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AFDet: Toward More Accurate and Faster Object
Detection in Remote Sensing Images
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Abstract—Object detection in remote sensing imagery usually
suffers from inaccurate target localization and bounding box re-
gression uncertainty, mainly due to the varying sizes of objects and
the complexity of the background. Most detectors address these
challenges by adding various feature extraction modules, which
increases the size and computational burden of the network. In
this article, we propose a more accurate and faster detector named
AFDet, which is composed of two parts: a backbone pretrained
on ImageNet and a head that includes a center prediction branch
(CPB), semantic supervision branch (SSB), and boundary estima-
tion branch (BEB). CPB produces a keypoint heatmap using an
elliptical Gaussian kernel to adapt to the ground truth with a large
aspect ratio. SSB, which is used only during training, extracts extra
keypoint features from boundary and interior points rather than
only from the center point, thereby improving the quality of object
localization. BEB predicts the distributions of the bounding box
in four directions, which is further supervised by the focus loss,
and the gather loss raises the box prediction accuracy. To verify
the effectiveness and robustness of AFDet, we conduct extensive
experiments on three widely used optical remote sensing object
detection datasets, i.e., NWPU VHR-10, DIOR, and HRRSD, for
which AFDet achieves state-of-the-art results.

Index Terms—Anchor-free method, object detection, optical
remote sensing images.

I. INTRODUCTION

OBJECT detection in remote sensing is a fundamental topic
in many applications, such as detecting ships, vehicles,

and aircraft. As many researchers have great interest in this field,
various advanced methods have been proposed in recent years.
The traditional object detection methods [1], [2] mainly use
classifiers trained on handcrafted image features to distinguish
between the foreground (the target) and background. However,
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they cannot generalize due to the foreground and background
variations, which are not well captured by the handcrafted
features.

In recent years, as the number of deep learning techniques
has exponentially increased, object detectors have become
more generalizable than traditional methods. The earliest deep
learning-based object detectors, such as the region-based con-
volutional neural network (RCNN) [3], Fast-RCNN [4], and
Faster-RCNN [5], are two-stage methods in which region pro-
posals are generated before the object category, and bounding
box location are obtained. Due to a large number of parameters
and slow speed of two-stage methods, single-stage anchor-based
methods [6]–[8], which can directly predict objects without
multistage refinement, have become much more common. How-
ever, anchor-based methods excessively rely on anchor designs,
which usually depend on the human experience. Moreover,
an anchor’s size and aspect ratio must constantly change to
adapt to different data distributions. To alleviate anchor-related
problems, some researchers have proposed anchor-free meth-
ods [9]–[11].

Although the algorithms mentioned above can achieve good
performance for natural images, employing these methods to
detect objects in remote sensing images remains difficult. Com-
pared with natural scene images, the varying sizes of objects
and the complexity of the visual appearance in remote sensing
images make it difficult to locate the center and regress the
object’s boundary. To address the challenge of large-scale vari-
ation of objects, Cheng et al. [12] adopted a cross-scale feature
fusion (CSFF) strategy to generate the feature map with one
layer of multiscale receptive fields. Huang et al. [13] adopted a
multilevel feature pyramid [14] and CSFF [12] to obtain more
informative features. Xu et al. [15] proposed a pseudoanchor
proposal module and a context-based feature alignment module
to learn adaptive features for objects with a large aspect ratio.
Zhao et al. [16] proposed channel-wise attention module to fuse
features between channels and pixels to obtain a global receptive
field and extract more robust features. Wang et al. [17] proposed
an atrous spatial feature pyramid module to fuse the context
information in multiscale features by using feature pyramid
and multiple atrous rates. To address the challenge of the com-
plex visual appearance, Fu et al. [18] proposed an anchor-free
method based on a fully convolutional one-stage object detector
(FCOS) [9] using an attention-guided balanced pyramid and a
feature-refinement module. Cui et al. [19] introduced the spatial
shuffle-group enhance attention module into the backbone of
CenterNet [10] to suppress inshore and inland interference. Guo
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Fig. 1. Overall architecture of AFDet, which contains a backbone and a head. The head consists of the CPB, BEB, and SSB. The CPB and BEB are used to
predict the locations of objects and the bounding box estimation parameters, while the SSB is used only during the training of the detector.

et al. [20] designed a feature refinement module, a feature
pyramid fusion module, and a head enhancement module to
improve the conventional CenterNet for synthetic aperture radar
images. Liu et al. [21] used a selective gate to acquire reasonable
aggregations from different-sized features.

