore, the z-value was employed to
test the significance of Moran’s I index, which is expressed as
follows:

ZI =
I − E (I)
√

V ar (I)
(4)

where E(I) and V ar(I) represent the expectation and standard
deviation of global Moran’s I index.

B. Spatial Econometric Model

Based on the above selected variables, the ordinary least
square (OLS) regression model was constructed. The formula
is as follows:

Y = α+Xβ + ε. (5)

The OLS may ignore the mutual influence of LST in geo-
graphic space. The spatial econometric model, an extension of
the OLS model by incorporating the spatial effects, is appropri-
ate to reveal the spatial correlations of variables and produce
robust results. The specific model is given by the following
formula:

Yit = αi + ρ
n∑

j = 1

WijYjt + βXit + θ
n∑

j = 1

WijXjt + μi

μi = λWμi + εi
(6)

where i and j denote different regions and t is sample year.
αi is a vector of intercept. Yit and Xit represent LST and its
driving factors per district. Wij is the spatial weight matrix.
ρ and θ are spatial regression coefficients on the explained
variable and independent variable, respectively, implying the
spatial interaction between different units. β represents spatial
regressive coefficients reflecting the influence of Xit on Yit,

and λ is the spatial error regression coefficient, reflecting the
spatial autocorrelation between error terms. εi denotes a vector
of regression residuals.

If ρ �= 0, the spatial panel model could calculate total effects,
direct effects, and indirect effects through the partial derivatives
method [55]. The direct effects are interpreted as the average
impact of the independent variable on the interior of the region,
whereas the indirect effects (spatial spillover effects) represent
the impact of the explanatory variable on the surrounding areas.
The total effects are the summation of direct and indirect effects,
representing the average impact of the explanatory variable on
all units. It can be expressed by the following formula:

∂Y

∂X
= (In − ρW )−1 (Inβ +Wθ) (7)

where (In − ρW )−1(Inβ +Wθ) is a N ∗N matrix, reflecting
the impact of the independent variable on the explained vari-
able. It is a function of the spatial weight matrix, thus, can be
represented by S(W ). The formula (7) can be transformed as
follows:

∂yi
∂xj

= S (Wij) . (8)

It is shown that the explanatory variable of region j may be
linked to the dependent variable of region i. Typically, when i =
j, the function indicates the impact of the explanatory variable
on its local region, namely direct effects. It can be calculated by
the average of the diagonal elements of the matrix. The indirect
and total effects are the average of nondiagonal elements and all
elements in the matrix, respectively.

When ρ �= 0 and θ = 0, the formula (6) is the spatial lag
model (SLM). When λ �= 0, ρ = 0 and θ = 0, the formula
(6) is the spatial error model (SEM). When ρ �= 0, θ �= 0, and
λ = 0, the formula (6) is the spatial Durbin model (SDM). The
SLM measures endogenous interaction among the dependent
variables and quantifies the spatial spillover effects on adjacent
regions. The SEM is applied when a given region is impacted
by neighbors through the error of the independent variables. It
is appropriate to analyze spatial dependence in error terms. The
SDM, a general form of spatial econometric models, can be
transformed into the SLM and SEM with different coefficient
settings. Considering both endogenous and exogenous spatial
interactions, the SDM not only measures the spatial lag terms of
dependent variables, but also the spatially lagged independent
variables affecting dependent variables.

IV. RESULTS

A. Spatiotemporal Distribution of LST

Fig. 2 shows the spatial distribution of Beijing’s LST from
2014 to 2018. The LST in Beijing presents an obvious downward
trend from 2014 to 2017. The average LST in most regions were
above 306 K in 2014, whereas the value in most regions dropped
below 304 K in 2017. This mitigation is most significant in
western and northern areas including Pinggu, Miyun, Huairou,
Yanqing, and Mentougou. However, for some districts in the
central areas such as Dongcheng and Xicheng, local thermal
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Fig. 2. Spatiotemporal LST patterns from 2014 to 2018.

environments remain severe, though their LST also decreased
to some extent. It should be noticed the LST slightly increases
in 2018, and the average temperature of each district shows a
similar pattern with the value in 2014. Fortunately, the tem-
perature displays a balanced spatial distribution in 2018, with
few patches less than 294 K and more than 310 K, compared
with that in 2014, indicating several mitigation measures such
as energy-saving and emission-reduction have been adopted
effectively to relieve urban thermal environments in Beijing.

