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Contextual Sa-Attention Convolutional LSTM for
Precipitation Nowcasting: A Spatiotemporal

Sequence Forecasting View
Taisong Xiong, Jianxing He, Hao Wang , Xiaowen Tang, Zhao Shi, and Qiangyu Zeng

Abstract—Precipitation nowcasting is an important tool for now-
casting weather. In recent years, progress has been achieved in
some models based on deep learning for precipitation nowcasting.
However, these models do not consider the contextual relationships
between the input data and the output of a network and their
deficiency in capturing the information of prediction objects. To
overcome these shortcomings, in this study, we propose a model
that performs convolution operation on input data and the out-
put of a Long short-term memory (LSTM) networks. Second, a
self-attention operation is added to capture the local and global
dependencies of the hidden state of LSTM. The proposed network
structure is inserted in an encoding–forecasting network frame-
work and applied to spatiotemporal sequence forecasting. Third,
the outputs of the precede sequence are also regarded as the inputs
of according LSTM layer and this operation effectively captures
temporal feature of sequence data. Comprehensive experiments are
conducted on the KTH action dataset and Hong Kong observation
07 radar echo maps dataset. The visual and quantitative prediction
results demonstrate the accuracy and efficacy of the proposed
model.

Index Terms—Deep learning, long short-term memory (LSTM),
precipitation nowcasting, radar echo maps, spatiotemporal
sequence forecasting.

I. INTRODUCTION

NOWCASTING convective precipitation has been a focus
of weather forecasting for many years. Its goal is to

forecast the local weather conditions over a comparatively short
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period from the present to a few hours ahead. The convective
weather can cause severe damage to properties and can pose
a threat to human beings. The meteorological disasters can be
effectively avoided when the convective weather is accurately
forecasted several hours ahead. However, to precisely forecast
the convective weather remains a challenge because of its rapid
evolution and complex interactions with its surroundings [1].
Numerical weather prediction (NWP) models have been ap-
plied to nowcasting convective precipitation for many years
and achieved improvements. However, to meet the needs of
precipitation nowcasting, NWP models must overcome many
challenges [2].

The conventional and representative extrapolation techniques
based on radar echo maps are thunderstorm identification, track-
ing, analysis, and nowcasting [3] and tracking radar echoes by
correlation [4]. They achieve success and are widely applied to
precipitation nowcasting. However, these techniques have some
inherent defects and need to be improved [2]. Simultaneously,
optical flow methods have been applied to extrapolate radar
echoes and obtain accurate prediction results [5]–[7]. The trajec-
tory and location of a radar echo cannot be precisely predicted
because these models utilize several radar echo maps and cannot
sufficiently learn the inherent features of each map. Further-
more, the accuracy decreases rapidly when the prediction time-
span increases. How to obtain more precise and longer radar
echo extrapolation results is a key research in the meteorology
community.

In recent years, deep learning [8] has been applied to many
fields and attracted increasingly more researchers. These fields
include image recognition [9]–[11], sematic segmentation [12],
[13] object detection [14], [15], etc. One feature of deep learning
is that it needs a lot of data to sufficiently train a network.

At the same time, deep learning has also been applied to
natural language processing (NLP) [16], [17] and sequence
learning [18], [19]. Long short-term memory (LSTM) [20], [21]
can effectively learn the inherent relationships of long distance
objects. The LSTM encoder–decoder framework [18] effec-
tively solves the sequence-to-sequence learning problems using
temporally concatenated LSTM. An LSTM encoder–predictor
model is proposed in [19] to predict the future video sequences.
However, only the temporal relationships, and not the spatial
coherence of video sequences, are considered for the model
in [19] when it predicts the future video frames. Video
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sequence owns both temporal and spatial features. Spatiotem-
poral sequences widely exist in the real world. For example,
the traffic flow, video prediction, etc. The mathematical form
of spatiotemporal sequence forecasting [22] is given in the
following equation:

X̂t+1:t+T = arg max
Xt+1:t+T

p(Xt+1:t+L|X1:t) (1)

where X1:t is a spatiotemporal sequence with length of t as
a matrix X1:T = [X1, X2, . . ., XT ]. Xt ∈ RK×M×N , where K
denotes the length and M ×N denotes the two dimensions.
Spatiotemporal sequence forecast the future L sequence given
the current t sequence. Similarly, the radar echo extrapolation
is to forecast the future K(K > 1) radar echo maps given the
current L echo maps. Therefore, the radar echo extrapolation
can also be regarded as spatiotemporal sequence forecasting.

