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Effects of Satellite Revisit Rate and Time-Series
Smoothing Method on Throughout-Season Maize

Yield Correlation Accuracy
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Abstract—Predictions of crop yield made during the growing
season aid in crop management and economic planning. Many yield
prediction models are made by performing regression between
satellite-derived vegetation indices (VI) and yield. This article
studied the effects of time-series end date and satellite imaging
frequency on the accuracy of VI-yield correlation. Daily, 3-m reso-
lution, multispectral images were obtained over a maize field near
Beltsville, MD, USA, in 2018 and 2019. Plot-average green normal-
ized difference vegetation index (GNDVI) was extracted from these
images. GNDVI time-series data were resampled to different revisit
intervals, gap-filled and smoothed, temporally realigned, and cor-
related with plot-average yield at every day of the growing season.
These experiments were then repeated with data removed from
the end of the time-series. All methods tested performed well on
time-series ending 72 d or more after green-up in 2019 (R-squared
= 0.95) or time-series ending 65 d or more after green-up in 2018
(Flexfit R-squared = 0.92; shape model fitting R-squared = 0.89).
All methods had poor correlation for time-series ending prior to the
day of peak GNDVI. Mean R-squared values for GNDVI-yield cor-
relations decreased with increasing revisit intervals. These trends
were stronger in the 2019 data, with mean R-squared decreasing
by more than 0.05 when sampled from 1 to 30-d revisit intervals
(Flexfit) or to 22-d revisit intervals (shape model fitting). These
findings, along with cloud-contamination statistics, were used to
recommend an optimal methodology for yield correlation and an
optimal overpass frequency of 1–4 d for future yield-monitoring
satellite systems.

Index Terms—Agriculture, CubeSats, maize, multispectral,
PlanetScope, remote sensing, yield estimation.

I. INTRODUCTION

ACCURATE and early prediction of crop yield can help
farmers more effectively manage their fields—by address-

ing water stress, nutrient deficiencies, and other issues that may
affect yields at harvest—as well as aid in economic planning.
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While crop measurements used in yield prediction models may
be collected manually, remote sensing-based yield prediction
models have gained popularity due to their potential to be lower
cost and ability to cover large areas of land more quickly and fre-
quently than ground-based methods. These models often work
by collecting multi- or hyperspectral imagery over a field during
the growing season, deriving a quantity—often a vegetation
index (VI)—from the imagery, and putting that quantity into
an equation—often a linear [1]–[4] or exponential [3] function,
although sometimes more complicated equations are used [5]–
[8]—that relates it to the yield of the relevant pixel, plot, or
field.

Many yield prediction models rely on satellites that deliver
frequent imagery because they are better equipped to capture
rapid changes in vegetation growth and health. Commonly used
satellites for yield prediction include the National Oceanic and
Atmospheric Administration (NOAA) advanced very high res-
olution radiometer (AVHRR) and the National Aeronautics and
Space Administration moderate resolution imaging spectrora-
diometer (MODIS). Both offer daily global coverage at moderate
spatial resolutions (AVHRR: 1.1 km, MODIS: 250–1000 m).
Multiple researchers have found correlations between MODIS-
derived indices and crop yield, with relevant studies that include:
Correlating maize and soybean yield with measurements of two-
band enhanced vegetation index (EVI2), normalized difference
water index, and normalized difference vegetation index (NDVI)
a number of days after vegetation green-up [1]; correlating maize
yield with green leaf area index (LAIg) derived from the wide
dynamic range vegetation index (WDRVI) measured during the
mid-grain filling stage [2]; correlating maize yield with NDVI
calculated at its peak value in the growing season [3]; and cor-
relating maize yield with WDRVI measured 7 d before the start
of the silking stage [4]. Using AVHRR images, researchers have
related maize yield with vegetation condition index (VCI) and
temperature condition index (TCI) measured six weeks before
harvest [9]. Finer-resolution satellites like Landsat 7 and Landsat
8, which have 30-m bands in the visible and near-infrared
(VNIR) wavelengths, or Sentinel-2 A and Sentinel-2B, which
have 10–20-m bands in the VNIR wavelengths, have also been
used for yield prediction [7], [10]. Although these satellites
are better suited to imaging small or heterogeneous plots, their
longer revisit rates (Landsat 7 and 8: 16 d each or 8 d combined,
Sentinel-2: 10 d each or 5 d combined) mean that they do not
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always collect images frequently enough to capture information
at crucial growth stages.

There are several ways to obtain imagery that is high in both
spatial and temporal resolution. One way is by combining data
from multiple sensors. Such efforts have included the fusion of
Landsat 8 and MODIS data products for vegetation phenology
monitoring [11]–[13] and the creation of a harmonized Landsat
8 and Sentinel-2 (HLS) data product [14], [15]. Recent advances
in technology have also allowed for the development of satel-
lite systems that collect multispectral, high spatial resolution
imagery at more frequent intervals. The commercially operated
PlanetScope constellation is a large collection of small, inex-
pensive satellites called Cubesats that capture daily imagery
in blue, green, red, and near-infrared (NIR) spectral bands at
approximately 3-m resolution. The French–Israeli government-
operated VENμS satellite collects 12-band imagery over 123
scientific sites every other day, at 5-m resolution [16]. Cubesat
imagery has been used for vegetation monitoring [17]–[21] and
yield prediction [6], [22]–[24], although some researchers opt
for fusion with data from other satellites like Sentinel-2 [17] or
Landsat 8 and MODIS [25] to improve the radiometric quality.
VEN μS has also been used, on its own and in combination with
other satellites, for vegetation monitoring tasks [26], [27].

Although researchers have begun to explore the use of high-
resolution (<10 m), high-frequency multispectral imagery for
agricultural monitoring and yield prediction, the capabilities
and limitations of these relatively new technologies have not
yet been fully investigated. In addition to contributing to the
growing body of yield prediction research using data derived
from these newer satellite systems, this article aims specifically
to quantify the effects of image availability on maize yield pre-
diction accuracy. By starting with daily, high-spatial resolution
imagery of a maize (Zea mays L.) field in the mid-Atlantic over
the entire growing season and removing images from the dataset
to create time-series at different revisit intervals or time-series
that end partway through the growing season, it aims to answer
two questions: 1) What is the relation between satellite revisit
interval and mid-season maize yield correlation accuracy? 2)
How does time-series end date affect maize yield correlation
accuracy, i.e., how early in the growing season can image data
be correlated with future yield?

