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Abstract—Monitoring properties of ice sheets in polar regions is
one of the main challenges in glaciology. There is a large amount
of heterogeneous radar data from the polar regions that have
been gathered through expensive missions. However, retrieving
meaningful information from this large volume of data is still a
great challenge. With the advancement of machine learning tech-
niques in recent years, many scientists are eager to take advantage
of these algorithms and techniques to explore and mine Arctic
and Antarctic data. These advancements, however, have happened
mainly in the area of supervised learning where the models are data
hungry and require large amounts of annotated data. Generating
simulated data can be an effective and inexpensive approach to pro-
vide large labeled datasets for training machine learning models.
In this work, we explore two approaches to simulate arctic snow
radar echogram images, namely a radar scattering physics based
approach combined with some statistical measures and a purely
data-driven approach based on a conditional generative adversar-
ial network. Using several image comparison metrics, we analyze
the utility of both methods for the purpose of simulating echograms.
Our results show that the physics simulator generates images with
good structural similarities, while the purely data-driven approach
achieves better textural similarities for simulated image. Finally,
we also show that by augmenting our real dataset by the simulated
echograms, we can improve our deep learning model for tracking
internal layers of snow.

Index Terms—Generative adversarial networks (GANs), remote
sensing, simulation, snow radar.

I. INTRODUCTION

M ELTING polar ice sheets are contributing to an increase
in global sea-level with a rapid growth rate over the past

several decades [1]. Sea-level rise may lead to coastal flooding
that affects millions of livelihoods around the world. In this
regard, precise estimation of annual snow layer thickness over
time is very important for understanding snow precipitation on
the ice sheets. It is particularly needed to model the dynamics
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Fig. 1. Snow radar echogram image.

of ice sheets and project their future mass balance. One way
of calculating the snow thickness is through radar surveys,
which reveal annual accumulation layers hidden beneath the
ice surface. These annual accumulation layers are caused by
changes in the snow structure or density, which results in a
reflection that is sensed by the radar [2], [3]. The shallow snow
layers have been dated using ice cores and the dominant layers
shown to occur on an annual basis. Combined with appropriate
snow density models or actual on-site measured density profiles,
annual snow accumulation rates can be inferred from the layers
in radio echo sounding data. Many thousands of line-km are
covered in the radar surveys across Antarctica and Greenland.
The massive volume of data products produced requires auto-
matic techniques, which can process and extract the relevant
snow layer thickness information.

As part of the National Aeronautics and Space Administration
(NASA) Operation IceBridge campaign, the Center for Remote
Sensing of Ice Sheets (CReSIS) at the University of Kansas flew
the Snow Radar [4] over Greenland to measure shallow layers of
snow with fine vertical resolution. The collected data have been
processed to produce radar echograms, which reveal the annual
radiostratigraphy of snow as shown in Fig. 1.

To extract information needed by the science community such
as melt rate, layer geometry, and annual snow accumulation,
from the radar data, there is a need for accurate tracking of
annual layers in radar echograms. However, manual tracking
of multiple layers in thousands of echograms generated from
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multiple flights and campaigns is both onerous and ineffective,
with the better alternative being an automated tracking approach
using machine learning or deep learning algorithms.

Supervised learning methods and, in particular, recent ad-
vances in convolutional neural networks (CNNs) [5] have shown
promising results in processing large datasets and understanding
images. These algorithms are trained to learn complex features
from the input images and extract information from them. With
increase in dataset size, the networks learn better and perform
very well on tasks such as image classification [6], [7], object
detection [8], [9], semantic segmentation [10], [11], and image
denoising [12], [13].

Like many other scientific fields, the lack of annotated data,
or the difficulty in obtaining them, is the main barrier for imple-
menting supervised learning methods. These challenges lead to
an insufficient amount of correctly labeled data for deep learning
models, which hampers the supervised learning process [14].

Some semisupervised methods have been used to track the
snow layers; however, many of these tracked layers have either
missing or incomplete labels, which consequently creates a great
amount of uncertainty in the learning process. Therefore, it is
highly desirable to create a large set of synthetic data that can
be used as supplementary training data.

Traditionally, one way to create synthetic data is to understand
and simulate the physical processes or the radar scattering; in this
case, the processes responsible for snow accumulation layer cre-
ation. The works in [3] and [15]–[18] and a host of other works
detail the underlying snow accumulation, firn compaction, and
densification processes, which give rise to the layer reflections
in the echograms. Instead of directly modeling the geophysical
properties of the snow, we use a sizable amount of manually
tracked snow radar data collected over Greenland to extract
statistical measures from the data in order to parameterize sim-
ulated random scattering processes to closely approximate the
actual underlying physical processes. These simulated processes
can then be used to produce enough synthetic annotated data to
augment the training data needed for a deep learning algorithm.
We hereafter will refer to this method as the physics-driven
(PHY) method or physics simulator. However, models that are
trained based on these types of annotated data, using some kind
of supervised learning approach, tend to approximate the maxi-
mum likelihood function, which basically amounts to estimation
of the same physical function via a data-driven approach. Purely
data driven approaches, on the other hand, have demonstrated
great success in generating artificial imagery in recent years.
In particular, generative adversarial networks (GANs) [19] are
successfully used in simulating near-realistic fake images. This
approach can be helpful in the scientific domain for generating
synthetic data, so that they can be used for various types of
supervised learning tasks. For example, Rahnemoonfar gener-
ated synthetic radar depth sounder images [20] and snow radar
images [21] using GANs. However, the GANs only reproduce
the probabilistic distribution of the original data, and not the
physical or biological signals which are inherent in it [20], [22],
[23].