Under the perspective of spatial, the LST generally presents a
low north and high middle distribution pattern. To be more spe-
cific, the high temperature areas are mainly concentrated in the
middle of Beijing, including Dongcheng, Xicheng, Chaoyang,
and Fengtai, with relatively low elevation and large impervious
areas. Far from the Beijing central urban area, Miyun, Huairou,
and Yanqing have low surface thermal environments where the
terrain is high existing with mostly forested land. Among 16
districts in this study, Yanqing always exhibits the lowest annual
LST from 2014 to 2018 with a five-year average temperature
of 299.6 K. On the contrary, two central districts, Dongcheng
and Xicheng, with a five-year average temperature above
309.6 K, are the highest LST areas, although the temperature
has decreased from 311 K in 2014.

Furthermore, this article employed global Moran’s I index to
explore the spatial agglomeration in terms of LST in Beijing
from 2014 to 2018, and the results are shown in Table II.
Moran’s I index displayed a significant decrease in 2016. It is
mainly because the Action Plan for Adaptation Strategies for
Climate Change in the Urban Area Environment was issued
by the Central Government of China, aiming to alleviate urban
heat island effects in 2016 [37]. As the capital city of China,

TABLE II
SPATIAL AUTOCORRELATION STATISTICS ON LST

the People’s Government of Beijing Municipality designed to
construct ventilation corridors to enhance air circulation in the
built-up area in the same year [36]. A previous study has also
concluded that LST in Beijing decreased in the urban center
and increased in the suburban areas [32]. It can be seen that
the global Moran’s I index, ranging between 0.479 and 0.549,
are all greater than 0 and significant at the 1% level (Z-value
> 2.58) in five years. These consistently high values illustrate
the presence of a significant and positive spatial autocorrelation
when investigating urban thermal environments in Beijing at
the district level. It means the high urban surface temperature is
surrounded by regions with high temperatures and vice versa.
Therefore, spatial econometric models are necessary. Besides,
the Moran’s I in five years changes slightly, indicating Beijing’s
thermal condition exhibits a stable spatial agglomeration effect.

B. Estimation Results of the Spatial Panel Model

According to the spatial autocorrelation results, Beijing’s LST
exhibits a significant spatial agglomeration pattern. There is a



12268 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE III
RESULTS OF LM, LR, AND WALD TEST

Note: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

spatial correlation in the explained variable, while the traditional
econometric models fail to capture spatial effects. Lagrange
multiplier (LM) test is further employed to verify the effects
of spatial lag term and spatial error term in an ordinary panel
model. As shown in Table III, the null hypothesis of no spatial
dependence is rejected because LM spatial lag and LM spatial
error are significant at the 1% and 5% levels, respectively. There-
fore, the spatial econometric model is introduced to understand
the spatial relationship between LST and its drivers. Typically,
the spatial models mainly include the SLM, SEM, and SDM.

The regression results of OLS, SLM, SEM, and SDM, using
the same independent variables, are compared to understand
the relationship between LST and its factors in Beijing (see
Table IV). Overall, the goodness-of-fit of spatial econometric
models, namely SLM, SEM, and SDM, are 96.16%, 98.85%,
and 99.17%, respectively, significantly larger than the R2 of
OLS, indicating the spatial panel models are more appropriate to
explain the influence of independent variables on LST. The SDM
provides the best fitness to the influential factors, both practically
and statistically. In terms of the spatial lag effects, rho (W ∗ Y ),
are similar and significant in the SLM (ρ = 0.535, P =
0.000) and SDM (ρ = 0.606, P = 0.000), which means the
endogenous interaction relationships exist in the urban thermal
environments. Every 1% increase in the LST of surrounding
areas will lead to more than 0.5% increase in LST of the local
district. The spatial parameter in the SEM, lambda (W ∗ μ), is
also statistically significant at the 1% level, which is caused by
the spatial effects among interference terms.

We further compare the results of four models. The coeffi-
cients of albedo in all models are nonsignificant, and we are
likely to conclude that albedo has no relationship with urban
thermal condition. However, the spatial spillover coefficient of
albedo (W ∗ALB) in the SDM exhibits a negative effect at the
significant level of 10%, suggesting an increase in albedo in
adjacent regions would result in the mitigation of LST in local
regions. The traditional regression models cannot accurately
capture the driving mechanisms of LST. The coefficient of slope
in the SLM is negatively significant and the value is much
larger than those in other models. The coefficients of elevation,
NDVI, and MNDWI display the same characteristics among four
models, where the coefficients in the OLS and SLM are positive
whereas those in the SEM and SDM are significantly negative.
It is widely acknowledged that the temperature decreases as
altitude increases. A large body of literatures have concluded