The unique contributions of this research are twofold. First,
where most previous yield correlation and prediction studies
have used satellite imagery that is high spatial resolution and low
radiometric quality (PlanetScope constellation [6], [22]–[24]),
high radiometric quality and somewhat high spatial resolution
(Landsat 8 and Sentinel-2 [7], [24]), or high temporal resolution
and moderate spatial resolution (MODIS [2], [4]), this study
uses a new image data source that is high in spatial resolution
(3 m) temporal resolution (1-d revisit), and radiometric quality
(consistent with Landsat 8 and Sentinel-2). Second, because
daily image data are available for this study, it is possible to
establish a quantitative relationship between revisit interval and
yield correlation accuracy. Because the dataset for this article is
small, consisting of imagery of one crop (maize) over a single
study site, the article will focus on the trends in yield prediction
accuracy rather than on the specific parameters of the equations
used to relate VI to yield.

II. METHODOLOGY

A. Study Site

In both 2018 and 2019, maize (Zea mays L.) was no-till
planted in rows spaced 0.76-m apart in a field with crop residues
on the soil surface at the United States Department of Agriculture
(USDA) Agricultural Research Service (ARS) Henry A. Wallace
Beltsville Agricultural Research Center near Beltsville, MD,
USA (39.02552◦N, 76.82816◦W). Plot layouts for both years
are shown in Fig. 1. Planting occurred on 9 May in 2018 and
21 May in 2019. Best management practices for corn included
applying 28 kg N/ha at planting and then additional N several
weeks after planting, on 7 June in 2018 and on 19 June in 2019.
The additional N rates were 0%, 25%, 50%, 100%, and 200%
of the recommended rate (140 kg N/ha) in 2018, and 25%, 50%,
75%, and 100% of the recommended rate in 2019. Some of the
plots were irrigated roughly two months after planting. The 2018
plots used in this experiment were 18.2 × 21 m, and the 2019
plots were 18.2 × 18 m. The 2018 crop was harvested on 26
October and the 2019 crop was harvested on 4 October.

B. Image Data Collection and Processing

Planet provided PlanetScope Level 3 Harmonized (L3H)
imagery for use in this study. This data product consists of
daily, cloud-masked, gap-filled surface reflectance imagery of
the study site in four spectral bands (blue, green, red, and NIR)
at 3-m spatial resolution. This imagery was produced in-house at
Planet, using the Cubesat-enabled spatio-temporal enhancement
method (CESTEM) to produce surface reflectance imagery at the
radiometric quality of the HLS data product and the spatial and
temporal resolution of the PlanetScope satellites [25].

Pixel-based regions of interest (ROIs) for each plot were
selected and converted into mask images using ENVI 5.2
(L3Harris Geospatial, Broomfield, CO, USA). They were then
loaded into MATLAB R2018b (Mathworks, Natick, MA, USA),
where code extracted the day of year (DOY), plot-average VI,
and standard deviation of plot-average VI for each plot in every
image.

C. Yield Data Collection and Processing

For both years, a grain combine was used to harvest the full
field of maize. A grain yield monitor on the combine collected
and recorded information at regular time intervals about the
maize yield collected during that time interval. Each instance
of this information is referred to as a yield data point. Each yield
data point included the ending GPS coordinates, wet mass, and
moisture content of the maize harvested between that point and
the previous one. Unreliable yield data points were removed
prior to analysis, using the following filtering procedure.

1) Exclude points within 7 m of the field boundary.
2) Exclude points that exceed the maximum yield for maize

(dry yield mass>17.26 metric tonnes/ha or 275 bu/acre).
3) Exclude points that are not the most common swath width

(6 rows or 4.6 m, for these data) or yield offset (0 m, for
these data).

4) For each point remaining after steps 1–3, calculate a local
mean and standard deviation of the yield based on a
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Fig. 1. View of the field and plot locations for both years. All images show RGB surface reflectance at 3-m spatial resolution, and are derived from the daily
PlanetScope L3H image data product. 2019 plots are shown over an image of the field on 20 July 2019, and 2018 plots are shown over an image of the field on 20
July 2018. (a) 2019 plot layout, with numbers shown for all plots used in this study. Numbered plots are approximately 18.2 × 18 m. (b) 2018 plot layout, with
numbers shown for all plots used in this study. Numbered plots are approximately 18.2 × 21 m. (c) 2019 plots with locations of yield sampling points shown in
yellow. Only points that are within plot boundaries and were not removed by the filtering procedure are shown. Plots 11, 21, and 52 had the lowest average yields
(2810, 4089, and 3823 kg/ha, respectively), and plots 23, 31, and 72 had the highest average yields (10219, 9352, and 10263 kg/ha, respectively). (d) 2018 plots
with locations of yield sampling points shown in yellow. Only points that are within plot boundaries and were not removed by the filtering procedure are shown.
Plots 53, 91, and 92 had the lowest average yields (3456, 1859, and 3008 kg/ha, respectively), and plots 73, 74, and 83 had the highest average yields (9790, 9394,
and 9179 kg/ha, respectively).

diameter 3× the swath width. If this point is not within
one standard deviation of the local mean, exclude it.

5) Exclude points in step 4 that used less than 25% of the
maximum possible number of points to calculate the local
mean and standard deviation.

Field boundary points were removed because the edges of
the field are often different from the rest of the field, due to
soil compaction and animal interference. The 25% in step 5 was
chosen based on trial and error, to ensure that there would be
sufficient points to do the statistics without removing too many

data points. This data cleaning procedure is modified from the
approaches outlined by Kharel et al. [28] and Sudduth et al. [29],
due to lacking some of the information used in those other
approaches. Finally, yield mass for all points was calculated
at 14% moisture content using the following equation:

Wet Mass14% =
(Wet MassX%) ∗ (1−X%)

(1− 0.14)
(1)

where X% refers to the original moisture content for the yield
data point.
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To find plot-average yield, cleaned yield data points falling
within each pixel-based ROI were assigned to that plot, and
the average wet mass at 14% moisture was calculated for each
plot. Two 2019 plots containing fewer than 4 yield data points
were excluded from the analysis, leaving 17 plots for VI-yield
correlation in 2019 and 20 plots for VI-yield correlation in 2018.
The 2018 and 2019 plot layouts and yield data points are shown
in Fig. 1.