The prime goal of this work is to propose data simulation
methods that generate near-real echograms, and to use them
to enhance the performance of internal layer tracking models
by augmenting the training dataset. Our work in this article is
organized as follows. We first discuss related works in Section II.
We then propose two methods, namely a PHY method (see
Section III) and a purely data-driven method (see Section IV).

Fig. 2. First experiment involves using real radar data to generate simulated
data using a data-driven approach and a PHY method. We use the new simulated
data to improve our layer tracking model. (a) Sample layer information obtained
from a real radar echogram; (b) output of the data-driven simulator; (c) output
of the PHY simulator.

In Section V, we explain our benchmark datset and compare
the performance of the two methods on our benchmark real
dataset. In our experiment, we generate synthetic data with
both data-driven and PHY approaches using the layer data in
our benchmark dataset (see Fig. 2). We compare the results
against the real echograms using some rigorous metrics, which
we describe in Section V-C.

In Section VI, we use the PHY method to generate syn-
thetic layer information, we then use both data-driven and PHY
methods to generate the corresponding synthetic images (see
Fig. 3). In the same section, we also report our quantitative
results after training our deep learning model on our benchmark
dataset augmented by simulated data. We also compare the
quantitative results with previous results in [24] and [25]. Finally,
Section VIII concludes this article.

II. RELATED WORKS

A. Image Simulation Through PHY Methods

The need for glacialogically constrained simulators has been
reported in several past works. A few of these simulators have
been developed albeit for different purposes than internal layer
tracking as most of the current simulators focus on lower
frequency sounding and not on the snow radar’s microwave
frequencies.

Leuschen et al. [26] developed a simulator for future ex-
ploratory missions to Mars for identifying subsurface interfaces
marked by dielectric contrast, which can be up to a few kilo-
meters beneath the planet’s surface. Their model included a
set of standard crustal models for chosen geological regions
using a frequency domain algorithm that modeled physical and
geological conditions such as frequency dispersion, dielectric
layering, and ohmic loss.



YARI et al.: AIRBORNE SNOW RADAR DATA SIMULATION WITH DEEP LEARNING AND PHYSICS-DRIVEN METHODS 12037

Fig. 3. (a) Sample simulated layer information; (b) output of the PHY simu-
lator; (c) output of the data-driven simulator.

Gerekos et al. [27] created a simulator model that expanded
existing models from surface-only or two-layers to an arbitrary
number of subsurface geological layers. Using Snell’s law and
ray tracing, their simulator model used a coherent, facet-based
approach to linearly sum the phase contribution of the reflecting
or refracting rays from each facet at the receiving antenna using
Huygen’s principle. However, their work is more suited for lower
frequency systems that can view the layers as smooth facets as
opposed to being more volumetric in nature as they are at the
microwave frequencies used by the snow radar.

The work in [28] developed glacialogically constrained elec-
tromagnetic models for the interaction of radar waves in firn
and tested these against in situ data from a snow firn core.
Their physical model for snow firn focused on off-nadir surface
clutter migration and volume scattering from air-filled pores in
the inhomogeneous material of the firn. They, however, used a
quasispecular reflection model for the interfaces between layers
of different density because their model was for high frequency
(HF) and very high frequency (VHF) radars well below the
frequencies used by the Snow Radar.

These works and similar papers focus on designing radar sim-
ulators for spaceborne and orbit sounding radars that typically
operate in the HF and VHF range, while the aim of our proposed
physics method is to create a simulator that represents airborne
snow radar data operating in the 2–8 GHz frequency band [4],
[29]. It should be noted here that our proposed physics method
is based on a convolutional model from satellite radar altimetry
[37]. Although full wave electromagnetic simulation methods

such as the finite-difference time-domain (FDTD) technique
can more accurately reproduce the electromagnetic scattering
physics, they are computationally very expensive and require
extensive knowledge of the permittivity and conductivity fields.