TABLE IV
ESTIMATION RESULTS OF OLS, SLM, SEM, AND SDM

Note: Standard errors in parentheses. (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01)

that “cold island” such as vegetation and water can mitigate
urban thermal environments [51], [56], [57]. In contrast to the
coefficient of nighttime light presenting positively significant
in the SDM, the coefficient in the OLS and SLM is negative
and in the SEM is nonsignificant. Guo et al. [14] and Mpakairi
and Muvengwi [53] revealed the relationship between nighttime
light and LST is positive because nighttime light is positively
linked to social economy and urbanization dynamics during the
night. The coefficient of impervious area in the SDM presents a
positive effect at the significant level. It is smaller than the values
in other models, indicating that the influence of impervious
areas is overestimated by others. Results of the SDM show
that three socio-economic indicators, namely GDP, population
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density, and fossil energy consumption, have nonsignificant
coefficients with LST. On one hand, the spatial agglomeration
of anthropogenic activities and greenhouse gas emissions may
cause higher temperatures in urban areas. On the other hand, the
concentration of qualified personnel and investment promotes
technological innovation in urban, e.g., the elimination of back-
ward production capacity and the development of clean energy,
which may decrease the urban temperature.

Some interesting findings are discovered when considering
the spatial effects of independent variables based on the SDM.
At the 1% level, elevation and MNDWI of surrounding areas
have significantly positive spatial effects on the LST, whereas
GDP and population density have negative relationships. The
spatial correlation coefficients of NDVI and fossil energy con-
sumption are positive and significant at the 5% level. The spatial
effect of albedo is negative whereas nighttime light displays a
positive effect at the significant level of 10%. And the slope
and impervious area of neighbors have nonsignificant effects
on LST. As shown in the results, a 1% increase in NDVI and
MNDWI of surrounding regions would lead to a 0.134% and
0.3% increase in local regions. The upward land use type in
vegetation and water body constrains the expansion of construc-
tion buildings, resulting in the reduction of land surface albedo
and the mitigation of local thermal condition. It may accelerate
the shifting of manufacturing industries to surroundings, which
promotes spatial spillover effects and leads to the increase of
LST in the industrial receiving areas of adjacent regions. An
increase of 1% in GDP and population density of adjacent areas
would lead to a 0.555% and 0.542% decrease in local regions.
A lot of investment and populations would be attracted with the
rapid development of economy and the exploration of popula-
tion in the adjacent regions. Consequently, local anthropogenic
activities may decline due to shortage of funds and departure
of the labor force, thereby decreasing the temperature of the
land surface. Fossil energy consumption and nighttime light
in surrounding areas have positive impacts on LST in local
areas, mainly because local areas would also learn from their
neighbors as they engage in production and economic activities.
This result is consistent with the result of Su and Yu [58], who
have concluded that the reduction of energy consumption in an
area would cause a decrease in adjacent regions.

C. Direct and Indirect Effects of the Drivers

The SLM and SDM could both estimate spatial effects. How-
ever, the spillover effects in the SLM are indistinguishable for
every single independent variable, and the SDM always produce
more robust result than SLM [59]. Besides, the likelihood ratio
(LR) and Wald test are to estimate the SDM whether can be
simplified to the SLM or SEM. The null hypotheses of the test
are HSLM

0 : θ = 0 and HSEM
0 : θ + ρβ = 0. As shown in

Table III, the results of LR and Wald test are all significant
at the 1% level, which means that the null hypothesis should
be rejected and the SDM provides the optimal fitting. Through
practical considerations and statistical tests, we estimated the
direct, indirect, and total effects of driving factors to interpret
the model deeply based on SDM.

TABLE V
DIRECT, INDIRECT, AND TOTAL EFFECTS OF VARIABLES

Note: Standard errors in parentheses.

The total effects of albedo, GDP, and population density
present negative relationships with the agglomeration of LST,
whereas the effects of other variables are positively correlated.
It is worth noticing that the coefficients on indirect effects
(spillover effects) are greater than their direct effects (local
effects), showing that urban thermal condition is an interregional
issue and adjacent areas mutually affect the temperature to a
considerable degree, even greater than the influence on them-
selves. Similarly, Zhou et al. [28] and Feng et al. [60] found that
the indirect effects of some factors are greater than their direct
effects in the study of air pollution. Therefore, joint mitigation
measures should be taken based on an overall perspective to
solve urban thermal environment issues as a whole (see Table V).

The direct effects of NDVI and MNDWI are negative and the
indirect effects are positive. It is mainly because that the increase
in woodlands, grasslands, and water bodies relieves the pressure
of local heat island effects, which accelerates the expansion of
the built-up areas and economic activities in neighboring re-
gions, thereby increasing LST. The local and spillover effects of
nighttime light, impervious area, and fossil energy consumption
are positive. The effect of impervious area is the largest, followed
by that of nighttime light and fossil energy consumption. Night-
time light is widely applied to represent anthropogenic activities
such as the construction of built-up areas and the consumption
of energy. The aggregation of human activities not only triggers
local thermal environments but also LST in adjacent areas.
The effects of GDP and population density are significantly
negatively correlated with the agglomeration of LST, suggesting
they may mitigate the local and adjacent thermal condition of
the land surface. The Chinese government has committed to for-
mulating related reports and regulations to ensure the transition
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from high-speed growth to high-quality development since the
19th National Congress of the Communist Party of China in
2017. As the capital of China, Beijing undoubtedly becomes the
pioneer of economic transition. With flourish in high and new
technology industries and modern services, a large crowd of
talents thronged, which decreases urban thermal environments
effectively and promotes sustainable development.