The approaches mentioned above add extra modules to the
network or use anchors a priori, thereby increasing the compu-
tational burden on the detectors. In contrast to these methods,
we propose a novel keypoint-based anchor-free detector called
AFDet. Our detector does not contain a multiscale prediction
architecture or an anchor design and thus does not exhibit
a complex predefined setting and network structure. AFDet
mainly has a backbone and head, with the head consisting of
three branches: the center prediction branch (CPB), boundary es-
timation branch (BEB), and semantic supervision branch (SSB).
The simple representation of the AFDet is shown in Fig. 1. To
evaluate our proposed model, we conduct extensive experiments
on the NWPU VHR-10 [22], DIOR [23], and HRRSD [24]
datasets. The results show that our model performs well on the
datasets and outperforms some state-of-the-art object detection
approaches.

The main contributions of this article are summarized as
follows:

1) We propose an accurate and fast object detector called
AFDet, which includes three novel branches named CPB,
BEB, and SSB. AFDet can achieve good accuracy while
maintaining low computational complexity.

2) In CPB, due to the large aspect ratios of objects in re-
mote sensing images, we apply the elliptical Gaussian
kernel (EGK) to encode the training samples. Unlike the
conventional circular Gaussian kernel (CGK) [10], EGK
can adapt to the shape of objects. Details are provided in
Section III-B.

3) In BEB, we treat the bounding box estimation as a clas-
sification task rather than a regression task to obtain
more fine-grained distance distribution, which is helpful
for some objects with blurred boundaries. Moreover, we
propose two losses named Lgather and Lfocus to obtain
more accurate predictions by controlling the shape of the
distribution. The details can be found in Section III-C1.

4) In SSB, we propose to extract semantic keypoints of an
object as training targets because the center point usually
cannot represent a sufficient number of features. Through

more semantic acquisition, the positioning of the center
point will be more accurate. The details are provided in
Section III-D.

The remainder of this article is organized as follows. In
Section II, we first review work related to anchor-free object
detectors. We then introduce some common ways to represent
boxes and the improvement of our method. In Section III, we
present the proposed AFDet and introduce each module in
detail. In Section IV, we first describe the dataset and evaluation
metrics and then conduct ablation experiments to verify the
effectiveness of each module. Finally, we compare our method
to other state-of-the-art methods. Finally, Section V concludes
this article.

II. RELATED WORK

A. Anchor-Free Object Detectors

DenseBox [25] was the first anchor-free detector, followed by
UnitBox [26], which was an upgrade to DenseBox to achieve
better performance. You Only Look Once (YOLO) [27] can
be regarded as the first successful anchor-free detector. Never-
theless, because anchor-based methods can achieve high recall
rates, anchors were considered indispensable to object detectors
for many years. Recently, CornerNet [11] redefined anchor-free
methods by detecting an object bounding box as a pair of
keypoints (i.e., the top-left and bottom-right corners). Unlike
CornerNet, CenterNet [10] represents objects by a single point
to reduce false detections. In addition to these approaches,
many anchor-free detectors relying on an FPN [28] have been
introduced, such as FCOS [9] and Foveabox [29]. Subsequently,
some researchers [30], [31] have sought to improve the repre-
sentation with full instances by extracting extra point features
rather than central point features. Recently, detection trans-
former (DETR) [32] and deformable DETR [33] were developed
with a transformer architecture to realize end-to-end detec-
tion. However, transformer-based detectors have a relatively
large number of parameters, and they are slower than general
convolution-based detectors. Unlike the above detectors, AFDet
has no complex structure, such as an FPN or a transformer.
Moreover, the SSB in AFDet can help the backbone focus more
on the contextual or corner information of the object, which is
active only during the training. These merits enable AFDet to
achieve a good speed-accuracy tradeoff.
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B. Representation of Bounding Boxes