B. Image Simulation Through GANs

GANs [19], proposed by Goodfellow et al., are deep learn-
ing based generative models. A GAN model consists of two
submodels, a generator model and a discriminator model. The
generator outputs synthetic images and the discriminator classi-
fies the images as real (actual data) or fake (synthetic images
from the generator). The generator model is dependent on
the discriminator while discriminator updates are independent.
Among different types of GAN architectures, conditional GAN
(cGAN) has gained popularity. While basic GANs generate
images from random distributions unconditionally, cGANs learn
the desired mappings under conditional settings. For example,
an unconditional GAN generates random digits based on the
training while a cGAN generates digits in a range specified by the
user. cGANs were first introduced to generate more meaningful
images by resembling the data distribution for a given condition.
Many noticeable research works have been conducted based on
conditional constraints in adversarial nets. In [30], Mirza et al.
have introduced a cGAN on the MNIST dataset for synthetic
digit image generation. Denton et al. [31] have implemented
the Laplacian Pyramid framework on top of a cGAN for natural
image generation. The models that condition on images have
been improved for many applications such as image generation
from a map generated from a structure-GAN [32], predicting
future frames [33], [34], and image generation from various
scene attributes [35]. Isola et al. [36] investigate conditional
adversarial networks for image-to-image translation problems.

For radar images, there have been several implementations of
GANs for simulating synthetic images. Authors in [37] imple-
ment a GAN architecture named image despeckling generative
adversarial network (ID-GAN) to generate the speckle noise
in SAR images where speckle noise is a multiplicative noise
present in SAR imagery. Ao et al. present a dialectical GAN
in [38], which generates high-quality SAR images in order to
improve the quality of SAR images and reduce the cost of their
generation. In [20], Rahnemoonfar et al. use a cycle-consistent
adversarial network as a data augmentation technique to generate
synthetic radar images, part of which are used during training
of a neural network. A CycleGAN [39] based architecture is
implemented in [21] to generate synthetic snow radar images.
Cycle-GANs have shown impressive results for radar image
generation, but capturing the texture and contrast of real images
more accurately needs further investigation.

In general, the deep learning approach cannot simulate all the
radar characteristics (e.g., Doppler). Thus, the generated images
are potentially valid only for a specified set of radar system
parameters matching those in the GAN training set.

III. PHYSICS SIMULATOR

To simulate echogram images with complete labels necessary
for data hungry deep learning algorithms, we sought to identify
and reproduce prominent physical processes already reported
in the literature that govern the layering and backscatter of
the snow radar. Our approach is data driven in the sense that
we simulate the underlying random processes and parameterize
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Fig. 4. Image of Greenland showing CReSIS flight line used to estimate image
statistics.

TABLE I
KEY PARAMETERS OF THE SNOW RADAR USED DURING DATA COLLECTION

them based on estimated statistics from snow radar backscatter
data collected during one of our flights over Greenland, as shown
in Fig. 4. Table I lists some of the parameters of the snow radar
used. This dataset (hereafter referred to as the “sample dataset”)
covers a 1200 km long flight line from central to north-west
Greenland providing varying snow accumulation conditions.
These data (after stacking and other postprocessing) represent
200 000 rangelines. It should be noted that most of this data
is from the dry snow zone of Greenland where minimal snow
melting occurs even in the summer and there are many detectable
internal layers in the snow radar imagery.

The echogram images are data matrices where each pixel
represents the nonnegative scattering power received from the
targets in that pixel offset and scaled to the 8-bit range 0 to
255. Fig. 5 shows a depiction of an echogram data matrix with
discretized bins (pixels) in both vertical (fast-time) and hori-
zontal (slow-time) dimensions. The figure depicts an echogram
with four rangelines each having three layers. Each pixel in the
figure is denoted by its row (range bin) and column (range line)
indices. A range line is a column in the echogram and usually
contains scattering from the surface (red pixels in figure) and
one or more internal layers (blue and yellow pixels in figure). A
pixel corresponding to a snow layer is usually distinct due to the
increased backscatter or higher image value caused by dielectric
contrasts in the snow at that pixel location. We define layers to
be single valued so that in each column of the image the layer
takes on one and only one value. Snow layers tend to be nearly
flat with smooth variations in the vertical or row dimension.

Fig. 5. Echogram image with the row and column index for each pixel
indicated. Three layers are highlighted and the first range line indices are shown
on the right.

Fig. 6. Illustration of the normalized average or expected backscatter power
from a single snow layer showing the fast rising edge and slow decay for the
falling edge.

Using manually tracked snow layers from the sample dataset,
we set out to reproduce the image’s random processes. The
layer scattering responses generally follow the shape predicted
by the convolution models used in surface altimetry [40], [41].
The shape starts with a fast rising edge followed by a slower,
exponential like, decay with the tracked layer centered on the
peak. This behavior is shown in Fig. 6. Moore and Williams [41]
show that the expectation of the power detected waveform for the
surface can be modeled as the convolution of several constitutive
elements such as the height distribution of the layer and the
pulse limited footprint and expected backscatter. We assume
the Born approximation so that the interaction or multipath
between layers can be ignored. We model the set of layers as the
superposition of each layer independently generated and then
incoherently summed. This is shown in Fig. 7.

Following the convolution model, we simulated the response
by convolving a Gaussian waveform, which approximates the
height distribution of the layer, and an exponential decay wave-
form, which approximates the combined pulse limited area and
layer backscatter roll-off. The peak of the Gaussian is aligned
with the tracked layer location. The combined return for a range
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Fig. 7. Illustration of the average or expected backscatter for a range line as a
linear superposition of each of the individual layers.