V. DISCUSSION

A. Driving Factor of LST

City is a complex system comprising mixtures of nature, econ-
omy, and society, and changes in urban environments are influ-
enced by many factors [61], [62]. The utilization of multisource
data would provide more accurate results [63]. Ten variables
under four dimensions included solar radiation, topographical
features, surface biophysical parameters, and socio-economic
indicators, were selected in this article. Compared with pre-
vious studies on LST using grid units, this article employed
the existing administrative units, which can avoid choosing the
optimal spatial solutions. The selected grid size will affect the
relationship between LST and its influencing factors to a certain
extent [24], [64], [65]. We explored LST at the district level,
which not only facilitates the formulation and implementation of
heat island effect mitigation strategies [8], [39], but also enriches
our driving factors with data from the statistics department, such
as regional fossil energy consumption. Beijing, the capital city
of China, is a center of human activities and abundant energy
fuels have been consumed [66], [67]. Anthropogenic heat is a
prominent factor influencing the local thermal condition [7], so
fossil energy consumption should be considered when exploring
the driving mechanism of LST effectively.

B. Selection of Spatial Econometric Method

Traditional regression methods are commonly adopted to
analyze the impact on LST [17], [68]–[71], ignoring the influ-
ence of adjacent areas on thermal environments among regions.
As a result, they cannot accurately reflect interregional spatial
heterogeneity [72]. Cities are open ecological systems and have
mutual effects on each other. Spatial econometric models are
identified to capture the spatial aggregation and spillover effects
[55]. In this article, the SDM was employed to understand both
the direct and indirect spatial effects. It might shed light on the
spatial autocorrelation of LST among regions, which is crucial
for interregional mitigation measures implications.

C. Limitations

There are some limitations of this article. The primary concern
is data acquisition. We only considered the spatial characteristics
of LST on an annual basis due to poor data quality (cloud
cover), although the temperature displays the dissimilarity be-
tween various seasons as well as night and day. Further studies
should explore the seasonal, even daily patterns of LST to draw
broader conclusions. Additionally, the study investigated the
driving mechanisms from a global-space perspective, ignoring
the spatial nonstationarity among regions. The present model

could be improved with an exploration of local regression model,
e.g., geographically weighted regression, further enhancing its
accuracy and reliability.

VI. CONCLUSION

Multisource remote sensing and statistical data from 2014
to 2018 were employed to capture the spatial-temporal char-
acteristics of LST in Beijing at a district level, as well as the
analysis of driving mechanisms from the perspective of local
and spillover effects based on a spatial econometric model. The
main conclusions derived from this article are as follows.

1) The LST of Beijing shows a significant decrease trend
from 2014 to 2017, and increases slightly in 2018. Regions
with high LST are agglomerated in the central regions,
whereas the northern suburban areas have a lower tem-
perature of the land surface. According to the results of
Moran’s I index, ranging between 0.479 and 0.549, there
is a significantly positive spatial autocorrelation of LST
in Beijing. Specifically, the districts with high thermal
environments are adjacent in geographic space and the low
LST regions are also surrounded by each other in space.

2) In contrast to some previous studies, we investigated spa-
tial interactions of independent variables in surrounding
areas using the SDM. The results indicate that every
1% increase in LST of adjacent regions would lead to
more than 0.6% increase of local regions. With respect to
exogenous spatial interactions of independent variables,
elevation, NDVI, MNDWI, nighttime light, and fossil en-
ergy consumption of neighboring areas show significantly
positive spatial effects on local LST, whereas the spatial
agglomeration of albedo, GDP, and population density
of surroundings display negative effects on LST in local
areas.

3) By estimating the spatial effects of influencing drivers
based on spatial econometrics, we found that albedo,
GDP, and population density are negative factors for LST,
whereas other variables exhibit positive correlations with
LST. In addition, the coefficients on indirect effects are
clearly greater than their direct effects, showing surround-
ing areas affect the temperature of local regions consider-
ably, even larger than the influence on themselves. There-
fore, mutual prevention and control measures should be
taken to mitigate thermal environments as a whole, which
can strengthen the cooperation among adjacent areas and
promote a win–win situation.
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