Inspired by the successful application in predicting video
sequences [19] for LSTM and the spatial features represen-
tation of the convolutional neural network (CNN), a novel
convolutional LSTM (ConvLSTM) model that utilizes an
encoder–forecaster framework to apply to precipitation nowcast-
ing is proposed in [23]. More improved forecast results, as shown
in [23], are obtained by ConvLSTM compared to those of LSTM
and traditional algorithm, real-time optical flow by variational
methods for echoes of radar [24]. Following ConvLSTM, a deep
predictive coding network [25] is proposed for video prediction
based on ground truth video frames, where each ConvLSTM
layer produces an error term at each time step. The error term
is propagated in the entire network. A predictive recurrent
neural network [26] is proposed using a unified memory pool
to learn spatial appearances and temporal coherence of video
sequences. A memory in memory recurrent neural network
(RNN) block [27] is proposed that can effectively leveraging
differential information between neighboring hidden states to
predict the video frames. To effectively represent the location-
variant relationship of video sequence, a trajectory GRU (Tra-
jGRU) model is presented in [28] and applied to precipita-
tion nowcasting to obtain better prediction results. However, a
TrajGRU model is very complicated and its implementation is
not easy. A model combining convolutional and LSTM [29] was
proposed to improve the accuracy of wind speed predictions
based on WRF. A self-attention (SA) ConvLSTM model was
presented in [30] and obtains impressive results to predict the
remaining useful life of rolling bearings. A temporal recur-
rent U-Net model with attention mechanism [31] was given to
predict high-resolution rainfall. To predict and compress the
video frames, a model integrated ConvLSTM with Gan was
presented in [32]. A spatial-temporal gating network [33] with
multiple physical properties was proposed for video prediction,
including precipitation radar images. Based on ConvLSTM, a
spatiotemporal memory unit [34] was proposed to forecasting
temperature.

A multiscale LSTM with an attention mechanism
model [35] was proposed for monthly precipitation prediction.
A ConvLSTM with star-shaped bridge model [36], combing
ConvLSTM and dual attention model [37] have demonstrated

their effectiveness for precipitation nowcasting. But the
extrapolation time of the model in [36] is only 60 min away.

The aforementioned models independently perform oper-
ations on the input data, hidden states, and model outputs.
However, the input data and the model outputs should have
inherent interactions. To effectively represent their relationships
and capture the contextualized representation of the input data
and model outputs, inspired by the model in [38], we propose
a model in this study, which performs convolution operation
between the input data of current network and the outputs of
its preceding network before they are fed into the LSTM gates.
This step can effectively learn the interactive representations
of the input data and model outputs. To effectively model
the spatiotemporal contextualized relationships of LSTM and
improve the effects of models, we first extend the ConvL-
STM integrating convolution operation between the input data
and model outputs. The convolution operation in the proposed
model is known as the contextual convolution operation, the
proposed model is referred to as the contextual ConvLSTM
(CConvLSTM). Second, to effectively represent the local and
global features of hidden state of LSTM, an SA mechanism
is introduced in the LSTM and the model is referred to as
contextual SA ConvLSTM (CSAConvLSTM). Then, we adopt
an encoding-forecasting framework with six layers to apply to
spatiotemporal sequence forecasting. Third, to utilize the tempo-
ral relationships of sequences, we adopt the outputs of precede
sequence’s down-sample and up-sample layer to concatenate the
outputs of peers of current sequence to regard as the inputs of
LSTM. Furthermore, a 1 ∗ 1 convolutional operation is added
to reduce the dimensions of inputs of LSTM and capture the
temporal features.

The main contributions of the proposed model are summa-
rized as follows.

1) A convolutional operation is added between the input and
the hidden state of LSTM to capture the contextual feature.

2) An SA mechanism is introduced in the LSTM and per-
formed on the hidden state to represent the local and global
features of hidden state.

3) The outputs of downsample and upsample layer of precede
sequence are concatenated with the outputs of current
peers and feeded as the inputs for LSTM layer. To reduce
the filter number of inputs of LSTM, a 1 ∗ 1 convolutional
operation is inserted.

The KTH dataset, with six action classes, and Hong Kong
observation 07 (HKO-07), which is a radar echo maps dataset,
are applied to verify the accuracy and efficiency of the pro-
posed model. The proposed model obtains better prediction
and extrapolation results on the KTH and HKO-07 datasets,
respectively, compared to some state-of-the-art models based
on deep learning.