In conventional detectors [9], [10], [27], estimating the bound-
ing box can be regarded as a regression task. There are two
regression methods: one is to obtain the height and width of the
object [10], [27], while the other is to measure the distances
from a point to the four sides of the bounding box [9]. The
learning objective is a rigid value that usually obeys a Dirac
delta distribution in these two ways. Different from the above
techniques, some researchers adopt a Gaussian distribution [34],
[35] to assess the regression uncertainty, which can reflect the
reliability of the bounding box. In addition, the distribution focal
loss (DFL) [36] was recently proposed to introduce a more
general distribution rather than the Dirac delta or Gaussian dis-
tribution for the bounding box. For AFDet, we propose a novel
method to estimate the bounding box that treats the bounding
box estimation as a classification task rather than a regression
task. Compared with regression-based methods, classification
through a softmax layer can yield the probability value of each
distance. Hence, we can obtain the boundary information by a
weighted summation of different distances. In addition, due to
the large-scale variation of objects in remote sensing images, the
distribution obtained is more dispersed. Thus, by controlling the
mean and standard deviation of the distribution, we can make
the distribution sharper, leading to more accurate detection.

III. PROPOSED METHOD

A. Overall Architecture

In this section, we introduce the overall architecture of AFDet.
Fig. 1 presents an overview of the network architecture, which
illustrates that AFDet is predominantly composed of a backbone
and a head. The modified deep layer aggregation (DLA) [37]
network is adopted as the backbone. In addition, we add more
skip connections to the original DLA network, which has the
same connection style as CenterNet’s [10] backbone network.

As mentioned above, the head contains CPB, BEB, and
SSB. Given an input image I ∈ RH×W×3, the output feature
Fb ∈ RH×W×C of the backbone is obtained, where H , W , and
C represent the width, height, and channel dimensions of the
feature map, respectively. Then, Fb is used as the input to the
three branches. CPB and BEB are used to predict the locations of
objects and the bounding box estimation parameters, while SSB
is used only in training, not in testing. Similar to most detectors,
we use soft-nms as our postprocessing operation to produce the
final results. More details regarding the core modules of the
AFDet are described in the following sections.

B. Center Prediction Branch

CPB, which is shown in Fig. 2, is utilized to categorize all
objects in the image and determine their center locations. To
do so, CPB takes the feature map Fb from the backbone and
predicts the heatmap of the center point. The feature map Fc ∈
RH×W×S in Fig. 2 is a heatmap that includes the centers of
objects in different categories, where H , W , and S represent
the width, height, and number of object categories, respectively.

Fig. 2. Architecture of CPB. Fb is the feature map from the backbone. The
loss function Lc is used to supervise the output heatmap Fc. The area with an
elliptical Gaussian distribution that has different standard deviations for width
and height is used to encode a training sample (red rectangle).

The feature map Fc can be defined as follows:

Fc = Sig(C1×1(ReLU(BN(C3×3(Fb))))) (1)

where C1×1(·) and C3×3(·) are 1 × 1 and 3 × 3 convolution
operations, respectively, BN(·) is the batch normalization op-
eration, ReLU(·) is the rectified linear unit activation function,
and Sig(·) is the sigmoid activation function.