D. Preparing a VI Time-Series for VI-Yield Correlation

Because this experiment deals with temporally resampled
data (detailed in Section II-F below), VI time-series must be
smoothed and gap-filled before VI can be correlated with yield.
Two methods for smoothing and gap-filling VI time-series are
considered in this article: Shape model fitting and local fitting
to a polynomial function.

A temporal shape model is a mathematical function that is
fit to an image-derived quantity, such as a VI, over time. It
may be used to smooth and fill gaps in noisy time-series data
or to derive information about phenological transition timing.
The asymmetric double sigmoid function, also called a double
or piecewise logistic function, is a common function used for
vegetation shape modeling. Researchers have used this function
to monitor corn and soybean growth [30]–[32] and to predict
cereal yield [8]. The functional form for the asymmetric double
sigmoid function is given as follows:

V (t) = Vb +
1

2
Va[tanh (p ∗ (t−Di))− tanh (q ∗ (t−Dd))]

(2)

where Vb is the background or baseline value, Va is the am-
plitude, Di and Dd represent the dates when the function is
increasing or decreasing most rapidly, and p and q relate to
the rate of increase or decrease in their respective segments.
In addition to Di and Dd, there are four derivable parameters
that correspond to phenological transition dates. D1 and D2
represent the start and end dates of the period of rapid growth,
and D3 and D4 represent the start and end of the period of rapid
senescence. These four parameters can be found by finding the
local maxima and minima of the function’s second derivative,
given as follows:

V ′′(t) = − Va[p
2 tanh (p ∗ (t−Di)) sech (p ∗ (t−Di))

2

− q2 tanh (q ∗ (t−Dd)) sech (q ∗ (t−Dd))
2].

(3)

More details on the implementation of shape model fitting for
these data can be found in the authors’ previous article [32].

Instead of fitting a function to the entire time-series, which
may prove difficult with data that is noisy or collected before
growing season has ended, it is possible to smooth the time-series
data using a local, moving filter. This article adapts the flexible
fitting (Flexfit) method detailed by Gao et al. for this task [26].
Although Flexfit is similar to Savitzky–Golay filtering, which
has been shown effective at smoothing VI time-series [33], it
has a couple of additional capabilities: It can fill gaps in the
data instead of just smoothing it and can be implemented in

datasets that are not uniformly spaced. In this article, Flexfit was
implemented as follows, using the polyfit function in MATLAB
R2018b for the least-squares polynomial fitting step.

1) For each point in time that you wish to fit, find the 5 nearest
points.

2) Perform least-squares fitting of a fourth-order polynomial
on those 5 points.

3) Take the value of the polynomial at that point in time as
the VI at that point.

It is possible to change the number of points or degree of
polynomial used in the fitting, or to impose other restrictions on
the fit.

Since variations in growing conditions cause plots to emerge
on different days and mature at different rates, some researchers
have found that it makes sense to use phenological transition
times as a reference point (e.g., days after green-up, days before
silking, etc.) rather than day of year [1]–[4], [34]–[36]. In this
experiment, two such reference points were considered: Day of
peak VI and green-up date.

Day of peak VI for each plot was found by searching for the
maximum VI value reached by each plot. The day on which
the maximum VI occurred was recorded unless it was on the
last day of the time-series (suggesting that the crops may not
have reached their peak VI value yet) or the maximum value
occurred over three or more days (suggesting a possible bad
fit). For time-series fit using the asymmetric double sigmoid
function, the parameter D1 was used as a proxy for green-up
date and was calculated for each plot as described previously.
For time-series fit using Flexfit, the green-up date was calculated
using the moving average convergence divergence (MACD)
approach outlined by Gao et al. [26].

The MACD uses the difference between two exponential
moving averages (EMA)—one calculated over a shorter period
(a) and one over a longer period (b)—to identify new trends
in a time-series. A signal line is an EMA of the MACD series
for a different period (c). Although this approach was originally
designed to monitor changes in stock prices, it was adapted by
Gao et al. to detect corn and soybean green-up dates [26]. The
MACD divergence, also called a histogram, for date t is defined
by the following set of equations:

MACDdiv(t) = MACD(t)− EMA(MACD(t), c)

MACD(t) = EMA(v(t), a)− EMA(v(t), n)

EMA(v(t), n) = v(t) ∗ k + EMA(v(t− 1), n) ∗ (1− k)

k = 2.0/(n+ 1) (4)

where v(t) is the time-series VI, EMA is the time-series expo-
nential moving average, and n is the number of days used to
compute EMA. EMA is a weighted moving average that gives
more weight to recent observations. The computation of EMA
starts from index n+ 1, with the first EMA at t = n computed
using a simple moving average (SMA) based on the beginning
n points

EMA(v(n), n) = SMA(v(n), n) =
i=n∑

i=1

v(i)/n. (5)
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Fig. 2. Daily GNDVI time-series data shown after both smoothing methods. Vertical lines show the approximate times during the growing season when plants
reached green-up, reproductive stages (VT/R1: Tassel and silk), and physiological maturity (R6). Shown for (a) a low-yield plot in 2018 (Plot 53), (b) a low-yield
plot in 2019 (Plot 11), (c) a high-yield plot in 2018 (Plot 73), and (d) a high-yield plot in 2019 (Plot 23). Mid-summer drought in 2018 caused a large dip in GNDVI
for nonirrigated plots (a) and a small dip in GNDVI for irrigated plots (c). Because Flexfit in these plots was performed on daily time-series data, it looks very
similar to the nonsmoothed data.

Once the MACD divergence was calculated for an entire
time-series, potential green-up events were found by looking
for increasing trends of the time-series VI at date t that satisfied
several threshold conditions, which are described in the article
from which this approach was adapted [26].

Finally, the momentum (m) of these potential green-up events
was calculated using the cumulative positive MACD between
each of the potential green-up event and next green-up event
(or the end of the time-series), divided by the number of days
(npdays) of positive MACD after green-up

m(greenup) =
next_greenup∑

i=greenup

positive_MACD(i)/npdays. (6)

Green-up events were kept if their momentum was greater
than 0.01, they occurred within 20 d of the planting date, and
they passed a final test: The simple moving average (SMA) of
the VI time-series (v) over an n-day window should increase
between the green-up date (used as the middle value of the
SMA calculation) and the point n days after the green-up date.

The equation for this VI-test is given as

SMA(v(greenup, n)) < SMA(v(greenup + n, n)). (7)

This article used a = 12, b = 20, and c = 15 for the MACD
divergence calculations and n = 7 d for the VI-test. While the
values for a, b, and c were based on experimentation with differ-
ent values, the various threshold values for green-up detection
and the window size for the VI-test were taken from the article
proposing this method [26].