The rest of this article is organized as follows. The relative
work on video prediction is introduced in Section II. The de-
scription of the proposed model is given in detail in Section III.
Comprehensive experiments which verify the effectiveness of
the proposed model are given in Section IV. The conclusion and
the future work are given in Section V.
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II. RELATED WORK

An end-to-end multilayer LSTM encoder–decoder frame-
work [18] is applied to machine translation whose input data is
one dimension. An encoder–decoder–forecaster framework [19]
is proposed to decoder the input video frames and predict the
future video frames. However, the model in [19] can only
learn the temporal coherence of video sequence. To capture
the spatial features of video frames, an extension of the model
in [19], ConvLSTM [23] is proposed to apply to precipitation
nowcasting and obtains better experimental results. Following
this work, some models based on CNN and LSTM are pro-
posed successively to predict the video frames. Because of the
location-invariant of the convolution operation, TrajGRU with
location-variant filter is proposed [28] to effectively capture the
spatial features of video frames. The models in [23] and [28]
both selected the encoding–forecasting framework to predict
the video frames. Upsample and downsample layers are concur-
rently inserted into the encoding and forecasting networks, re-
spectively. These layers effectively capture the spatial coherence
of video sequence. Furthermore, the encoding and forecasting
networks share the same weights, which productively decreases
the parameter number of the model. To more effectively repre-
sent the temporal features, updating the gate of an LSTM and
taking the output of the preceding last layer as the input of the
first layer, enhances the modeling ability of the models [26], [39].

Some impressive research works were obtained, which were
in parallel with our model. A unit model [40] applied to con-
vective precipitation nowcasting. However, the period of its
prediction is only 30 min. Integrating attention modules and
depthwise separable convolutions with unit, a SmaAt-UNet [41]
also applied to precipitation nowcasting on precipitation map
and cloud cover datasets. Using the encoder–forecaster frame-
work, an axial attention memory is aggregated and embedded
into ConvGRU [42] and applied to weather forecasting. How-
ever, the period of radar echo extrapolation is only 60 min. To
improve the performance on medium-to-heavy rain prediction,
a deep generative model was presented in [43]. The model
in [43] obtains impressive results on usefulness and accuracy.
However, it is still challenging to get high accuracy on heavy
rain prediction at long lead times.

The aforementioned models for video prediction are deter-
ministic. Another type of model for video prediction based on
variational autoencoder [44], is stochastic video prediction [45],
[46]. The stochastic video prediction models generate the next
frame by feeding the preceding video frame back to these
models. These models can capture the diverse features of the
video at the cost of high computation [47]. However, it is very
difficult to obtain a satisfactory result for these models [27]. In
our work, we focus on capturing the deterministic features of
spatiotemporal sequence using the convolution operation on the
input data and model output.

III. PROPOSED MODEL

In this section, we propose a model for spatiotemporal
sequence forecasting based on ConvLSTM. One benefit of
LSTM is that it can effectively avoid gradient vanishing and

Fig. 1. Architecture of the proposed CSAConvLSTM.

exploding, which often happen in an RNN model. However, the
spatial features are ignored by the traditional LSTM when it is
applied to image or video data, while ConvLSTM effectively
captures the spatial features of images. In LSTM, we use x, c,
and h, which denotes the input, cell state, and model output,
respectively. Subsequently, the results of c and h are obtained
by the following formula:

LSTM(x, cprev, hprev) = (c, h). (2)

Inspired by ConvLSTM and mogrifier LSTM, we propose a
model which effortlessly integrates the convolution operation
on the input data and output of the LSTM with the ConvLSTM.
The added operation can effectively enhance the contextual
representation abilities of the proposed model. We named the
proposed model contextual ConvLSTM (CConvLSTM) because
the contextual features are captured by convolution operation in
LSTM. The convolution operation flow between the input data
and the output of network is described in Fig. 2.

The ConvLSTM processes two-dimensional data, which
are spatial dimensions (row and column). To facilitate the
subsequent extension, we provide the standard ConvLSTM
formulae [23]

it = σ
(
W ix ∗Xt +Whx ∗Ht−1 +W ic ◦ Ct−1 + bi

)
(3)

ft = σ
(
W fx ∗Xt +W fh ∗Ht−1 +W fc ◦ Ct−1 + bf

)

(4)

Ct = ft ◦ Ct−1 + it ◦ tanh
(
W cx ∗Xt +W ch ∗Ht−1 + bc

)

(5)

ot = σ
(
W ox ∗Xt +W oh ∗Ht−1 +W oc ◦ Ct + bo

)
(6)