Fig. 8. Doppler spectra for a snow layer and the average of multiple layers.
The Doppler spectrum is equivalent to the along-track wavenumber spectrum.

line is the linear superposition of these convolved waveforms—
one for each layer in that range line.

Snow radar scattering tends to be incoherent because scat-
terers that form a layer vary randomly throughout the snow
volume that constitute the layer. Therefore, range lines typically
have minimal to no phase correlation with those in neighboring
range lines. This incoherent backscattering assumption, which
is the basis of the above convolution model, is supported by the
Doppler spectra along snow layers. In general, the spectrum is
broad without distinct coherent peaks. An example of the spectra
from the first layer and the average of the first 15 layers below the
surface is shown in Fig. 8 over a distance of 5 km after the aircraft
elevation variations have been compensated for. The histogram
of the snow radar data in the sample dataset, which includes
along-track incoherent averaging, shows that the distribution of
the peak power along a layer fits a Chi-square distribution. Using
the scaled superposition waveform as the mean power, a Gaus-
sian random process was created to simulate the expected power
returns from each range line. As described later in this section,

we then power detect and incoherently averaged multiple range
lines to create the Chi-square distribution.

To parameterize the layer power generation, the mean power
for layer l, denoted, ml, is found by taking the average power
of the bin that is manually tracked across all range lines where
the layer is defined. The mean power represents the backscatter
received by the radar for each layer and, therefore, encapsulates
backscatter cross section, attenuation, and other affects. The
width of the layers was also found. We estimated the width of
a layer by calculating the range bins it took for the peak power
to decline to 1/e of the layer peak return for all well-defined
and tracked layers in the sample dataset. Based on the resulting
histogram of the estimated layer width, we approximate the
width of the layer peaks, dl, by a uniform distribution between
10 and 15 range bins or rows.

The estimated along track mean peak power, ml, for each
layer is used to scale the convolved exponential and Gaussian
waveform and the resulting range line signal power is given by

Ps(x) =

L∑

l=1

ml exp
−(x− μl)

2

2dl
� u(x) exp (−αlx) (1)

where Ps is the expected backscatter power waveform for each
range line; x is the fast time pixel index; u is the unit step
function; L is the number of layers in the range line; ml is the
mean peak power for layer l, μl is the location or row of layer l
and its generation will be discussed in Section V, dl is the width
of layer l pulled from a uniform distribution from 10 to 15 rows,
and αl is the exponential decay rate of the layer, respectively.
The values of ml, dl, and αl are estimated from the sample data.

To estimate the decay rate of each layer, all range lines in the
sample data are grouped into K groups of 20 consecutive range
lines each. Each group was then incoherently averaged in the
along-track dimension to produce a single filtered range line per
group. Note that the data are already incoherently averaged and
decimated by five during the process to generate the echograms
so the total number of incoherent averages is 100. This ensemble
of K filtered range lines is then used to find the backscatter peak
powerPpeak,lk and the minimum power between this and the next
peak Pmin,lk for each filtered range line k ∈ 1, . . .,K and each
layer l ∈ 1, . . ., L. Ppeak,lk generally corresponds to the location
of the layer since the tracked layer follows the peak power. Using
the range bin distance between the peak and the minimum for
each layer and filtered range line, blk, we compute the estimated
decay rate for each layer as follows:

αl = 1/K

K∑

k=1

(−1/blk) ∗ log(Pmin,lk/Ppeak,lk). (2)

The noise power, Pn, is constant and is estimated from the
sample dataset by estimating the power of the received signal
before the surface return under the assumption that there are no
targets above the surface so that only thermal noise is present.

The complex signal and additive noise are both pulled from
additive white complex circular Gaussian noise, which is then
scaled by the estimated signal and noise power described ear-
lier. The distributions before scaling have zero mean and unit
variance so that

s(x) ∼ N (0, 1) ∈ C, n(x) ∼ N (0, 1) ∈ C. (3)
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After the complex weighted range lines are generated, they
are power detected. The power detected range line with signal
and noise is

P (x) = |s(x)
√

Ps(x) + n(x)
√

Pn|2. (4)

The distribution of the power detected signal follows an
exponential distribution. The final step in the simulator is to
incoherently average M = 100 range lines together followed by
decimation in along-track by M . This results in a Chi-squared
distribution with 2M degrees of freedom. This is done in the
data processing to reduce signal fading which helps produce
smoother and better delineated layering in the images.