Examples of smoothed GNDVI time-series data for low-yield
and high-yield plots in 2018 and 2019 are shown in Fig. 2.

Finally, once plot-average VI time-series are smoothed, gap-
filled, and temporally realigned at green-up, D1, or peak VI
dates, plot-average VI for each day of the growing season can
be correlated with plot-average yield using fitting to a linear
or exponential equation. Linear least squares correlation was
performed using the “poly1” fittype of the MATLAB fit function,
and exponential correlation was performed using the “exp1” fit-
type. Default MATLAB settings were used to perform fitting. For
exponential correlation, these included nonlinear least-squares
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Fig. 3. Examples of exponential correlation performed after gap-filling and smoothing. (a) 2019 plot-average yield versus plot-average GNDVI 72 d after
green-up, calculated after performing flexible fitting on daily GNDVI time-series data. (b) 2018 plot-average yield versus plot-average GNDVI 52 d after green-up,
calculated after performing flexible fitting on daily GNDVI time-series data.

fitting using the trust-region algorithm with a maximum of 400
iterations used for the fit. The equation for the exponential
function is given below

yield = a ∗ eb∗v(t) (8)

where a and b are constants determined by fitting, and v(t) is
the time-series GNDVI after gap-filling and smoothing. Some
examples of the exponential correlation are shown in Fig. 3.

E. Parameter Selection

Several initial experiments were performed to choose param-
eters for the temporal resampling experiments that are the main
focus of this article. These included choosing a VI, choosing
between linear and exponential correlation, choosing between
temporal realignment at D1/green-up or day of peak VI, and
choosing parameters for Flexfit and MACD green-up detection.

Eight different vegetation indices were tested on full,
smoothed time-series data with both linear and exponential
correlations. These indices were the enhanced vegetation index
(EVI) [37], 2-band enhanced vegetation index (EVI2) [38],
green chlorophyll index (GCI) [39], green normalized differ-
ence vegetation index (GNDVI) [39], normalized difference
vegetation index (NDVI) [40], soil-adjusted vegetation index
(SAVI) [41], wide dynamic range vegetation index (WDRVI,
α = 0.1) [42], and MODIS wide dynamic range vegetation
index (WDRVI, α = 0.2) [4]. In general, they all performed
similarly. GNDVI was chosen for the temporal resampling ex-
periments, as it performed well across multiple scenarios, but
most of the other indices would have likely worked. The equation
for GNDVI is given as

GNDVI =
ρNIR − ρGREEN

ρNIR + ρGREEN
(9)

where ρNIR is the reflectance in the NIR wavelength band and
ρGREEN is the reflectance in the green wavelength band.

Similarly, in initial experiments, both linear and exponen-
tial functions for VI-yield correlations were considered. Both
correlation types exhibited similar behavior. In the 2019 data,

which represented a more typical growing season, exponential
correlations generally exhibited slightly higher R2 values than
linear correlations. Because of this, exponential function fitting
was used for VI-yield correlation in the temporal resampling
experiments, but linear fitting would have given similar results.

Temporal realignment at the day of peak GNDVI was con-
sidered in initial experiments. Although this method performed
similarly to realignment at D1 or green-up for time-series ending
late in the growing season, it was not usable for time-series
ending around or before the day of peak VI.

Second-order, third-order, and fourth-order polynomials were
considered for use in the Flexfit algorithm. In order to choose, VI
time-series data were resampled to different revisit intervals and
gap-filled and smoothed using the Flexfit method with second,
third, and fourth-order polynomial functions. Root mean square
error (RMSE) is calculated between the Flexfit-generated time-
series and original data. For all revisit intervals, time-series that
were gap-filled and smoothed using fourth-order polynomials
were the closest to the original time-series data, with the lowest
RMSE.

To choose values of a, b, and c for MACD divergence cal-
culation, many different combinations were tested. Values of a
ranged from 5–15, values of b ranged from 10–20, and values
of c ranged from 5–15. Using the largest values for a, b, and
c resulted in green-up dates detected 3–4 d later than those
calculated using the smallest values of those parameters, but
relationships between green-up dates for different plots (i.e.,
green-up for plot A occurs one day before green-up for plot B)
were preserved across different a–b–c combinations. Because
later-detected green-ups were more likely to pass the VI-test,
the relatively large values of a = 12, b = 20, and c = 15 were
chosen for this experiment.

F. Temporal Resampling Experiments

Daily plot-average GNDVI time-series for 20 different corn
plots in 2018 and 17 different corn plots in 2019 (shown in
Fig. 1) were resampled to different revisit intervals, which
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Fig. 4. Highest-possible R2 and corresponding RMSE values for GNDVI-yield exponential correlation for daily time-series data, shown as a function of
time-series end date. Vertical lines show the approximate times during the growing season when plants reached the reproductive stages (VT/R1: Tassel and silk)
and when plants reached physiological maturity (R6). (a) 2018 R2 values. (b) 2019 R2 values. (c) 2018 RMSE values. (d) 2019 RMSE values.

ranged from 1 to 30 d between successive images. Resampling
was performed as follows. Starting with the first day of the
time-series, sequences of dates were created that were defined
by revisit interval and offset from the starting date (ranging from
0—starting on DOY 1—to revisit interval minus 1). For example,
there were two 2-d sequences given by (1, 3, 5, . . .) and (2, 4,
6,. . .), three 3-d sequences, and so on. The plot-average GNDVI
at these dates were used as the resampled time-series data for
the experiments.

After resampling, plot-average VI time-series were smoothed
and gap-filled according to one of two methods: Fitting the data
to an asymmetric double sigmoid function, or local polynomial
fitting with Flexfit. They were realigned at D1 (asymmetric
double sigmoid function fit) or green-up (Flexfit). Plot-average
yield after realignment was correlated with plot-average GNDVI
using exponential function fitting, and goodness-of-fit results
(R2 and RMSE) as well as day of best correlation (in relation
to D1 or green-up) were recorded. Finally, data points were
removed from the end of the time-series and the process of
smoothing and gap-filling, realignment, and yield correlation
was repeated. For the 2019 data, time-series end dates ranged

from DOY 280 (3 d after harvest) to DOY 171 (roughly 20 d
before peak GNDVI). For the 2018 data, time-series end dates
ranged from DOY 300 (1 d after harvest) to DOY 161 (roughly
20 d before the first peak in GNDVI).