Ht = ot ◦ tanh (Ct) (7)

where ∗ denotes the convolution operator, ◦ represents the
Hadamard product, σ represents the sigmoid function, and W ∗∗

and b∗ are the weight matrices and biases, respectively. The
CConvLSTM is an extension of ConvLSTM. As seen from
Fig. 1, the input, x and output, h, of the proposed model are first
converted into convolutional operations in one alternating fash-
ion and then fed into the ConvLSTM. This operation can learn
the contextual features of the video sequence and effectively



12482 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 2. Architecture of two operation. (a) Contextual operation. (b) SA operation.

capture the inherent features of the spatiotemporal sequence.
The later experimental results demonstrate the function. The
mathematic formula of the contextual convolution operation is
given by

ContextualConvLSTM (x, cprev, hprev)

= ConvLSTM
(
x↑, cprev, h

↑
prev

)
(8)

where ↑ is the highest index of xi and hi
prev. We extend the

model to exploit convolutions in the transition of inputs and
hidden states. The sequence of xi and hi

prev can be obtained by
the following formulae:

xi = 2× σ
(
W ixhhi−1

prev

)× xi−2

for i ∈ [1. . .r] and i is odd (9)

hi
prev = 2× σ

(
W ihxxi−1

)× hi−2
prev

for i ∈ [1. . .r] and i is even (10)

where the hyper parameter r is the number of “round,” r ∈ N ,
and its value is set at 4 in this study. The advantage of the
CConvLSTM is that it can capture the contextual information
by adding operation on the input data and the hidden state.
Simultaneously, CConvLSTM learns the connections between
the input data and the output of the network, and effectively
captures the inherent features of video sequence.

An SA operation similar to in(111111111111) followed the
contextual convolutional operation is added on the hidden state
of LSTM. The operation is represented by the given formula

h′
t−1 = SA(ht−1) (11)

where the process of SA operation is represented as the following
formulae and illustrated in Fig. 2

hq = Wqht−1 (12)

hk = Wkht−1 (13)

hv = Wvht−1. (14)

In the abovementioned three formulae. The Wq ∈ RC×C ,

Wk ∈ RC×C , and Wv ∈ RC×C . Their values are learned by
using 1× 1 convolutions. The value of C is set to C/8 in our

experiments. The size of Hq, Hk, Hv is all (1, H ∗W ), where
H and W are the height and width of images.

The model which integrates contextual convolutionary
operation and SA operation is referred to CSAConvLSTM. The
architecture of the CSAConvLSTM is described in Fig. 1. In
Fig. 1, the COP represents the contextual convolution operation
and SA represents SA operation. The process of COP and SA
is illustrated in Fig. 2. “C” represents the concatenation of
feature maps.σ and tanh represent the sigmoid function and tanh
function, respectively. The + in Fig. 1 represents the sum of two
matrix. And × represents the element-wise matrix production.

To effectively predict the future frames of radar echo maps,
an encoding–forecasting network similar to [28] is improved to
apply to spatiotemporal sequence forecasting. The encoding–
forecasting network framework is illustrated in Fig. 3. The
encoding network is composed of three downsample layers and
three RNN layers. The three downsample layers reduce the size
of feature maps and capture the spatial features of feature maps,
while the three RNN layers learn the temporal features of radar
echo sequences. The forecasting network is composed of three
upsample layers and three RNN layers. The upsample layers
enlarge the size of feature maps and capture the spatial features
of feature maps, and the three RNN layers in the forecasting
network have the same function as in the encoding network.
Consider the temporal relationships of sequence data. We also
take the outputs of downsample layers or upsample layers as the
inputs of following sequence of peer RNN layers. The inputs of
RNN layers are the concatenation of outputs of preceding and
current downsample layers or upsample layers. To reduce the
dimensions of inputs for RNN layers and capture the temporal
features of sequence data, a 1 ∗ 1 convolutional operation is
performed on the inputs to reduce half of feature maps. Because
of the limitation of GPU, the SA only is add in the second and
third layer of RNN.

IV. EXPERIMENTS

To verify the effectiveness of the proposed model, we com-
pared the proposed model with three state-of-the-art models,
which is based on deep learning. The experiments were con-
ducted on two public natural dataset: the KTH action [48]
and HKO-7 [28] datasets. The three models are ConvLSTM,
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Fig. 3. Architecture of the proposed encoding–forecasting network for spatiotemporal sequence forecasting.

