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Abstract—Enormously hard work of label obtaining leads to the
lack of enough annotated samples in the hyperspectral imagery
(HSI). The mentioned reality inferred the unsupervised classifica-
tion performance barely satisfactorily. Unsupervised domain adap-
tation is exploited for knowledge delivery from a labeled source
domain to boost the performance on an unlabeled target domain.
In this article, we propose an unsupervised domain adaptation
architecture with dense-based compaction (UDAD) for HSI clas-
sification (HSIC). The processes of spectral–spatial feature com-
paction, unsupervised domain adaptation, and classifier training
are incorporated with an integrated framework to complete the HSI
cross-scene classification. The core of the proposed framework is to
utilize adversarial domain learning to reduce the domain discrep-
ancy. To this end, the classifier trained in the source domain would
accomplish well in the target domain for the unsupervised HSIC.
Besides, to extract the discriminative spectral–spatial feature for
the HSI domains, a dense-based compaction network is applied to
complete the semisymmetric mapping. Our experiments illustrate
that the UDAD model yields more effective classification perfor-
mance than other state-of-the-art unsupervised HSIC methods.

Index Terms—Adversarial training, domain adaptation, HSI
classification (HSIC), transfer learning.

I. INTRODUCTION

HYPERSPECTRAL remote sensing technology benefits
from the development of spectral imaging and supplies

sufficient information for target recognition through hundreds
of continuous and subdivided spectral bands [1], [2]. As a
typical and fundamental application of the hyperspectral im-
agery (HSI) analysis, HSI classification (HSIC) plays a signif-
icant role in the fields of land cover detection and agriculture
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monitoring [3]–[9]. Nowadays, the approaches utilizing spatial
features assisted with spectral information to improve the classi-
fication performance have attracted considerable attention in the
fields of HSIC [10]–[14]. In [10], an iterative target-constrained
interference-minimization classifier performed spectral–spatial
HSIC by adopting an iterative Gaussian filtered feedback mode
to combine the spatial context information to spectral feature. In
[13], the HSIC model based on sparse theory was established,
which achieved excellent performance with the sparse repre-
sentation of the HSI sample. With the progress of the various
artificial neural network structure, spectral–spatial classification
models based on deep learning have made breakthroughs in
the HSIC fields [15]–[26]. Yu et al. [15] proposed a 2-D-
CNN architecture with a deconvolution layer and embedded
hashing semantic features to improve the HSIC accuracy. In
[16], an in-depth feature learning model was presented based
on a multidecision labeling policy, which takes two decision
measures to prelabel local and global samples. In recent years,
graph convolutional network (GCN) aims for irregular data
representation, and analysis has been applied in the process-
ing of hyperspectral data. In [17], a multiscale dynamic graph
convolution framework was presented to reduce the impact of
a low-quality predefined graph, which exploited the refined
feature representation for irregular HSI cube. Hong et al. [18],
proposed supervised miniGCNs in a minibatch fashion to over-
come the barrier of substantial computational cost, especially
in large-scale remote sensing occasions. Meanwhile, the gen-
erative adversarial network (GAN) has drawn much attention
to generating samples for solving complex labeling problems
in hyperspectral datasets. In [19], a GAN-based HSIC system
was employed, the adversarial training for sample generation
that consisted of two versions: 1-D spectral and 3-D spectral–
spatial classifiers. Wang et al. [20], developed a semisuper-
vised variational GAN for synthetic sample generation, which
adopted an encoder–decoder framework to complete the fea-
ture mapping. It is worth noting that most current models
primarily focus on the HSIC in a supervised style with label
annotation.