The goal of these experiments was to understand which fitting
methods were most accurate for VI-yield prediction, as well as
understanding how these methods were affected by increasing
the time between subsequent images or by attempting to predict
yield early in the growing season.

III. RESULTS

The following sections describe the results of different resam-
pling experiments. These include comparisons between different
fitting methods, and effects of image frequency and time-series
end date on yield prediction accuracy.

A. Effects of Time-Series End Date on VI-Yield Correlation

Fig. 4 shows the R2 and RMSE values for GNDVI-yield
correlations as a function of time-series end date, looking only
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TABLE I
TIME-SERIES END DATES AT WHICH R2 FOR GNDVI-YIELD CORRELATIONS REACH THEIR PEAK VALUES AND RMSE VALUES ARE MINIMIZED, FOR DIFFERENT

FITTING METHODS APPLIED TO DAILY TIME-SERIES DATA*

*Quantities for shape model fitting are presented as an average of the relatively flat portions of the curve in Fig. 4, i.e., DOY 214 and later in 2018 and DOY 223 and later in
2019.

at fitting performed on daily image time-series data, and Ta-
ble I shows the days, R2 values, and RMSE values of the best
and second-best GNDVI-yield correlation for different fitting
methods and years. In Table I, “End DOY” shows the earliest
time-series end dates for each year at which GNDVI-yield corre-
lation R2 reach their peak values, while “Days after Green-Up”
shows the actual days when GNDVI-yield correlation is highest.
For shape model fitting, these quantities do not always match,
as extra data points at the end of the time-series can be helpful
for getting a good curve fit around the day of best correlation.
Finally, quantities for shape model fitting are presented as a
range of values over the flat portions of the curve, i.e., DOY
214 and later in 2018 and DOY 223 and later in 2019. This
was done to account for fluctuations in the shape model fitting
process. Because the shape model fits the entire time-series, it
gives different values for day of best correlation depending on
time-series end date.

For both fitting methods, R2 correlations are generally higher
and RMSE values are generally lower for later time-series end
dates. In the 2018 Flexfit data, distinct drop-offs in R2 correla-
tion occur around DOY 214 and DOY 197. In the 2019 Flexfit
data, drop-offs in R2 correlation occur around DOY 223, DOY
205, and DOY 193. The 2018 and 2019 shape model fitting data
show similar decline in R2 correlation with earlier time-series
end dates, but changes are more noisy and less discrete than in
the Flexfit data. Because of this, days of second-best correlation
have not been reported in Table I for shape model fitting,
although it can be seen in Fig. 4 that the sharpest drop-offs in R2

for both years and both fitting methods occur around or slightly
before the start of the reproductive stages.

As will be discussed in the following section, time-series at
different revisit intervals generally follow similar trends, but
with noisier and slightly lower R2 values from correlation.

B. Effects of Revisit Interval on VI-Yield Correlation

Fig. 5 shows the R2 of GNDVI-yield correlation for several
different revisit intervals (1, 10, 20, and 30 d) as a function
of time-series end date. Two dates are marked on the plots:
T1 (DOY 197 in 2018 and DOY 193 in 2019) and T2 (DOY
214 in 2018 and DOY 223 in 2019). T1 is the earliest date of
stable GNDVI-yield correlation; time-series data ending before
T1 drop rapidly in R2 correlation, as discussed in Section III-A.
T2 is the date of peak GNDVI-yield correlation; time-series
data ending on or after T2 achieve maximum R2 correlation

for the case of daily revisit, as discussed in Section III-A. For
the 2019 data, and to a lesser extent the 2018 data, the variability
in goodness of correlation (as measured by R2) increases with
increasing revisit interval. Although RMSE is not shown in this
figure, it follows similar trends of increasing variability with
increasing revisit interval. The regularity of the R2 oscillations
visible after T2 in Figs. 5(b) and (d) suggests that some images
within the 2019 dataset were more important to yield correlation
than others—perhaps there are a few misleading images that
skew the results when they are sampled without other points
around them. Resampling the data at regular intervals ensures
that any particularly “good” or “bad” points will be used in the
correlation at regularly spaced time-series end dates.

Fig. 6 further explores theR2 values for GNDVI-yield correla-
tion performed after the day of peak correlation (T2). On the left,
the average of R2 values for time-series end dates ranging from
T2 to harvest are shown for each revisit interval. On the right,
the lowest-occurring R2 value for each revisit interval within
that same range of dates is shown. For example, in Fig. 5(a), it
can be seen that R2 for 2018 time-series data sampled to 30-d
revisit intervals before being smoothed by shape model fitting
reaches an approximate minimum value of 0.6 around DOY 220.
In Fig. 6(b), that minimum R2 value of 0.6 is marked on the plot
for the 2018 shape model fitting data at the 30-d revisit interval.

In general, the mean R2 values over this date range decrease
fairly slowly with increasing revisit interval. Mean R2 values
for 2019 data, which were higher than those for 2018 data when
daily imagery is used, only decrease by 0.05 or more when
sampled from 1 to 22-d revisit intervals (shape model fitting) or
from 1 to 30-d revisit intervals (Flexfit). MeanR2 values for 2018
data never decrease by 0.05 or more, even when sampled from
1 to 30-d revisit intervals. For time-series data at large revisit
intervals (≥20 d), mean Flexfit R2 is higher than mean shape
model fitting R2 for both years of data. R2 values for both years
of shape model fitting also reach lower minimum values at large
revisit intervals, which suggests that shape model fitting might
produce more variable results for sparse image time-series.

Fig. 7 looks at the differences between R2 values for daily
time-series data and R2 values for data at other revisit intervals,
shown for time-series data ending before the day of peak correla-
tion. Best-correlation R2 values from GNDVI-yield correlation
for daily time-series data, shown previously in Fig. 4, served
as a baseline from which R2 values for other revisit intervals
were measured. Unlike in Fig. 6, statistics for Fig. 7 were
calculated for time-series end dates between the earliest day
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Fig. 5. R2 of GNDVI-yield correlation for several different revisit intervals. T1 marks the end date before which sharp drop-offs in GNDVI-yield correlation
occur (DOY 197 in 2018, DOY 193 in 2019). T2 marks the end date after which peak correlation occurs (DOY 214 in 2018, DOY 223 in 2019). (a) 2018 shape
model fitting data. (b) 2019 shape model fitting data. (c) 2018 flexfit data. (d) 2019 flexfit data.