ConvGRU, and trajGRU. The experimental results on KTH
action dataset were measured by the following two criteria:
the structural similarity index measure (SSIM) and the peak
signal to noise ratio (PSNR) [49]. The larger values of SSIM
and PSNR indicated better results. Three quantifiable criteria
were chosen for the HKO-7 dataset: the probability of detection
(POD), false alarm rate (FAR), and critical success index (CSI).
The prediction results (we used prediction to represent it) were
obtained by all the models. The real information was represented
by the ground truth. For the kth class (k = 1, 2, . . ., 5), we
calculated the hits (prediction=k, ground truth=k), falsealarms
(prediction = k, ground truth != k), and misses (prediction=j,
ground truth=k, j!=k). The formulae of the three criteria are
defined in (11)–(13). Larger CSI and POD values indicated better
results. On the contrary, smaller FAR values indicated better
prediction results

CSI =
hits

hits + falsealarms + misses
(15)

POD =
hits

hits + misses
(16)

FAR =
falsealarms

hits + falsealarms
. (17)

All the models were implemented using Pytorch Framework
whose version is 1.1.0 and the experiments were conducted on
NVIDIA Tesla P40. The Adam is chosen as the optimizer, and
its learning rate is set to 0.0001, and betas are set (0.5, 0.999),

and the learning rate is updated every 20 000 or 40 000 in HKO-7
and KTH, respectively.

A. KTH Action Dataset

First, we adopted the KTH action dataset [48] to verify the
effectiveness of the proposed model. There were six types of
human actions (hand clapping, boxing, jogging, hand waving,
running, and waling) in this dataset. These actions were per-
formed by 25 people in four different scenarios. In this exper-
imental process, the batch of all the models was set to 8 and
the training process loops to 200 000. To effectively train all
the models, a random selection policy was adopted to choose
training samples. For the training sets, 1 600 000 subset video
sequences with a length of 30 were randomly chosen from the
videos of the first 20 persons. The test set was composed of
160 000 subset video sequences, which were randomly chosen
from the videos of the last 5 persons. The resolution of each
frame was resized into 128× 128 pixels. The key to correctly
predict long-term frames is to effectively capture the spatiotem-
poral features of video sequences. The network framework
that was adopted is illustrated in Fig. 2. The configurations of
network parameters for all the models were same. The kernel
size of the three downsample layers in the encoding network
was 3× 3× 8, 3× 3× 192, and 3× 3× 192 and had a stride
of 2 pixels. The kernel size of the three upsample layers in
forecasting network is 3× 3× 192, 3× 3× 192, and 3× 3× 8
and had a stride of 2 pixels. An 1× 1 convolution network layer
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Fig. 4. Third row: ConvLSTM (SSIM=0.903, PSNR=24.91); the forth row: ConvGRU (SSIM=0.913, PSNR=26.39); the fifth row: TrajGRU (SSIM=0.897,
PSNR=24.97); the sixth row: CConvLSTM (SSIM=0.924, PSNR=27.63); and the seventh row: CSAConvLSTM (SSIM=0.909, PSNR=25.39).

was added to capture the spatial feature and translates the number
of feature maps. The parameters of the corresponding RNN
layers in the encoding network were the same to those of the
forecasting network. The kernel size of the three RNN layers
was 3× 3× 192, 3× 3× 192, and 3× 3× 64 and had a stride
of 1. The input sizes of the three RNN layers were identical to
those of their outputs.

A sample video sequence prediction result from the KTH
is given in Fig. 4. The first row shows the first 10 frames of
the video. The second row shows the following ground truth 20
frames, which is the 12th to the 30th frame with an interval of one
frame. The last four rows show the prediction results obtained
by four models, which correspond to the ground truth shown in
the second row. From the prediction results, we can see that the
hands of human beings obtained by ConvLSTM, ConvGRU,
and TrajGRU are loose and the background is blurred. The
proposed model obtains better results than those of the other
models. The values of SSIM and PSNR obtained by CConvL-
STM are both larger than those of the other models. The results of
CSAConvLSTM are second to ConvGRU, but better than Con-
vLSTM and TrajGRU. It shows that the proposed model effec-
tively capture the spatiotemporal features of video sequences
and can more accurately predict the video results than other
models.

Another video sequence of a man beginning to walk is shown
in Fig. 5. The input 10 frames and the ground truth 10 frames are
given in the first and second rows, respectively. The prediction
results obtained by all the models are shown in the last four rows.

The frame span is similar to the first example of KTH dataset
in Fig. 3. The man is blurred and his movement trajectory is not
correctly predicted by ConvLSTM, ConvGRU, and TrajGRU.
The handkerchief on the man’s shoulder is also loos for the three
models. However, the proposed model effectively retained the
detail of the handkerchief and accurately predicted the trajectory
direction of the man. Furthermore, the structures of human joints
were also predicted by the proposed model, which indicates that
the proposed model can effectively capture the spatial feature
of videos. This may be the function of convolution operation
on the input and the hidden state in the proposed model. Si-
multaneously, the larger SSIM and PSNR values obtained by
CConvLSTM and CSAConvLSTM showed better prediction
results compared to those obtained by the other three models.
The visual prediction results showed that the proposed model can
effectively learn the spatial and temporal features of the video
sequences and predict better results. This demonstrates that the
proposed model can effectively learn the details of objects and
correctly predict these objects.