With a wealth of observation data produced by the hyper-
spectral satellites, a large number of unlabeled samples cannot
be directly used for feature recognition and classification. There-
fore, utilizing a vast amount of samples without label annotation,
called unsupervised HSIC, meets the current target classification
requirement. Compared with the time-consuming and challeng-
ing task of labeling samples, cross-scene classification learning
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has attracted much attention in HSIC [27]–[29]. Recently, trans-
fer learning provides a popular option to solve the cross-scene
classification of HSI, which aims to transfer the knowledge
implied in the source domain to the target domain by feature
adaption. In this style, the classifier trained with the label sample
in the source domain can produce a compelling performance in
the target scene. The domain feature is typically aligned on map-
ping subspace in the traditional domain transferring pattern by
embedding kernel subspace based on the shallow structure [30]–
[34]. This kind of realization mainly used the projection princi-
ple to map the features of the two domains into the same subspace
and obtain consistent features through subspace alignment. In
[29], an unsupervised representation method was accomplished
for HSI scene classification by utilizing a weighted deconvo-
lution network to learn the feature maps. In [30], an HFAA
model based on feature adaptation and augmentation for cross-
scene HSIC was proposed, which gained a common subspace
with projection matrices to extract the transferable knowledge.
Qian et al. [31] presented a dictionary learning-based domain
adaptation for cross-scene HSIC, which was implemented by
projecting the spectral features of the source and target domain
into a shared embedding space based on multitasking dictionary
learning.

Due to the limitations of the modeling and representation
capabilities of the shallow structure, the mentioned scheme is
difficult to obtain satisfactory classification performance. In
recent years, experts and scholars have introduced deep learning
into hyperspectral transfer learning, and proposed the deep
transfer learning framework to achieve cross-domain feature
mapping. This type of approach utilizes deep learning networks
to implement feature conversion and distribution alignment,
which constructs measurement criteria in the spectral space to
make the distribution of the maps of the HSI domains as close
as possible. The deep transfer learning model [35]–[37] usually
consists of: a) a pertrained network to extract the spectral–spatial
feature of the source domain and train the labeled sample to
generate a classifier and b) a fine-tuning phase adopted in the
target domain to implement the feature adaption. In [35], a two-
branch deep CNN architecture was established independently
to extract the spectral and spatial features. The lower layers of
the proposed network were pretrained in the source domain, and
top layers were trained for the target scene classification after
fine-tuning. Jiang et al. [36] proposed a 3-D-SRNet method to
implement HSI cross-scene transfer learning by collaborating
the 3-D separable ResNet to extract the spectral–spatial feature
instead of the 3-D convolution operation. In which the pretrained
model is transferred to the target HSI dataset by fine-tuning. In
[37], a cross-scene deep transfer learning method was built on
sharing the effective contents with a joint probability distribu-
tion adaptation approach. The mentioned deep transfer learn-
ing classification methods have brought significant progress to
the cross-scene HSIC. Nevertheless, the classification accuracy
propagates with the insufficient feature extraction during the
hyperspectral source domain pretraining process, which results
in negative migration. Besides, the complicated discrepancy
between the source domain and target domain caused by the

hyperspectral imager and different sun-view poses challeng-
ing issues of domain adaptation with limited training samples.
Recently, the GAN framework [38] integrated with a generator
and a discriminator has attracted extensive attention in various
machine learning tasks. Notably, the adversarial discriminative
domain adaptation (ADDA) model [39] based on GAN has sup-
plied a new approach for transfer learning, which is implemented
with adversarial training to solve the domain shift for the feature
adaptation. Nowadays, unsupervised domain adaptation [40],
[41] attempt to handle complicated scenarios without annotated
information attracts more attention in the application field. Gen-
erally, in an unsupervised domain adaptation, the source and
target domains are drawn from different distributions but contain
the same categories. The unsupervised pattern is implemented
without leveraging the label information of the target scenes.

This article proposes an unsupervised domain adaptation ar-
chitecture with a dense-based compaction (UDAD) model for
HSI transfer learning classification. It needs to be noted that
the application assumption of our method is that the source
HSI has labeled samples, whereas the target HSI lacks labeled
training data for a classification task. Practically, we accomplish
the discrepancy reduction with the designed adversarial domain
learning framework in the proposed method. In this way, the
classifier pretrained with the labeled samples of the source
domain is acceptable for the unlabeled target domain. Therefore,
we call the unsupervised classification for the target scene.
The UDAD framework is mainly composed of three phases,
including labeled domain training, unsupervised domain adap-
tation, and unsupervised target classification. A spectral–spatial
dense network with a compact style of feature organization
is employed to construct feature representation of the source
domain in the learning phase. Adversarial domain adaptation
based on the semisymmetric mechanism is built to complete the
feature alignment between the source and the target domain. The
discriminator in the UDAD model is implemented with the fully
connection layer, which is responsible for the recognition of the
mapping source. Afterward, the trained classifier is tested in the
target domain to complete the HSI target scene classification
with an unsupervised mode. In summary, the main contributions
of this article are listed as follows.