To train CPB, the Gaussian heatmap is used as the ground
truth. Due to the large aspect ratio of objects in remote sensing
images, it is difficult to adapt the CGK [10] to the shapes of the
objects. Hence, we adopt EGK in which the standard deviation
is determined by the width w and height h of the target. Given
the center location (x0, y0) of the category s ∈ {1, . . . , S},

the EGK Ge(x, y, s) = exp(− (x−x0)
2

2σ2
x

− (y−y0)
2

2σ2
y

) is used to

produce the target heatmapF ′
c ∈RH×W×S , where σx = γw

6 and
σy = γh

6 . The selection of the control factor γ is discussed in
Section IV-C1. The peak of the Gaussian distribution is selected
as the positive sample, while other points are treated as negative
samples. Because the points near the center also possess a certain
predictive ability, we impose a smaller penalty than for points
farther away from the center. We use the modified focal loss Lc

as in previous studies [10], [11], i.e.,

Lc = −
S∑

s=1

H∑
i=1

W∑
j=1

lc,α,β (Fc(i, j, s), F
′
c(i, j, s)) (2)

where

lc,α,β (a, a
′) =

{
(1− a)α log(a) for a′ = 1

(1− a′)β aα log (1− a) for a′ �= 1
,

α and β are arbitrary constants. We set α = 2 and β = 4.

C. Boundary Estimation Branch

1) Pipeline and Training: In conventional single-stage de-
tectors [6], [8], [10], the bounding box is commonly learned
under a Dirac delta distribution, which is a rigid value and may
lead to inaccurately estimated boundaries. In BEB, we transform
the regression process into a classification task, enabling a finer
resolution when generating the boundary. Any regression label
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Fig. 3. Given that the continuous distance from the center point to the top side
is 47.3, this distance can also be expressed as a weighted summation of two
discrete values, i.e., 47 and 48.

y ∈ R+ in the task of object detection can be represented as a
combination of two discrete labels, y1 and y2, as follows:

y = W (y1)y1 +W (y2)y2 (3)

where y1 = �y�, y2 = �y�, �·� and �·� are the floor and ceiling
functions, respectively, and W (y1) and W (y2) are the corre-
sponding weights of y1 and y2, respectively. We set the interval
δ between y1 and y2 to 1 such that W (y1) and W (y2) are
computed as

W (y1) = �y� − y (4)

W (y2) = y − �y�. (5)

For example, as shown in Fig. 3, assuming that the distance
from the center point to the top side is 47.3, the label can be
expressed as a weighted summation of 47 and 48, the weights
of which are 0.7 and 0.3, respectively.

Obviously, a softmax layer can be used to obtain the distri-
bution of the distances of the bounding boxes. Suppose that the
length of an edge in the bounding box is in the range from 0 to
M ; then, the range can be divided into M + 1 classes with an
integer of 1 as the interval. Hence, the estimated distance from
the center to box boundary can be expressed as follows:

ŷ =

M∑
i=0

P (yi)yi (6)

where P (yi) are the probabilities of locating the target at a
distance yi.

According to the traditional classification task, we use the
cross-entropy loss as the distance classification loss Lcls. Lcls is
a weighted summation of two components, i.e.,

Lcls = −(W (yj) log(P (yj)) +W (yj+1) log(P (yj+1))) (7)

where P (yj) and P (yj+1) are the probabilities of locating an
object at yj and yj+1, yj = �y�, and yj+1 = �y�. Intuitively,
Lcls aims to increase the probabilities of the values around the
label y.

Although Lcls can force the network to learn the distribution,
it cannot accurately reflect the difference between the predicted
value and the label because all the negative classes are treated
equally. Therefore, we introduce a regression loss Lfocus to force
the results to focus on the correct value, i.e.,

Lfocus = |ŷ − y| . (8)

Lfocus penalizes the error between the weighted predicted
value ŷ and ground truth y and thus addresses the drawback that
the classification loss Lcls cannot measure the accurate distance
between prediction values and ground truth.

Moreover, due to the complexity of scenes in remote sensing
images, the boundaries of objects are difficult to recognize; as
a result, the standard deviation of the distribution is usually
ambiguous. Hence, it is reasonable to use a loss to control the
scattered distribution. We define a gather loss Lgather as follows:

Lgather =
M∑
i=0

P (yi)(yi − ŷ)2. (9)

Lgather requires the estimated distribution to be concentrated
within a small range around the predicted value. Accordingly,
the distribution becomes sharper to eliminate potential confusion
regarding the distribution.