To comprehensively verify the effectiveness and robustness
of the proposed model. We randomly selected 160 000 video
sequences from the test dataset. The quantifiable averages,
training time, and memory usage of all the models are given
in Table I. The training time is the number of 100 loops with
a batch size of 8. The two quantifiable criteria obtained by the
proposed model were both larger than those of the other models.
This shows that the prediction results obtained by the proposed
model are more similar to the true video than those of the other
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Fig. 5. Third row: ConvLSTM (SSIM=0.800, PSNR=25.01); the forth row: ConvGRU (SSIM=0.777, PSNR=23.78); the fifth row: TrajGRU (SSIM=0.765,
PSNR=24.01); the sixth row: CConvLSTM (SSIM=0.827, PSNR=26.36); and the seventh row: CSAConvLSTM (SSIM=0.812, PSNR=25.59).

TABLE I
COMPARISONS OF DIFFERENT CRITERIA FOR KTH DATASET

models. Additionally, the proposed model effectively learned
the inherent features of videos. The prediction results obtained
by ConvGRU were relatively inferior to those of ConvLSTM
because ConvGRU is the simplified version of ConvLSTM.
Therefore, the training time and memory usage of ConvGRU
were both smaller than those of ConvLSTM. Because of the
convolution operation of input data and hidden state, the training
time and memory usage of the proposed model were larger than
those of ConvLSTM and ConvGRU, however, these values were
both smaller than those of TrajGRU. This demonstrates that
the efficiency of the proposed model is higher than TrajGRU.
These experimental results effectively prove the correctness and
efficiency of the proposed model.

To advance quantitative comparisons of generating prediction
frames, the quantitative criteria of frame-by-frame on test set
are shown in Fig. 6. We can see that the prediction results
obtained by all the models gradually became substandard with

the increment of prediction steps. However, the effects of the
proposed model were always superior compared to any of the
other models. The effects of the prediction results obtained by
TrajGRU and ConvGRU were similar, while ConvLSTM out-
performed ConvGRU and TrajGRU. However, compared with
ConvLSTM, CConvLSTM obtained better prediction results for
every frame. Another model CSAConvLSTM are near to the
ConvLSTM. This experiment demonstrated that the proposed
model obtained better prediction results than any of the other
models. The proposed model effectively captured the spatial
and temporal features of video sequence and predicted better
results. This may show that the convolution operation of the
input data and hidden state for the proposed model plays an
important role in learning the spatial and temporal features of
the video sequence. Additionally, the proposed model obtained
state-of-the-art prediction results on the KTH action dataset
compared to other models.

B. HKO-7 Dataset

It is more challenging to predict the trajectory and intensities
of radar echo maps because many complicated factors affect
their trajectory and intensities. To verify the effect on radar
echo extrapolation of the proposed model, we selected a public
radar echo dataset, HKO-7, which is collected by HKO. HKO-7
contains radar CAPPI reflectivity images from 2009 to 2015.
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Fig. 6. SSIM and PSNR values of KTH at each period for all the models.

TABLE II
COMPARISONS OF DIFFERENT CRITERIA FOR HKO-07 DATASET

The training set is composed of rain sequences from 2009 to
2014. The kernel size of the three successively downsample
layers in the encoding network was 7× 7× 8 with a stride of
5 pixels, 5× 5× 64 with a stride of 3 pixels, and 3× 3× 192
with a stride of 2 pixels. The kernel size of the three upsample
layers in the forecasting network was 4× 4× 192 with a stride
of 2 pixels, 5× 5× 192 with a stride of 5 pixels, and 7× 7× 8
with a stride of 5 pixels. In the training process, the batch size
was set to 4 and all the models terminate the training after
100 000 loops. The test set is composed of radar echo maps
from the year 2015. To verify the effectiveness of the proposed
model, 6042 radar echo sequences were selected. The batch
was set to 4 in the radar echo extrapolation experiment. Seven
quantitative criteria were adopted for the prediction results. For
a comprehensive comparison with the prediction results, we not
only selected traditional mean absolute error (MAE) and mean
squared error (MSE), but also the balanced MAE (B-MAE)
and balanced MSE (B-MSE), which are defined in [28]. The
B-MAE and B-MSE provide larger weights for strong radar
echo intensity values. The more accurate extrapolation on strong
echo intensity values indicates a more accurate prediction of
strong convective weather. The accurate forecast of a strong
convective weather can effectively decrease the intensity of a
meteorological disaster. Therefore, it is a natural law to provide
larger weights for strong echo intensity values.