IV. SIMULATING DATA WITH CGAN

There exists a vast literature about generating near real im-
agery in the context of deep neural networks. In our work, we
consider the image-to-image translation approach introduced
in [36]. The main motivation for conditional cGAN is to generate
high-quality realistic images upon certain conditions.

cGANs learn a mapping from observed image x and random
noise vector z, to output image y. The objective function of the
cGAN then can be defined as follows:

LcGAN = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))]
(5)

where G and D are generator and discriminator, respectively.
In comparison with the objective function of the unconditional
GAN

LGAN = Ey[logD(y)] + Ex,z[log(1−D(G(z)))] (6)

we can see that the discriminator does not observe x.
In (5), G is supposed to minimize the objective function

against an adversarial D that tries to maximize it. The generator
is supposed to control the discriminator and not to deviate “too
far” from the ground truth. We can achieve that by adding a
Lagrange multiplier using the L2 or L1 distance. Here, we use
L1 since it encourages more pronounced edges. Therefore, our
final objective can be expressed as

G∗ = argmin
G

max
D

LcGAN(G,D) + λLL1(G) (7)

where

LL1(G) = Ex,y,z[||y −G(x, z)||1]. (8)

In this work, for the generator we implemented a U-Net [42]
architecture, which allows skip connections to be added between
the layers of similar size in the encoder and decoder. A typical
encoder–decoder based generator progressively downsamples
input images until the bottleneck layer. After the bottleneck
layer, the process is reversed and the features maps are upsam-
pled to the original size. In the image translation problem, a lot of
information is shared between the input and output. In this sce-
nario, a proper sharing of this information across the network is
crucial. The skip connections in the U-Net allow the later layers
in the decoder to use the features learned in earlier layers in the
encoder. On the other hand, we used a convolutional PatchGAN
as the discriminator, which can model HF structure. Compared to
a regular GAN discriminator, the main advantage of PatchGAN
is that while a regular discriminator decides whether an image is
fake or real based on a single scalar value, PatchGAN penalizes
the structure and makes the decision at the scale of patches.

V. EXPERIMENTAL RESULTS

One of our tasks in this article is to compare the performance
of the PHY and cGAN simulation methods. In this section, we
will compare the two methods and describe our qualitative as
well as quantitative comparison results. The benchmark datasets,
which we use for comparison and our other experiments, are
described in Section V-A. In the following, in Section V-B, we
will explain our simulated data. In the last Section V-C, we will
introduce the evaluation metrics we used for comparing numer-
ical similarity between the simulated and real radar images, and
will present our comparison results.

The ultimate goal of developing simulation methods is to
augment our labeled dataset by generating new real-like images
and their corresponding internal layers. Therefore, we plan red
to generate new simulated data, and later use them to enhance
the performance of our supervised learning model. We discuss
this in later sections of this article; however, in the Section V-A,
we will describe the dataset we will use for this purpose as well.

A. Dataset

Our dataset consists of 2620 radar echograms that were cap-
tured in the year 2012 and are publicly available on the CReSIS
website. There are some semiautomatic techniques proposed
recently, such as [3], [43], which are able to track internal layers
of ice for a given noisy radar sounder image; however, they fail to
track all the layers and in many cases can only partially track the
layers. Fig. 9(a) is a sample of our radar images. Fig. 9(b) shows
the corresponding annotated data generated by a semiautomatic
method, where some internal layers are not tracked at all, and
some are partially tracked. As discussed in [24], we have used
the output labels from semiautomatic techniques as a starting
point for training a deep learning model.

For our experiments, we divide the data to training and test
sets. What we will refer to from now on as the benchmark
training dataset or simply the training set consists of 2360 pairs
of radar images and corresponding semiautomatic annotations.

The rest of 260 pairs of radar images and the corresponding
annotations makes our benchmark test dataset, which we will
refer to as the test set. In both training and test sets, the image
sizes vary, and the number of internal layers in each image can
be different.

We use the test set for quantitative comparison in this section.
However, we have manually completed the partially annotated
internal layers in all of our test data images. Fig. 9(c) presents
an example of a fully annotated image. The number of internal
layers in about 57% of our manually corrected test data is less
than 6 layers. The highest number of layers is 34 across all 260
images.

For more information about the data, we refer the reader to
CReSIS website1 and [4], [29], [44]–[46]. The train and test
datasets are discussed in [24] as well.

B. Data Simulation

To compare the two methods used to simulate radar data, we
generate two sets of simulated data using the annotations of the
test dataset. This will allow us to compare the fake data, which
the simulators generate, with the real data. To train the cGAN
model, we use our training set of 2360 images. We have kept the

1https://data.cresis.ku.edu/data/misc/koenig_TC2016_ML
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Fig. 9. Sample test data. (a) Radar echogram. (b) Semiautomatic annotation. (c) Manually corrected annotation.

same standard hyperparameters for training as described in [36].
After training, we use the trained model to generate 260 fake
images from the binary mask of labels of our test set. For the
PHY simulation, we obtain another set of 260 simulated images
by applying the physics simulator on the labels of our test set. In
Section V-C, we will use these two datasets for comparing the
two methods.

For the purpose of augmenting our real dataset and training a
layer tracker model (see Section VI), we also created a second set
of “entirely new” simulated radar sounder images. This is done
by first simulating “new” layer annotations similar to real radar
layer geometries as seen in the sample dataset (please refer to
Section III) and then applying the physics and cGAN simulators
separately to generate new sets of radar images. Given the spatial
span of the sample dataset, its layer geometry is representative
of how snow accumulation varies over space and with depth.
Therefore, we sought to model the layer thickness process for
each layer using the sample dataset layer statistics.