1) The fine-tuning phase for the traditional adaptation is
ineffective due to the lack of labeled samples in our as-
sumption. A new unsupervised adaptation model for HSIC
is presented in this article. To the best of our knowledge,
the unsupervised domain adaptation implemented with
dense feature compaction is the first attempted to develop
for feature alignment of HSIC with the cooperation of the
compact style and an adversarial discriminator.

2) The backbone of the training network is constructed by a
dense-based CNN in a concatenation style. The advantage
of this pattern performs discriminative feature representa-
tion in the labeled learning phase, which is beneficial for
knowledge transferring during the unsupervised domain
adaptation.

3) We compared extensive experiments under the differ-
ent domain discrepancies, and provided a comprehensive
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Fig. 1. Overview of hyperspectral cross-scene classification with the UDAD network. The proposed scheme is conducted in three steps. First, the discriminative
spectral–spatial features of the HSI source domain are exploited in the trained phase. Next, the domain distribution alignment is completed with adversarial learning
based on the mapping of different scenarios. Finally, the unsupervised HSIC of the target scene is accomplished with the trained classifier.

analysis of the classification results of the UDAD frame-
work, which demonstrated the proposed method could
effectively improve the domain generalization ability.

The rest of this article is organized as follows. In Section II,
the details of the proposed UDAD architecture are described.
Section III provides the experimental results and analysis.
Finally, Section IV concludes this article.

II. PROPOSED APPROACH

Fig. 1 illustrates the flowchart of the proposed UDAD model
composed of three modules, including source domain pretrain-
ing, adversarial domain adaptation, and the target domain clas-
sification. First, the source domain training phase is adopted
to extract the most discriminative spectral–spatial feature for
training the source HSI classifier. Second, an unsupervised do-
main adaptation focuses on the spectral–spatial feature adaption,
which is implemented by a designed generative adversarial
framework with a discriminator that attempts to distinguish the
feature difference. Finally, the unsupervised classification of the
target HSI is predicted by the pretrained classifier of the source
domain. The components of the framework are further described
in detail.

A. Labeled Domain Training

Practically, assume that the sample of an HSI in the labeled
source domain is denoted as Xwith the dimension of m×n×u,
and the distribution with sample X labeled Y is defined as PS .
Similarly, the distribution of the unlabeled target domain is
recorded as PT . The core task is to acquire a rich representation
of the source domain of HSI and improve the discriminate
knowledge for transfer learning.

In the UDAD model, we construct the dense convolutional
framework denoted as MS for the spectral–spatial feature ex-
traction of the source HSI. The detailed structure of the MS is
shown in Fig. 2, which is a multilayer network that operates

on a dense-based network. Specifically, we employ two dense
blocks to assemble discriminative spectral–spatial features. To
be specific, each dense block with different kernel sizes consists
of two convolution layers and one activation layer.

The fundamental convolution layer is designed to exploit
the spectral–spatial feature via sharing weights and biases of
neurons in adjacent layers. The produced map fn performed
convolution is formulated by

fn = fn
i Θw + b (1)

where ω and b are the weights and biases of the network, Θ
refers to the 2-D convolution operator, and fn

i represents the
compacted input of the nth layer. Subsequently, the feature
mapping is activated by the ReLu function.

The dense block is primarily utilized to concatenate the output
of all previous layers in a feed-forward style, aiming to reduce the
possibility of gradient disappearance. In this style, the compact
network can benefit from more in-depth network training. The
dense operation is defined as follows:

fn
i =

n−1∑

p=1

fp. (2)

Except for the extraction module MS , the classifier CS is
essential for the labeled source training phase. We design the
classifier with one fully connected layer and one activation layer.
Based on the training sample of the source domain samples
{(Xs, Ys)} = {(x1, y1), . . . , (xn, yn)}, the training of CS is
completed by the categorical cross-entropy loss.

Lcls (XS , YS) = E(xs,ys)∼(XS ,YS) −
K∑

k=1

I[k=ys]

× logCs (MS (XS)) (3)
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Fig. 2. Structure of the dense CNN of the proposed UDAD network. The node ◦ denotes a dense module. Three embedding layers are utilized in the compact
model, including the convolution layer (Layer 0) for initial spatial feature extraction, the transition layer (Layer m) for feature compression, and the adaptive
pooling layer (Layer n) for feature nonlinearization.

where MS represents the extracted feature, Krepresents the
number of the class, E denotes the expectation, and I represents
the identity matrix.