The MSE, MAE, B-MSE, and B-MAE obtained by all models,
training time, memory usage of all the models are given in
Table II. The training time is the number of times the training
model ran 100 iterations. From Table II, we can see that the
training time of the proposed models are longer than that of
ConvLSTM and ConvGRU because of its convolution opera-
tion of the input data and model output. The proposed model
obtained a lower MSE, MAE, B-MAE, and B-MSE compared

to ConvLSTM and ConvGRU, which indicates that it obtained
better prediction results than ConvLSTM and ConvGRU. The
prediction results obtained by TrajGRU were slightly better than
those of the proposed models for MAE and MSE, but it is second
to CSAConvLSTM for B-MAE and B-MSE. These indicate that
CSAConvLSTM obtained better results than TrajGRU on hight
rainfall intensity. At the same time, the efficiency of TrajGRU
was inferior to that of the proposed models.

Visual comparison of the prediction effect of the HKO-07
dataset, a sequence of prediction radar echo frames is visualized
in Fig. 7. The first row shows the five input successive echo
frames. The second row shows the ground truth frames, which
is generated at 6 min, 30 min, 60 min, 90 min, and 120 min.
The prediction echo frames corresponding to the ground truth
are shown in rows three to six, which were obtained by
ConvLSTM, ConvGRU, TrajGRU, and the proposed model. We
can see that the three large radar echoes always exist during the
evolution process. But the details of the largest echo obtained
by the proposed model were well retained compared to other
models. Therefore, the proposed model can more accurately
predict the shape and intensities of the radar echo than other
models. The prediction results show the effectiveness of the
proposed model. A longer prediction time, resulted in a gradual
decrease of the proportion of the strong echo intensities of
the prediction echo frames. Therefore, the proposed model can
effectively process long-term variations of echo sequence. This
phenomenon demonstrates that the correctness of the predicted
strong echo intensities decreases rapidly.

To quantitatively compare the prediction results shown in
Fig. 7, we provided the CSI values of the predicted frames
obtained by all the models at 6 min, 60 min, and 120 min in
Tables III–V , respectively. From the data given in the three
tables, we can see that the CSI values obtained by the proposed
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Fig. 7. Visualization of prediction example 1 for HKO-07 dataset.
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TABLE III
6 MIN PREDICTION CSI VALUES FOR HKO-07 OF EXAMPLE 1

TABLE IV
60 MIN PREDICTION CSI VALUES FOR HKO-07 OF EXAMPLE 1

TABLE V
120 MIN PREDICTION CSI VALUES FOR HKO-07 OF EXAMPLE 1

model is higher than those of ConvLSTM and ConvGRU. Ad-
ditionally, the CSI values obtained by the proposed model was
only slightly lower than those of TrajGRU for the two highest
intensity levels. However, the training efficiency and memory
usage of the proposed model is better than those of TrajGRU.

The second prediction example is given in Fig. 8. There
are two main radar echoes in the echo maps. The evolution
process shows that two echoes are gradually merged into one.
The layouts of Fig. 8 are similar to that of the Fig. 6. From
the prediction results shown in Fig. 8, we can see that all the
models accurately predict the unification of the radar echoes.
For the visual effects, we can see from Fig. 8 that prediction
results obtained by the proposed model are more similar to the
ground truth echo maps. Furthermore, the distribution of the
strong echo intensities and the echo details for the prediction
results, obtained by the proposed model, are well retained. The
prediction results demonstrate that the proposed model captures
the spatial and temporal inherence and predicts better results
than other models. To further verify the correctness and effec-
tiveness of the proposed model, we provided the quantitative
criterion CSI values for the prediction echo maps shown in
Fig. 8 in Tables VI–VIII. The effectiveness of the proposed
model outperforms ConvLSTM and ConvGRU for all the rain
levels. Additionally, the CSI values obtained by the proposed
model was only slightly lower than TrajGRU on one or two rain
levels at some time-span. These prediction results prove that
the proposed model effectively captures the temporal dynamic
features and the spatial contextual relationships of the radar echo
sequence.