Fig. 6. Mean and minimum R2, calculated over time-series data ending after the day of peak GNDVI-yield correlation (T2 in Fig. 5), shown as a function
of revisit interval. Statistics for 2018 data were calculated over time-series end DOY 214-300, and statistics for 2019 data were calculated over time-series end
DOY 223-280. (a) Mean value of R2 for time-series ending after the day of peak correlation. (b) Lowest value of R2 for time-series ending after the day of peak
correlation.
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Fig. 7. Comparison between R2 values calculated at 1-d revisit intervals and values calculated at other intervals, for time-series data ending after the date at
which sharp drop-offs in GNDVI-yield correlation occur (T1 in Fig. 5) and before the day of peak GNDVI-yield correlation (T2), shown as a function of revisit
interval. Statistics for 2018 data were calculated over time-series end DOY 197-213, and statistics for 2019 data were calculated over time-series end DOY 193-222.
(a) Mean difference between R2 for GNDVI-yield correlations calculated at 1-d revisit intervals and R2 for GNDVI-yield correlations at other revisit intervals.
(b) Largest difference between R2 for GNDVI-yield correlations calculated at 1-d revisit intervals and R2 for GNDVI-yield correlations at other revisit intervals.

of stable GNDVI-yield correlation (T1) and the day of peak
correlation (T2), in order to gain an idea of how increases in
revisit interval affect yield correlation earlier in the growing
season. On the left, the mean differences between R2 values
for daily revisit and R2 values for other revisit intervals, for
all time-series ending between T1 and T2, are shown for each
revisit interval. On the right, the maximum difference between
daily R2 and R2 for other intervals is shown. Statistics were
presented as differences from 1-d R2 rather than R2 values
because GNDVI-yield correlations for time-series ending before
the day of peak correlation are not constant with respect to
time-series end date.

In general, R2 values over this date range decrease with
increasing revisit interval, with 2019 data following this trend
more strongly at larger revisit intervals. Mean R2 values first
decrease by 0.05 or more when sampled from 1 to 12-d revisit
intervals (2019 shape model fitting), 1 to 14-d revisit intervals
(2018 Flexfit and 2018 shape model fitting), and 1 to 18-d
revisit intervals (2019 Flexfit). Mean R2 values for 2019 data
first decrease by 0.10 or more when sampled from 1 to 18-d
revisit intervals (2019 shape model fitting) or from 1 to 24-d
revisit intervals (2019 Flexfit). Mean R2 values for 2018 data
never decrease by 0.10 or more. These are sharper rates of
decrease than those shown in Fig. 6, indicating that time-series
ending earlier than the day of best GNDVI-yield correlation
may be more subject to variability in goodness of correlation
than time-series ending later. Some evidence of this can be seen
in Fig. 5 - R2 for 2019 time-series ending between T1 and T2
diverge much more strongly from 1-dR2 thanR2 for time-series
ending after T2.

Fig. 8 shows the mean RMSE for GNDVI-yield correlations
performed after the day of peak correlation (left) and the mean
difference between 1-d RMSE and RMSE for other intervals, for
time-series ending between the earliest day of stable GNDVI-
yield correlation and the day of peak correlation (right). RMSE
data for both of the date ranges behave similarly to R2 over the
same ranges.

There is an interesting difference between the overall re-
sults for the 2018 data, which were less strongly affected by
resampling, and the results from the 2019 data, which showed
larger decreases in GNDVI-yield correlation R2 with increased
revisit interval. There are multiple factors that could contribute
to this phenomenon. First, starting R2 values for GNDVI-yield
correlation were slightly higher for the 2019 data than they
were for the 2018 data, meaning that they could decrease more
than 2018 correlations while maintaining similar goodness of
fit. Second, differences in growing conditions between the two
years affected the accuracy of the gap-filling and curve-fitting
processes, which in turn may have affected the yield correlation
results. Because the 2019 data represent a more typical growing
season, without a mid-season drought causing a noticeable dip
in vegetation health, the results from the 2019 data may be
more representative of the typical effects of revisit interval on
goodness of yield prediction. However, more data are needed to
fully understand why these differences in results exist.

C. Shape Model Fitting Versus Flexfit

Both gap-filling and smoothing methods considered in this
study provided daily GNDVI time-series data that could be
correlated highly with yield, but it is worth exploring the ways
in which they differed.

Gap-filling and smoothing the time-series data using different
methods resulted in slightly different dates detected for phe-
nological transition points, as shown in Table II. In general,
D1 and green-up dates were similar. For most of the plots in
2018, green-up occurred around DOY 146-149 and D1 occurred
around DOY 149-154. For most of the plots in 2019, green-
up occurred around DOY 150-151 and D1 occurred around
DOY 151-154. It is worth noting that the green-up date was
affected by the MACD parameters chosen, as discussed in
Section II-E. The day of peak GNDVI, calculated after gap-
filling and smoothing, differed between methods. For the plots
in 2018, a drought caused a dip in mid-season GNDVI values,
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Fig. 8. (a) Mean value of RMSE for time-series ending after the day of peak correlation (T2), shown as a function of revisit interval. (b) Mean difference between
RMSE for GNDVI-yield correlations calculated at 1-d revisit intervals and RMSE for GNDVI-yield correlations at other revisit intervals, calculated over time-series
data ending between T1 and T2.

TABLE II
DAY OF GREEN-UP OR D1 AND PEAK GNDVI, BASED ON COMPLETE 1-D

TIME-SERIES DATA

resulting in two GNDVI peaks for most plots. Peak GNDVI for
2018 plots after Flexfit occurred at either the first peak, around
DOY 180, or the second peak, around DOY 222-227, depending
on plot and on time-series end date. Peak GNDVI after shape
model fitting occurred somewhere between these two peaks,
around DOY 193-206, with peak values for most plots around
DOY 199. Although day of peak GNDVI was not used in this
experiment, these calculation differences could prove relevant
to other researchers wishing to use one of these fitting methods
for phenology detection or late-season yield prediction.

As shown in the previous sections, goodness of fit for both
fitting methods exhibit similar patterns as a function of time-
series end date, with R2 values for both fitting methods first
beginning to decrease around DOY 223 (2019) or 214 (2018) and
then more sharply around DOY 190-200 (both years), and RMSE
increasing at those same DOY. Specific comparisons between
Flexfit and shape model fitting R2 are shown as a function of
time-series end date in Fig. 9.