B. Unsupervised Domain Adaptation

Unsupervised domain adaptation for the cross-domain HSIC
aims to decrease the domain shift and improve the alignment
capability between a labeled source HSI and an unlabeled tar-
get HSI. In this article, we proposed an adversarial domain
adaptation framework for HSI based on the recently designed
ADDA framework to generalize the feature distribution of the
source domain MS and target domain MT . Fig. 3 shows detail
of the adversarial discrimination of the proposed model. In
which the MS and MT that built by the dense network obtain
the spectral–spatial mappings of the two scenarios. Adversarial
learning for HSI feature alignment is implemented by alternating
minimization between two functions based on GAN loss. In the
following part, we give the adversarial training procedure of the
proposed method.

The domain discriminator, denoted by D, is used to dis-
tinguish which domain the spectral–spatial feature mapping
belongs to. As shown in the top branch of Fig. 3, both MS

and MT are fixed during the D training phase. The conver-
gence capability is improved by first initializing the weights
of MT with the weights of MS , i.e., θMT

= θMS
. The train-

ing sample set is denoted by X = [XS
∗, XT ], where X∗S =

{(xS1
), . . . , (xSn

)}is the unlabeled source domain samples,
and XT = {(xT1

), . . . , (xTn
)} represent the unlabeled target

domain samples. The task of the D is to declare which domain
the feature mappingMS(XS

∗) andMT (XT )comes from, which
is recorded asCd. We assign the label of 1 and 0 to the source and
target domains, respectively. The discriminator D is optimized

Fig. 3. Detail of the adversarial training of the unsupervised adaptation part.
On the whole, two subsections proceed alternatively to achieve the adaptation.
The top figure shows the training implementation of the discriminator specified
with the flow of the green line, and the bottom figure demonstrates the training
process of the feature extractor of the target domain indicated with the flow of
the red line.

according to a standard supervised loss by the following formula:

LadvD (XS , XT ,MS ,MT ) = −ExS∼XS
[logD (MS (XS))]

− ExT∼XT
[log (1−D (MT (XT )))] . (4)

Adversarially, the MT need to construct an output that has
the same contribution to the output of the MS . As shown in
the bottom branch of Fig. 3, the purpose of MT optimization
is to unify the distribution of the two domains, and we use
the defined objective to train MT alternatively until aligning the
target spectral–spatial distribution to the source HSI. The label
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of the sample XT of the target domain is assigned as 1 in the
implementation of this phase. The target mapping is optimized
with D, fixed according to a constrained adversarial objective
for MT defined as follows:

LadvMT
(MT , XT , D) = −ExT∼XT

[logD (MT (XT ))] .
(5)

C. Implementation Details of the UDAD Model

Due to the characteristics of feature reusing, the dense net-
work performs well even with a small number of output layers.
However, the compact connection causes an excessive burden
with the depth addition. To solve this problem, in this arti-
cle, we separated the whole dense network into two blocks to
decrease the number of the output channel. Moreover, to increase
the fitting ability, we utilize a transition layer as the intermediate
node to implement feature integration composed of the bot-
tleneck and max-pooling layers. Specifically, the max-pooling
layer is employed to accomplish the feature compression.
A 1× 1 convolution layer is utilized as a bottleneck layer for fea-
ture dimensionality reduction in the dense block. In general, the
pooling layer and the bottleneck layer are used simultaneously
to decrease the parameters of the UDAD. Two fully connected
layers with 50 neurons build the discriminator network. Besides
solving the collapse problem, the batch normalization policy is
applied in the independent module, and the optimizer adopted
is ADAM.

The HSI target domain is unlabeled in the adversarial do-
main adaption, which caused an optimization problem best
to minimize the distance between the source and target map-
pings. Recent methods have favored sharing weights partially to
learn parameters for each domain individually. In this work, a
semisymmetric mechanism is applied to achieve effective adap-
tation, in which not all parameters are participated in learning an
asymmetric mapping of the feature space. In detail, we initialize
the parameters ofMT ,the target domain with the trained settings
MS , and the unsupervised adaption learning is implemented by
training MT and D in an adversarial style by minimizing the
GAN-based loss.