Using the manual annotations available for the sample dataset,
we estimated each layer’s thickness (snow accumulation) over
space by computing the difference between successive layers
across all the rangelines. The histogram of the data shows that
the probability density function of the accumulation for each
layer is approximately a Gaussian process with slowly varying
along-track mean accumulation. This suggests that, although
there are local variations in each layer thickness from rangeline
to rangeline, there is also a slowly varying trend in the average
layer thickness over space. This varying along track mean thick-
ness corroborates the fact that there are different accumulation
rates over Greenland and that snow accumulation can vary a
lot between different locations. Therefore, we regrouped the

dataset using the thickness of the first layer into four groups
of accumulation zones: shallow, medium, high, and very high
accumulation zones so that each simulated image created from
the synthetic layers belongs to one of these accumulation zones.
Another important process is the correlation between the layer
thickness of different layers at a particular location. This is seen
qualitatively in an echogram image such that the layers often
share a similar trend in their layer geometry and this can be
attributed to the weather and topography of the imaged location,
which tend to be consistent over time as each layer is deposited
at a site. Therefore, to create layers with similar geometry to
that in real data, these processes need to be incorporated in the
model.

To model the HF local variations that exist from rangeline
to rangeline, the power spectral density of each layer thick-
ness after subtracting the along-track mean in each zone was
computed. Similarly, to capture the slowly varying along-track
accumulation mean that describes how the mean thickness varies
across space, we computed the mean thickness and variance
for each zone. The computed mean thickness of each zone
represents the mean accumulation of the layers. Lastly, to partly
model the similar trend that exists in the thickness of the first
layer and subsequent layers and also the geometry of layers in
an echogram, we normalized the layer thicknesses of all the
layers relative to the thickness of the first layer to simulate
correlation between the layers in an echogram. This was done
for all four zones and the distribution of the normalized layer
thickness is approximately Gaussian and we estimated the mean
and variance of each.

Concretely, to simulate the layers in an echogram, the num-
ber of layers is randomly chosen from a uniform distribution
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TABLE II
QUANTITATIVE SIMILARITY OF THE SIMULATED RADAR IMAGES WITH

RESPECT TO THE REAL RADAR IMAGES, CALCULATED OVER THE TEST SET

between 5 and 40. The mean thickness of the first layer is then
generated from a uniform distribution based on the distribution
of the first layer in the sample dataset and this determines the
accumulation zone of the simulated echogram. Next, the mean
thickness of each of the deeper layers is computed by multiplying
the mean thickness of the first layer with the multiplicative factor
drawn from the normalized layer thickness distribution of the
accumulation zone. To capture the underlying random process
governing the thickness of each layer, we fit a filtered Gaussian
random process whose power spectral density matches that of
the layer thickness process for each of the layers. Hence, to
simulate a layer’s thickness, we add the estimated mean layer
thickness and the variance from the filtered Gaussian random
process.

We conclude the generation of a new layer annotation set by
accumulating the simulated thickness starting from the surface
to the deepest layer.

The layer annotation is then passed as input to both the cGAN
model (after training) and the physics based simulator to create
simulated radar images.

C. Comparison of Simulation Algorithms

We now examine the synthetic images generated by both
methods qualitatively, and analyze them in terms of certain
quantitative metrics that we will describe in this section.

A sample of images simulated through both the physics
simulator and cGAN, using a real image annotation, are shown
in Fig. 10. From this figure, we see that the layers simulated
through the physics simulator [see Fig. 10(d)] are able to capture
the actual curvature of the labeled data [see Fig. 10(b)] better,
whereas the images generated by the cGAN [see Fig. 10(c)]
can capture the texture and contrast of the real radar images
[see Fig. 10(a)] better. This can also be seen in the quantitative
similarity between the simulated images and the real radar
images, as tabulated in Table II, and noted in plots of Fig. 11.

We have conducted some quantitative comparisons using
three metrics. The results on the whole set of our test data,
consisting of 260 images, are presented in Table II and Figs. 11
and 12. The metrics used are root mean square error (RMSE),
peak signal-to-noise ratio (PSNR), and structural similarity in-
dex measure (SSIM) for PHY and purely data driven (cGAN)
methods.

The RMSE of an image y with respect to a reference image
x is calculated based on the following formula:

MSE =

∑N
i=1(yi − xi)

2

N
(9)

assuming thatx andy have same dimensions; herexis andyis are
pixel values in x and y, respectively, and N is the total number
of pixels of x. Furthermore, root mean squared error (RMSE) is
defined as

√
MSE. A box plot for RMSE values across the entire

test set and for the two methods is shown in Fig. 11(a).
To evaluate our results quantitatively, we include two other

metrics, namely SSIM and PSNR.
The PSNR and signal to noise ratio (SNR) are commonly used

in signal processing as image quality metrics. PSNR is expressed
as

PSNR = 10 log10(
peakval2

MSE
) (10)

where MSE is the MSE between an image and the reference
image (with which the image is compared), and peakval is
commonly the peak value of the range of the image data type;
for instance, the peakval is 255 for an image of data type
uint8. PSNR is most commonly used to measure the quality
of reconstruction of compressed images. When comparing two
images, the PSNR tends to infinity as the MSE tends to zero.
It means that for identical images the PSNR is going to be
infinite. Therefore, the more similar the two images are, the
higher the PSNR value would be. Generally speaking, a higher
PSNR indicates that the reconstruction quality is high.