For the data collected in 2018, R2 from GNDVI-yield corre-
lation after Flexfit were on average higher than R2 after shape
model fitting for most time-series end dates, as can be seen in
Fig. 9—the mean difference between FlexfitR2 and shape model
fit R2 is greater than zero in almost all cases. Many of these
differences in R2 were within one standard deviation, although
mean FlexfitR2 for time-series ending on DOY 218 or later were

Fig. 9. Mean difference betweenR2 for GNDVI-yield correlations performed
after flexible fitting andR2 for GNDVI-yield correlations performed after shape
model fitting, shown as a function of time-series end date.

more than one standard deviation above R2 from shape model
fitting.

For data collected in 2019, R2 from GNDVI-yield correlation
after Flexfit versus shape model fitting methods were similar
at time-series end dates after DOY 210, as can be seen in
Fig. 9—the mean difference between FlexfitR2 and shape model
fit R2 oscillates near zero. For earlier time-series end dates,
however, time-series smoothed and gap-filled using the Flexfit
method had a slightly higher R2 for VI-yield correlation than
time-series smoothed and gap-filled by fitting to the asymmetric
double sigmoid function. These differences in R2 were within
one standard deviation.

As shown in Fig. 6 and discussed in Section III-B, R2 from
GNDVI-yield correlation after Flexfit were similar to R2 from
GNDVI-yield correlation after shape model fitting for 2019 data



12018 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

at revisit intervals≤20 d, and higher thanR2 from GNDVI-yield
correlation after shape model fitting for all 2018 data and for
2019 data at revisit intervals >20 d.

For the 2018 data, it is likely that Flexfit outperformed shape
model fitting because the irregularities in the growing season
meant that the data fit less well to the asymmetric double sigmoid
function. For the 2019 data, which represented a more typical
growing season, it is likely that Flexfit outperformed shape
model fitting only for earlier time-series end dates because
there was not enough data present to accurately fit the entire
asymmetric double sigmoid function. Flexfit is less dependent
on complete or predictable data because it fits each piece of the
time-series locally.

IV. DISCUSSION

A. Effects of Time-Series End Date on VI-Yield Correlation

As expected, yield correlation with GNDVI is higher later
in the growing season. For daily GNDVI time-series smoothed
with Flexfit, the yield is most highly correlated with GNDVI at
72 d after green-up in 2019 (R2 = 0.95) and 65 d after green-
up in 2018 (R2 = 0.92). For daily time-series smoothed with
asymmetric double sigmoid function fitting, the yield is most
highly correlated with GNDVI around 58–64 d after D1 in 2019
(R2 = 0.95± 0.01) and 59–84 d after D1 in 2018 (R2 = 0.89±
0.01).

These findings are somewhat consistent with prior work by
Shanahan et al. and Guindin-Garcia, who found that GNDVI and
WDRVI around the mid-grain filling period (past the peak VI, in
the middle of the reproductive growth stages) was most highly
correlated with maize yield [2], [36], and Bolton and Friedl,
who found that the best correlations between vegetation indices
and yield were 65–75 d after green-up (calculated using shape
model fitting) for maize [1]. The slight differences between the
2019 shape model fitting results and Bolton and Friedl’s results
may be partially explained by the use of exponential correlation
instead of linear; initial experiments with this dataset using linear
correlation resulted in a day of best correlation between 65 and
75 d after D1. The broad range of days of best correlation in the
2018 shape model fitting results may be caused by the atypical
mid-season dip in GNDVI seen in many of the plots.

For daily GNDVI time-series smoothed with Flexfit ending
before the day of best correlation (DOY 223 in 2019 or DOY
214 in 2018), the next-best yield correlation occurred at 54 d
after green-up in 2019 (R2 = 0.86) and 52 d after green-up in
2018 (R2 = 0.85). The 2019 Flexfit data also had a third-best
day of correlation 42 d after green-up (R2 = 0.80). Both the
second-best correlation in 2018 and third-best correlation in
2019 occurred around the time of peak GNDVI for this data.
Many other researchers have found strong VI-yield correlations
around the silking stage in maize, which corresponds roughly to
this portion of the VI time-series [3], [4], [34], [35]. For daily
Flexfit-smoothed time-series data ending before DOY 193 in
2019 or DOY 197 in 2018, the R2 correlation drops rapidly to
values below 0.50. Daily sigmoid-fit time-series data follows
similar trends. The trends for other revisit intervals are similar
but noisier, as will be discussed in the following section.

These findings suggest that maize yield can be most accurately
predicted from GNDVI around or after the peak in the time-
series, which corresponds to the start of the maize reproductive
growth stages.

B. Effects of Revisit Interval on VI-Yield Correlation

As discussed in Section III-B, increasing the amount of time
between subsequent images in the time-series caused greater
fluctuations in the goodness of fit for GNDVI-yield correlations.

For late-ending time-series data, accuracy of yield correlation
decreases relatively slowly as a function of increasing revisit
interval. Taking 2019 Flexfit data as an example (chosen because
2019 represented a more typical growing season and Flexfit
performed similarly to or better than shape model fitting in most
scenarios, as discussed in Section III-C), one image every 18 d
may produce an R2 value for GNDVI-yield correlation that is
0.10 less than the R2 for the same dataset at daily revisit, and
will more likely produce an R2 value that is between 0.01 and
0.06 less. One image every 22 d may produce an R2 value that
is 0.15 less than the R2 for the same dataset at daily revisit,
and will more likely produce an R2 value that is between 0
and 0.08 less. These differences are relatively small compared
to the drop in correlation between late-ending time-series and
earlier-ending time-series; however, late-ending time-series data
must be sampled from 1 to 18-d intervals before the lowest
possible value of R2 is lower than the highest value of R2 for
daily time-series data ending before DOY 220 (R2 = 0.86). The
mean value of R2 for late-ending time-series data never goes
below this value, even when sampled from 1 to 30-d intervals.

For yield correlation earlier in the growing season (starting
around the time of peak GNDVI), accuracy of yield correla-
tion decreases more rapidly as a function of increasing revisit
interval. One image every 6 d may produce an R2 value for
GNDVI-yield correlation that is 0.10 less than the R2 for the
same dataset at daily revisit, and will more likely produce an R2

value that is between 0 and 0.05 less. One image every 8 d may
produce an R2 value for GNDVI-yield correlation that is 0.15
less than the R2 for the same dataset at daily revisit, and will
more likely produce an R2 value that is between 0 and 0.08 less.
One image every 16 d may produce an R2 value that is 0.20 less
than the R2 for the same dataset at daily revisit, and will more
likely produce an R2 value that is between 0 and 0.10 less.