D. Unsupervised Classification on Target Domain

After the spectral–spatial feature adaption, the different sce-
narios are provided with a similar feature distribution. Therefore,
the classifier for the source domain performed on the target
domain exhibits promising performance for HSI cross-scene
classification. In addition, the samples in the target domain are
unlabeled, which is an unsupervised training mode. In summary,
the steps of the unsupervised cross-scene HSIC with the UDAD
architecture are outlined as follows.

III. EXPERIMENT AND RESULT ANALYSIS

A. Data Description

In this section, we adopted three HSI datasets to evaluate the
performance of the proposed method. The first one is called the
Pavia University data, and it is a part of the hyperspectral image

Algorithm 1: Training of the Labeled Domain.

Input: {(Xs, Ys)}, iteration number N1.
Output: Weights and bias of MS and CS .
Initialize: θMS

, θCS

For i = 1 to N1 do
Optimize MS , CS according to the (3) with the
Gradient descent method.
θMS,θC=←�θMS,θC(Lcls)

End

Algorithm 2: Unsupervised Domain Adaptation.

Input: X = [Xs
∗, Xt], iteration number N2.

Output: Weights and bias of MT and D.
Initialize: θD, θMS

, θMT

For i = 1 to N2 do
Optimize MT , D in turn according to the (4) and (5)
with the Gradient descent method.
θD =← −∇θD (LadvD)
θMT

=← −∇θMt
(LadvMT

)
End

Algorithm 3: Unsupervised HSIC of the Target Domain.

Input: XT = {(xT1
), . . . , (xTN

)}, Sample number N .
Output: Prediction label {YT1

· · ·YTN
}

For i = 1 to N do
YTi

= CS(MT (xTi
))

End

Fig. 4. Pavia Center scene. (a) False-color image with band (13, 78, 41).
(b) Colorful ground-truth image.

of Pavia city in Italy made. This image contains 103 bands with
a wavelength range of 0.43–0.86 μm after removing the noise
and water bands, and the spatial resolution is 1.3 m. The data
consists of nine types of classes with a resolution size 610 ×
340. In the following experiment, we analyze this scene together
with the Pavia Center to accomplish the cross-scene knowledge
transferring. The last band of the original cube is abandoned,
to keep the same band number with the other Pavia scene. A
false-color image is shown in Fig. 4(a).
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Fig. 5. Pavia University scene. (a) False-color image with band (34, 97, 85).
(b) Colorful ground-truth image.

The second dataset is the Pavia Center, which was captured by
ROSIS with the same spectral coverage and spatial resolution as
the Pavia University. The image is 1096× 492 with 102 spectral
bands. Although the two datasets of Pavia have nine classes,
the seven same categories are analyzed in our experiments.
A false-color image is shown in Fig. 5(a), the ground truth image
of the Pavia University and the Pavia Center with seven classes
are shown in Figs. 4(b) and 5(b), respectively.

The last dataset is the Botswana data, which was acquired by
the NASA EO-1 Satellite over the Okavango Delta in the period
2001–2004. This scene consists of 256×1476 pixels with 145
bands, after removing noisy bands. In our experiments, we have
divided the image into the top and bottom parts as the source and
target domain, respectively. The false-color composite image
and the ground truth image with six picked classes are shown in
Fig. 6(a) and (b).

B. Experimental Settings

To examine how the proposed architecture benefits the HSIC
of the target domain without training labels, we exploited a series
of other unsupervised classification models for comparison with
the UDAD. In our article, KNN is implemented with principal
component analysis and k-nearest neighbor cluster algorithm.
The OSDA approach [42] was implemented by open set domain
adaptation and GAN, which created a cooperative model to
classify data from different classes. For a fair comparison, we
implemented the OSDA method with the same hyperparameters
as shown in [42], except for the batch size of 64 and iteration
of 300. The DANN method [43] achieved domain adaptation
by aligning the distributions of features through standard back-
propagation training. In our experiment, we set the kernel size
of the feature extraction network to 3×3 instead of 5×5, and
the classifier and the discriminator have the same setting as the
reference.