For a comprehensive comparison of the experimental results,
the rainfall can be divided into several levels. We selected the
same rule as in [28] and divided the rainfall intensity into
five levels, between 0.5 and 2, 2 and 5, 5 and 10, 10 and 30,
and above 30, which are classified as the first, second, third,
fourth, and, and fifth classes, respectively. For the test dataset,

TABLE VI
6 MIN PREDICTION CSI VALUES FOR HKO-07 OF EXAMPLE 2

TABLE VII
60 MIN PREDICTION CSI VALUES FOR HKO-07 OF EXAMPLE 2

TABLE VIII
120 MIN PREDICTION CSI VALUES FOR HKO-07 OF EXAMPLE 2

TABLE IX
COMPARISON CSI FOR HKO

we selected 6042 echo sequences that were generated in the
year 2015. Three common precipitation nowcasting metrics,
CSI, POD, and FAR, were adopted to quantify the experi-
mental results. The values of the quantitative criteria obtained
by all the models are given in Tables IX–XI. The CSI values
obtained by CConvLSTM were higher than that of ConvLSTM
and ConvGRU, and slightly lower than that of TrajGRU. The
CSI values obtained by CSAConvLSTM are all higher than
those of CConvLSTM. Furthermore, The POD values obtained
by CConvLSTM on the largest raining level were only infe-
rior to that of ConvLSTM. The POD values obtained by the
CSAConvLSTM are all highter than those of CConvLSTM. The
FAR values obtained by CConvLSTM were lower than that of
ConvLSTM and ConvGRU, and slightly higher than that of
TrajGRU. The FAR values obtained by CSAConvLSTM are
litter than those of CConvLSTM. The three criteria indicate
that the results obtained by CSAConvLSTM are better than
CConvLSTM. From the data given in the three tables, we can
see that there is not only one model that can obtained the best
results for the three criteria. Comprehensive comparisons of the
effectiveness, memory usage, and correctness show that the pro-
posed model is relatively superior to the other three models when
they are applied to precipitation nowcasting. The experimental
results show that the accuracy, generality, and efficiency of the
proposed model were better than the other models.
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Fig. 8. Visualization of prediction example 2 for HKO-07 dataset.
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TABLE X
COMPARISON POD FOR HKO

TABLE XI
COMPARISON FAR FOR HKO

V. CONCLUSION

In this study, we proposed a model to apply to spatiotemporal
sequence forecasting that performs a convolution operation on
the previous output of the network and the current input to
capture the contextual relationships of the data. This operation
provides a mechanism for the input data to directly interact
with the previous context. At the same time, an SA operation
is performed on the hidden state of LSTM. Furthermore, the
outputs of preceding downsample layers and upsample layers are
also feeded as the inputs of the current RNN layers. The proposed
model is applied to video prediction and can automatically learn
the inherent spatiotemporal features of video sequences. Two
public datasets were used to verify the effectiveness and cor-
rectness of the proposed model. One is a natural video sequence
prediction and the other is the extrapolation of the radar echo.
Nine criteria were chosen to quantify the experimental results of
video prediction. Comprehensive visual and quantitative exper-
imental results illustrated that the proposed model is superior to
some state-of-the-art models based on deep learning.

Although some improvement were achieved for the proposed
model, however, further improvements are still required in future
studies. For the natural video prediction sequences, some details
of the objects were lost and resulted in a deterioration in the
prediction results with the increment in the video frames. The
radar echo extrapolation requires a lot of improvement for the
prediction results. First, the quantitative criteria were relatively
low for effective weather forecasting applications, especially for
strong echo intensities. Second, the accuracy of the prediction
results decreased with longer prediction time spans.

To effectively solve the aforementioned problems, some sce-
narios need be considered in our future studies. The reason for a
lower accuracy during the prediction of strong echo intensities
may be the average properties of convolution operations. Gen-
erative adversarial networks (GANs) [50]–[52] can preserve the
sharpness of the prediction video sequences. Therefore, GANs
may retain the strong echo intensities when they are applied
to the radar echo extrapolation. To improve the accuracy of
the precipitation nowcasting, the model should effectively cap-
ture the temporal coherence in long-term echo sequences. The
transformer [53], [54] can effectively capture the long distance
semantic relationships between worlds when it is applied to NLP.

Transformers [55], [56] have successfully applied to computer
vision since 2020. At present, transformers [57] are also used
for video understanding. However, there are no reports about
transformers applied to video prediction. Therefore, video pre-
diction and weather forecasting based on transformers are one
of our future research fields. The transformer may be applied to
the radar echo extrapolation to effectively capture the long term
temporal relationships among the echo sequences. Therefore,
the transformer may obtain better long time prediction results.
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