Another metric used is the SSIM [47], which is a quality
assessment index. It depends on three terms, namely the lumi-
nance term l(x, y), the contrast term c(x, y), and the structural
term s(x, y), where x and y represent the original and reference
image. The overall index is a multiplicative combination of these
three terms. The structural similarity index is expressed as

SSIM(x, y) = l(x, y)αc(x, y)βs(x, y)γ (11)

where

l(x, y) =
2μxμy + C1

μ2
x + μ2

y + C1

and

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

and

s(x, y) =
σxy + C3

σxσy + C3

here μx, μy, σx, σy, and σxy are the local means, standard
deviations, and cross-covariance for images x, y. The constant
C1 is a small constant introduced in both the denominator and
numerator to avoid instability when μ2

x + μ2
y is very close to

zero. The constantsC2 andC3 are introduced in a similar manner
(see [47]). Here, α > 0, β > 0, and γ > 0 are parameters used
to adjust the relative importance of the three components. For
simplicity, we setα = β = γ = 1 andC3 = C2/2 in this article.

The SSIM attempts to model the structural change of an
image by comparing small windows or subsamples in the image
to compare the luminance, contrast, and structure of the two
images. This metric gives us a robust measure of the perceived
changes in the image. The closer the SSIM is to 1.0 the higher the
quality of the image. To make the comparison more tangible, we
calculate the SSIM as a function of depth for the whole dataset
for both methods. The common depth among all our benchmark
data is about 260 pixels and the snow surface is on average
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Fig. 10. Sample of a synthetic radar echogram simulated by cGAN (c) and physics simulators (d) using the label data (b) of a real radar image (a). The cGAN
generator uses a binary mask of what is shown in (b) as input. (a) Real data. (b) Layer annotation. (c) GAN simulated data. (d) Physics simulated data.

Fig. 11. Statistical comparison of three metrics for the whole test dataset. The metrics are root mean-square error (RMSE), PSNR, and SSIM for PHY and data
driven (cGAN) methods.
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Fig. 12. SSIM as a function of depth. The vertical line denotes the approximate
bin location of the surface return.

about 50 pixels below the top of the image. Fig. 12 shows the
50-moving average of the SSIM as a function of depth. It is
apparent that that the PHY method does a better simulation above
the surface, since there is almost no texture above the surface,
while cGAN tends to add unnecessary texture. However, cGAN
performs better below the surface.

From Table II, we see that the SSIM of physics simulator is
close to the cGAN even though the former’s output does not
possess the same texture and contrast as the real radar images.
This is primarily because the physics simulator replicates the
exact curvature of the training labels, and is, hence, able to match
the layer curvatures present in the real radar images. On the
other hand, cGAN shows higher PSNR values than the physics
simulator since cGAN is able to learn the pixel intensities and
their gradients from real radar training images. Moreover, cGAN
gives a lesser RMSE than the physics simulator, highlighting the
former’s usefulness in reconstructing images.

VI. MODEL TRAINING AND PREDICTIONS

As mentioned previously, one objective of generating syn-
thetic data is to build a larger and more robustly annotated
dataset. This dataset is going to be used in training deep learning
models for tracking the internal annual accumulation layers. In
our previous works [24], [25], we have proposed a deep learning
model for tracking internal annual accumulation layers, using
real data. As discussed in the aforementioned works, to improve
the accuracy of prediction of our model, we need many more
fully annotated data. In this section, we will use a combination
of our real data and the newly simulated data to train our deep
neural network.

Our approach to generate simulated data for this experiment
is explained in Section V-A. We first generated about 1500 pairs
of simulated radar images and the corresponding annotated data
(or labels) using the PHY simulator; we call this dataset the
physics-generated data (PD). Next we used the cGAN simulator
to generate another set of simulated data. To this end, we used
the 1500 “labels” from PD, which was synthetically generated
based on the statistics of the sample dataset, and generated
corresponding near-real simulated data using the (pretrained)
cGAN generator. We call this dataset the cGAN-generated data
(GD).

In this work, we have conducted the following experiments:
1) we train our deep learning model on real training data

(RD) and PD, and test it on our (real) test set;
2) we train our deep learning model on RD and GD, and test

it on our (real) test set;
3) we train our deep learning model on RD and PD and GD,

and test it on our (real) test set.
For training our deep CNN, we have kept the same hyperpa-

rameters as in [24].
Here, we report three metrics for evaluating the performance

of our internal layer tracker; namely, the optimal dataset scale
(ODS) or best F -measure on the dataset for a fixed scale, the
optimal image scale (OIS) or aggregateF -measure on the dataset
for the best scale in each image, and the average precision
(AP) on the full recall range (equivalently, the area under the
precision-recall curve) [48]. For evaluation purposes, we apply
a standard postprocessing nonmaximal suppression technique to
obtain thinned edges.