The unsupervised classification method with the classifier
trained from the source domain is recorded as the UDHS method,
which is implemented without any domain adaption. Whereas,
we accomplish the discrepancy reduction with the designed
adversarial domain learning framework in UDAD. The other
compared methods are the deformation of the proposed model,

TABLE I
HYPERPARAMETERS SETTING OF THE HS-ADDA

TABLE II
HYPERPARAMETERS SETTING OF THE DENSE CNN FOR FEATURE EXTRACTION

including the HS-D1 model for the network UDAD without the
second dense block, and the HS-D2 method for the proposed
system without the first dense block. The UDAD without the
compact scheme is recorded as HS-ADDA [40]. The settings
of the CNN-based feature extractor are given in Table I. All
experimental results are performed on a computer with a 64-bit
Windows10 system, which is configured with Intel (R) Pen-
tium (R) G4560 SR32Y@ 3.50GHz, 16G operating memory,
PyTorch-Cuda 10-cudnn7 1.4.0, and python 3.6 simulation plat-
form. We adopt the overall accuracy (OA), average accuracy
(AA), and statistic kappa coefficient (Kappa) as objective criteria
to evaluate the performance of each method.

The execution of all the compared methods is conducted by
five-times. All results reported in our experiment are recorded in
the form of mean ± standard deviation. The learning rate is set
to 0.0001, the patch size is 11×11, N1 for the source classifier
is set to 200, and N2is equal to 1000 for the adversarial training.
Further, according to the semisymmetric mechanism, the same
configuration of MS and MT is designated in Table II. Table III
gives the number of training samples in different domains for
the three datasets for cross-scene classification.

C. Results and Analysis

To perform the domain generalization ability of the proposed
model, we conduct a series of experiments on the UDAD to
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Fig. 6. Botswana scene. (a) False-color image with band (15, 37, 86). (b) Colorful ground-truth image. The upper and lower parts of the red line are selected as
the source domain and target domain, respectively.

Fig. 7. Classification results of the Pavia Center with compared methods. (a) KNN. (b) OSDA. (c) DANN. (d) UDHS. (e) HS-ADDA. (f) HS-D1. (g) HS-D2. (h)
UDAD.

TABLE III
NUMBER OF TRAINING AND CLASSIFICATION MODEL FOR THE HSI DATASETS

tackle the HSIC with different domain shifts. First, we train the
Pavia University scene as the source domain and perform an
unsupervised classification on the Pavia Center image. In this
experiment, we randomly select 100 samples for each class in
the source HSI to pretrain the dense CNN. The colorful clas-
sification maps and the unsupervised classification results are
shown in Fig. 7 and Table IV. As given in Table V, the proposed
model generates the best OA of 87.97%, AA of 88.02%, and
Kappa of 85.50%, which is better than other transfer learning
methods. Also, the HS-D1 generates the OA of 73.36%, and
the HS-D2 obtains the OA of 81.49%, which illustrates the
feasibility of the compact structure for the feature extraction.
It is noted that the KNN with ten primary components yields the
worst performance. We also conducted the experiments with the
number changed from 5 to 25 with an interval of five to evaluate

the effect of the different numbers of the primary components.
Consequently, the values of OA are 34.18% and 32.25% with
numbers 5 and 25, respectively. And the values of AA vary from
37.74% to 36.25%. The obtained results illustrate that the com-
ponent number has less effect on the KNN method. The UDHS
approach implemented the unsupervised classification with the
classifiers trained in the source domain. As we can observe,
the OA is provided of 68.28% with UDHS, which means the
designed feature compaction supplies better representation than
the approach without domain adaptation in this situation.

The second experiment is tested on the unlabeled Pavia Uni-
versity with the labeled Pavia Center as the source domain. We
adopt 100 source samples for each class in the Pavia Center.
The same parameters are set same as the first experiment.
Fig. 8 and Table V demonstrate the classification results of
the related models. The UDHS method yields the worst perfor-
mance of HS-ADDA with 73.08%, and it shows unsatisfactory
results without dense-based compaction. Compared with other
methods, our proposed method generates the best performance
than other compared methods. Moreover, the proposed UDAD
achieves better accuracy in most classes. The Pavia University
and Pavia Center have more domain discrepancies in the two
scenes. The comparison results reflect our method achieves a
favorable effect on the cross scenes with more differences of the
domains.
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TABLE IV
CLASSIFICATION PERFORMANCE FROM THE RESULTS WITH ALL THE COMPARED METHODS OF THE PAVIA CENTER (PAVIA UNIVERSITY→PAVIA CENTER)

The boldface number indicates the maximum value of each row of the comparison.