Using imagery that is high in both spatial resolution and
radiometric quality may also reduce the need for frequent im-
agery. Mean and lowest late-season R2 for time-series data
sampled from 1 to 28-day revisit intervals are greater than the
R2 values achieved in similar studies using medium spatial
resolution imagery (30 m) or high spatial resolution imagery
(3 m) of lower radiometric quality than the L3H data product
(PlanetScope surface reflectance imagery) [10], [24], [43]. Mean
late-seasonR2 for time-series data sampled from 1 to 30-d revisit
intervals, and lowest late-season R2 values for time-series data
sampled from 1 to 16-d revisit intervals are higher than best-fit
R2 obtained by several comparable studies using coarse spatial
resolution MODIS imagery (250–1000 m) to study maize yield
at the United States of America county level [1], [3], [4], [43].
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At least one MODIS-based study did attain comparable R2

values for MODIS-derived LAI-yield correlation (R2 = 0.77,
0.86, and 0.94) [2]. While these differences are likely due in
part to the small size of this study, as well as between-study
differences in spatial aggregation of image and yield data [10],
they may also indicate that imagery that is high in both spatial
and radiometric resolution can achieve higher yield correlation
at less frequent intervals than imagery that is lacking in one of
these areas.

These findings suggest that while image frequency does affect
yield correlation accuracy, the strength of this effect may depend
on factors like time-series end date, image resolution, and image
quality.

C. Recommendations and Future Work

Based on these findings, any of the explored methods for VI-
yield correlation perform well for healthy maize at later time-
series end dates, but gap-filling and smoothing time-series data
with Flexfit and then realigning that data at the day of green-up
results in higher correlations for data that is atypical, early in
the growing season, or collected with more than 20 d between
subsequent images.

For late-season yield estimation using high-quality, high-
resolution satellite imagery, one image every 30 d may pro-
duce reasonably high GNDVI-yield correlation accuracy (R2 >
0.75). For accurate yield correlation earlier in the growing
season, the requirements are more strict. One image every 16
d might produce a reasonably high GDNVI-yield correlation
accuracy, but one image every 6–8 d has less chance of producing
a poor outcome.

The need for imagery at a specific interval (e.g., every 6–8 d for
early-season maize yield prediction, or every 30 d for late-season
maize yield prediction) is not as simple as having a satellite with
that same overpass frequency. Cloud contamination is common
in satellite imagery, and limits the availability of usable imagery.
The findings of one study focused primarily on the eastern USA
suggest that daily satellite imagery is needed in order to ensure
at least one clear view a week, 2-d revisit is needed to ensure
biweekly clear views, and 4-d revisit is needed to ensure monthly
clear views [44]. A global analysis of PlanetScope imagery,
which has an overpass frequency of 1–2 d for most parts of
the world, gave slightly more optimistic numbers. They found
that there is an average global probability of 0.84 of there being
at least one cloud-free PlanetScope observation in every 5-d
period, and an average global probability of 0.92 of there being
at least one cloud-free PlanetScope observation in every 10-d
period [45]. Of course, these probabilities vary across different
locations and times of year. PlanetScope surface reflectance
imagery over the Beltsville site in 2018 was found to have an
average revisit interval of 1 image every 3 d, but there was a
20-d gap in coverage during the month of September [32].

Given the constraints on image data collection posed by cloud
cover, the authors recommend a very high overpass frequency
for future Landsat systems: An overpass frequency of 1 or 2 d
would ensure the 1–2 week revisit recommended for accurate
yield correlation earlier in the growing season, and an overpass

frequency of up to 4 d would ensure a monthly revisit, which
was shown to produce reasonably high late-season GNDVI-yield
correlations.

In the future, the authors would like to add to the robustness of
these results by collecting the same type of data over more years
and fields. Because this study is small, covering a small site and
a single crop (maize) over two growing seasons, some of the
current results may not be applicable to other crops, locations,
and growing conditions. Repeating this experiment with other
high spatial and temporal resolution image sources, such as
VENμS imagery, would also help in understanding how small
differences in spectral, spatial, and temporal resolutions affect
VI-yield correlation accuracy. Finally, repeating the analysis
with nonuniform revisit intervals would better reflect the reality
that cloud cover and other atmospheric conditions limit image
availability for nonharmonized products.

V. CONCLUSION

In this article, we explored the effects of time-series end
date and imaging frequency on our ability to correlate VI with
maize yield, using daily, high-resolution (3-m GSD) multispec-
tral satellite imagery. This study adds to the growing body
of research on the use of Cubesats and harmonized sensor
data for crop yield prediction, compares multiple approaches
for gap-filling and detecting green-up dates in VI time-series
(including new methodologies like Flexfit and MACD-based
green-up detection), and contributes to ongoing research into
temporal imaging requirements for agricultural monitoring by
examining the relationship between yield correlation accuracy
and satellite revisit interval.

We found that realigning plot-average GNDVI time-series
at their respective green-up dates before performing VI-yield
correlations gave the most consistent results across different
time-series end dates. We considered two different methods of
gap-filling and smoothing GNDVI time-series data: Fitting the
data to a temporal shape model, or performing local fitting with
the Flexfit method. Both methods yielded similarly high R2 val-
ues for GNDVI-yield correlations performed later in the growing
season (around or after DOY 223 in 2019, which was roughly
72 d after green-up, or DOY 214 in 2018, which was roughly
65 d after green-up). Both methods yielded low R2 values
for GNDVI-yield correlations performed early in the growing
season (prior to DOY 193 in 2019 or DOY 197 in 2018, which
corresponded with the silking stage of maize growth), although
Flexfit correlations were slightly higher. The mean R2 from VI-
yield correlation decreased with increasing revisit interval, and
the variability in R2 from VI-yield correlation increased with
increasing revisit interval. The 2019 data demonstrated these
trends more strongly than the 2018 data, and time-series ending
earlier in the growing season demonstrated these trends more
strongly than time-series ending later in the growing season.
These findings suggest that although it is possible to obtain
a high correlation between GNDVI and yield from infrequent
satellite imagery, the chances of a poor correlation increase with
increasing revisit interval or for correlation performed earlier in
the growing season.
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Finally, we discussed these results within the context of pre-
vious research into maize yield correlation and prediction using
satellite imagery, and provided recommendations for optimal
methodology and optimal satellite overpass frequency (1–4 d
revisit) based on our findings.
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