Table III shows the evaluation results of our experiments. The
evaluation is performed using the same test dataset (our test set)
as in [24]. The first set of three columns in Table III presents
the evaluation results for tracking the internal layers after the
model is trained on real snow radar data. The second set of three
columns shows the quantitative evaluation results for the layer
tracking model trained on augmented training set by synthetic
radar data generated by the cGAN. With the same pattern, the rest
of the table shows the evaluation results for the layer tracking
model trained augmented training set by synthetic radar data
generated by the physics simulator, and finally the evaluation
results after training the model on augmented training set by
RD, PD, and GD. We use the fuse as our final predictions, the
best results are in bold fonts.

VII. DISCUSSIONS

As reported in Table III, the addition of the GD and the PD can
improve all outputs of our multiscale deep learning model. This
justifies the notion that augmenting the training set of deep neural
networks with well annotated synthetic ground truth improves
the algorithm’s performance on radar data.

Our multiscale deep learning model is explained in [24] and
[25] where the notion of side-output is described as well. Briefly
speaking, the main property of the side-outputs is that the later
side-outputs present the coarser structure of the image, while the
earlier side-outputs represent the low-level details of the image.
We see that at high resolutions, the simulated data captures the
features that help the neural network distinguish layer containing
pixels from nonlayer pixels resulting in the better performance
of the deep neural network. However, given that the fifth side
output is worse, this suggests that the added simulated data when
downsized to very low resolution misleads the network.

The experiment of augmenting data with the physics simu-
lated echogram reports the best final prediction (the fuse output),
in addition to good improvement for all other side-outputs.

This confirms that the surface altimetry convolution model
correctly captures the underlying processes responsible for lay-
ering information in echogram images, which results in a better
performance of the algorithm. This also confirms the adequacy
of the model as a good alternative to other rather computationally
expensive simulation models, such as the FDTD model.

However, it has to be noted that the PHY “labels” for synthetic
radar images are produced by imitating the geometries of the
layers of real radar echograms in the sample dataset. Therefore,
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TABLE III
EVALUATION OF OUR MULTISCALE DEEP LEARNING MODEL [24] TRAINED ON VARIOUS AUGMENTED DATASETS

the synthetic layer output of the physics generator depends on
diversity of the layer geometries in the sample dataset used to
set the parameters of the physics simulator—in this sense, the
generator is data-driven. As noted earlier, most of the images in
the current sample dataset are from the dry-snow zone in central
Greenland. We note that this is a limitation in the geometry of
layers produced in the synthetic dataset, which does not capture
all the possible layer geometries such as those from percolation,
wet snow, and ablation zones.

In general, the test data for evaluation of the deep learning
method come from all over Greenland including zones with
rapidly varying accumulation conditions and the ice sheet mar-
gins where significant melt occurs. These real test data have
greater variation in their layer geometries including sharper
changes and high slopes than those generated by the simulators.
Therefore, simulating layers with these geometries will poten-
tially improve the performance of the deep neural network.

It is also important to note that the experiment of augmenting
data with the cGAN simulated echogram reports the best results
for almost all of the metrics for the side-outputs; this confirms
that the GD can capture the details and noise in images better,
as we expected.

VIII. CONCLUSION

Our contribution in this work includes the following:
1) developing the first PHY algorithm for simulating the

internal layers of ice sheets;
2) generating near-real snow radar images using purely data

driven algorithms;
3) extensive experimental results on data driven and PHY

simulators;
4) deep quantitative and qualitative comparison of the two

aforementioned methods and their effects on improving
the training of neural networks.

In this work, we implemented novel approaches to deal with
the lack of fully annotated dataset, which is a major challenge
in applying supervised deep learning algorithms, particularly to
radar data. We explored two approaches to create “near-real”
synthetic radar images using (i) a data-driven cGAN based
approach and (ii) a PHY approach, using the glaciological
relationship between snow layers, which we called the physics
simulator (PHY). To the best of authors’ knowledge, this is the
first work that uses both cGAN and physics-based approach us-
ing the surface altimetry convolution model to create simulated
radar echograms with snow accumulation layers.

We find that the physics simulator is able to learn the layer
curvature better than GANs, whereas the latter can learn the
texture and contrast variations better. This results in cGAN
method showing better SSIM, PSNR, and RMSE than the
physics simulator.

Using the physics simulator layer generator, we created new
layers that match the physical properties (probability density
function and power spectral density) of real layers and used
them as input to the PHY and cGAN methods to create simulated
echograms.

We showed that by adding simulated data to existing radar
dataset, the performance of a deep learning model can be
improved. In two of our experiments, we expanded our train
dataset by about 50% by adding simulated data, and recorded
improvements in two major metrics. To further improve these
results, we note possible improvements to the current simulated
dataset, which does not contain all the accumulation conditions
that exist in real radar data. Expanding the sample dataset from
which the physics simulator is parameterized will improve the
simulated echograms to include layers with nonstationary mean
and high curvatures similar to those seen in real radar echograms.
Filling this gap is the subject of our future research.
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