TABLE V
CLASSIFICATION PERFORMANCE FROM THE RESULTS WITH ALL THE COMPARED METHODS OF THE PAVIA UNIVERSITY (PAVIA CENTER→PAVIA UNIVERSITY)

The boldface number indicates the maximum value of each row of the comparison.

Fig. 8. Classification results of the Pavia University with compared methods. (a) KNN. (b) OSDA. (c) DANN. (d) UDHS. (e) HS-ADDA. (f) HS-D1. (g) HS-D2.
(h) UDAD.

The last experiment is conducted in Botswana, the source
domain is the top half of the dataset, and the target domain is the
bottom half. The cross domains have the same class category,
which means the few domain discrepancies presented in the
HSIC. We choose six classes with 20 samples per class for
the following experiment. The classification results are given
in Table VI and Fig. 9. We observe that the KNN-related ap-
proaches have the lowest OA and Kappa in this experiment.
Our method achieves the best performance in terms of the three
evaluation indexes. The OA value reaches 96.09%, the AA is
96.45%, and the Kappa is the highest of 95.24%. In particular,
the UDAD succeeds the best accuracy for the most classes in this
situation. The DANN approach generated the OA of 92.89%,

and the HS-ADDA yields the value of 60.78%. It is noted that
the mentioned DANN and HS-ADDA are implemented by the
adversarial scheme without dense-based feature compaction,
which demonstrated that our approach is beneficial for the do-
main discrepancy reduction and provided with better accuracy.
Moreover, we perform the proposed method on an unsuper-
vised domain adaptation with the source and target domains
exchanged of the Botswana data. Specifically, the setting of the
experiment is the same as the situation with the previous scene.
As expected, we acquire the OA of 93.76%, the AA of 93.55%,
and the Kappa of 92.36%. Clearly, the source domain of top
Botswana contributes a more promising adaptation for reduc-
ing domain discrepancy than the source of the bottom scene,
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TABLE VI
CLASSIFICATION PERFORMANCE FROM THE RESULTS WITH ALL THE COMPARED METHODS OF BOTSWANA (TOP SCENE→BOTTOM SCENE)

The boldface number indicates the maximum value of each row of the comparison.

Fig. 9. Classification results of the Botswana data with compared methods. (a) KNN. (b) OSDA. (c) DANN. (d) UDHS. (e) HS-ADDA. (f) HS-D1. (g) HS-D2.
(h) UDAD.

Fig. 10. Effects of the HSIC performance with the different patch sizes for the four HSI scenes with the UDAD. (a) OA. (b) AA. (c) Kappa. (average of five
runs).

which generates better performance on the unlabeled target
domain.

For the training time of the three cross-scenes, the proposed
method costs more than other methods due to the addition of
the adversarial training time. The HS-D1 and HS-D2 are more
efficient than the UDAD, showing that the proposed method
with the two dense blocks is more time-consuming and sig-
nificantly affects feature adaptation. The KNN approach costs
less time since no training procedure in the unsupervised HSIC
implementation generates the worst performances for the three
datasets.

In conclusion, compared with other modern techniques, the
UDAD model is adequate for cross-scene transfer learning

tasks. Besides, in contrast to the exhaustive fine-tuning process,
the proposed model implements the spectral–spatial feature
adaptation with the adversarial mechanism to align the feature
distribution of various domains.

D. Analysis of the Parameter Effect

In this section, we analyze the influence of two parameters
on the performances of the proposed model, including image
patch size and the number of the selected source sample. The
classification performances of the patch size towards the three
scenes are shown in Fig. 10. As shown in Fig. 10(a), the vertical
axis represents the classification accuracy, and we observed that
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Fig. 11. Classification performance obtained with the increase of the sample number from the source domain. (a) Pavia Center. (b) Pavia University. (c) Botswana.
(average of five runs).

Fig. 12. t-SNE visualization of the feature maps of different domains. The left and the second column show the original distributions of the source and target
HSI. The third and the right column illustrate the feature representation extracted with the dense CNN module of the source and target scenes, respectively. The
symbol “x” represents the source domain and “o” represents the target domain. The same colors mean the same classes of scenes. (a) Pavia Center (seven classes
and 100 samples per class). (b) Pavia University (seven classes and 100 samples per class). (c) Botswana (six classes and 20 samples per class).

the patch size is crucial for the OA value. The highest OAs are
yielded with the size of 11 × 11 for the Pavia Center (87.97%),
the Pavia University (76.56%), and Botswana (96.09%). When
the patch size is set to 5 × 5, the worst performances are
generated by 72.66%, 58.88%, and 89.57% for the Pavia Center,
the Pavia University, and Botswana. The histograms in Fig. 10(b)
reflect the AA with different patch sizes. It can be observed that
the proposed model achieves the highest AA with the size of
11× 11 for the Pavia Center (88.02%) and Botswana (96.45%).

The Pavia University obtains the best AA of 78.62% with a
size of 13 × 13. The relationship between the Kappa with
different patch sizes is shown in Fig. 10(c). Specifically, the
Kappa performs the highest value with the size of 11 × 11
for the three scenes, which are 85.5%, 67.82%, and 95.24%,
respectively. The effect of the number of the source domain for
pretraining is shown in Fig. 11. We compare the classification
performance with the sample number of {40, 60, 80, 100} for the
Pavia datasets. As shown in the polylines of Fig. 11(a) and (b),
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Fig. 13. Performance of three cross-scenes of HSIC with different backbone networks. (a) Pavia University→Pavia Center. (b) Pavia Center→Pavia University.
(c) Top Botswana→Bottom Botswana.

we see that the better OAs are obtained with more numbers of the
training sample. For Botswana, we conducted the experiments
with the sample number of {10, 15, 20}. The line chart of
Botswana is shown in Fig. 11(c). Similarly, the more training
sample from the source domain generates a better performance
of OA, AA, and Kappa. In summary, we conclude that both the
patch size and the sample number affect the capability of the
domain adaptation.

E. Analysis of the Backbone Network

In this section, we perform experiments to verify the per-
formance of the backbone network of the feature extraction
module. Briefly, the compared networks consist of the traditional
CNN network with two convolution layers that is recorded as
the HS-ADDA approach, the ResNet 34, and our dense-based
network. Intuitively, as shown in Fig. 13, our implementation
with dense-based compaction explicitly implies abundant in-
formation according to the labels of the source domain and
is beneficial to the feature alignment of the adaptation phase.
Especially, the OA value reaches 96.09% for the Botswana scene
with our approach. Notably, the performance variation with the
other two networks indicates that ResNet 34 network obtains
a higher value of accuracy than the traditional CNN network.
Due to the complex character of the hyperspectral scene, the
backbone based on the traditiaonal CNN generated unsatis-
factory feature refinement, which brings the OA of 66.03%,
60.78%, and 73.08% for the Pavia University→Pavia Center,
Pavia Center→Pavia University, and Top Botswana→Bottom
Botswana, respectively.

F. Visualization of Feature Adaptation

To simulate feature distributions extracted from the different
domains with the proposed UDAD model, Fig. 12 presents the
feature visualization of the three HSI datasets by the t-SNE
algorithm. It can be observed that the visualization of the fea-
tures before the domain adaption is disorganized in the left
two columns. Apparently, the initial distributions in the two
different spaces are quite different before adversarial adaptation.
In contrast, the source and target samples are discriminated after
the feature extraction CNN, and the pixels from the same classes
are clustered to separate effortlessly. Specifically, Botswana
clusters are more separable than the other two datasets, and the

Pavia Center tends to show a better clustering result than the
Pavia University after the adversarial transfer learning.

IV. CONCLUSION

This work addressed the HSIC cross-scene classification
through the adversarial adaption of different domains. We
presented an unsupervised domain adaptation classification
architecture for unsupervised HSIC. The spectral–spatial
feature alignment was implemented with a generative and
adversarial framework, which was the essential component of
the proposed architecture. Besides, the designed dense CNN
network as a backbone was employed to capture the abundant
discriminative feature of the domains. Experimental results and
analysis demonstrate that the proposed UDAD method was
applicable to different domain discrepancies of the HSI scenes
and validates the robust performance on the hyperspectral
unsupervised classification.
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