The overall architecture of BEB is illustrated in Fig. 4.
The feature map Fe ∈ RH×W×4(M+1) is transformed from Fb

through standard 3× 3 convolution and 1× 1 convolution, fol-
lowed by a softmax layer. To supervise BEB, we use Le, which
is defined as

Le = Lcls + λfocusLfocus + λgatherLgather (10)

where λfocus and λgather are two hyperparameters that we recom-
mend be set to small values because they fluctuate greatly in
the early training stage. We choose λfocus = 0.05 and λgather =
0.01 for our network, but they are not carefully selected. With the
supervision ofLe, we can obtain the distributions from the center
point to the four sides (top, left, bottom, and right). The M in Fe

denotes the range of distances. The final distance result can be
obtained by the weighted summation of the different distances
multiplied by the corresponding probabilities. The selection of
M depends on the size of the object in the input image, which is
roughly between 0 and 400. Because the stride of the backbone
is 4, the value of M is set to 100.

2) Analysis: In this section, we mainly analyze the specific
impact of Lfocus and Lgather. The specific analysis is as follows.

The output, P (yi), which is obtained by a softmax activation
function, can be computed as

P (yi) =
ezi∑M
k=0 e

zi
(11)

where z is an M + 1 dimensional vector before the softmax
function and zi is one element of z.

According to (6) and (8), the gradient of Lfocus w.r.t. P (yi)
can be computed as

∂Lfocus

∂P (yi)
=

{
yi if y < ŷ

−yi if y > ŷ.
(12)

Based on (11), the gradient of P (yi) w.r.t zj can be computed
as

∂P (yi)

∂zj
=

ezj∑M
k=0 e

zk
−
(

ezj∑M
k=0 e

zk

)2

= P (yj)− P (yj)
2, if j = i (13)
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Fig. 4. The architecture of BEB. Fb is the feature map from the backbone. Le is used to supervise the output feature map Fe, which is the summation of Lcls,
Lfocus, and Lgather. The distance distribution of an object is extracted from Fe according to the position of the center point. The final distance result is obtained by
the weighted summation of the different distances multiplied by the corresponding probabilities in the distributions.

and

∂P (yi)

∂zj
=− ezi(∑M

k=0 e
zk

)2 ∗ ezj =−P (yj) ∗ P (yi), if j �= i.

(14)
Based on (6), (12), (13), and (14), if y < ŷ, the gradient of

Lfocus w.r.t. zi can be written as

∂Lfocus

∂zi
= yi ∗ (P (yi)−P (yi)

2)−
M∑

k=0,k �=j

yk ∗ P (yk) ∗ P (yi)

= P (yi)(yi − yi ∗ P (yi)−
M∑

k=0,k �=j

yk ∗ P (yk))

= P (yi)(yi − ŷ). (15)

Intuitively, from (15), the network will be updated to increase
the probabilities of the classes yi, which are larger than those of
ŷ due to their positive gradients, and decrease the probabilities
of the classes yi, which are smaller than those of ŷ due to their
negative gradients. If y > ŷ, the gradient of Lfocus w.r.t zi equals
P (yi)(ŷ − yi). Thus, the network will be updated to increase the
probabilities of the classes yi, which are smaller than those of
ŷ due to their positive gradients, and decrease the probabilities
of the classes yi, which are smaller than those of ŷ due to their
negative gradients.

According to (6) and (9), the gradient of Lgather w.r.t. P (yi)
can be computed as

∂Lgather

∂P (yi)
= (yi − ŷ)2 − 2 ∗ yi ∗

M∑
k=0

P (yi)(yk − ŷ)

= (yi − ŷ)2. (16)

Based on (14), (15), and (16), the gradient of Lgather w.r.t zi
can be expressed as

∂Lgather

∂zi
= (yi − ŷ)2 (P (yi)− P (yi)

2)

−
M∑

k=0,k �=j

(yk − ŷ)2 ∗ P (yk) ∗ P (yi))

= P (yi)((yi − ŷ)2 −
M∑
k=0

(yk − ŷ)2 ∗ P (yk)) (17)

For notational convenience, we use Λ to represent the term∑M
k=0(yk − ŷ)2 ∗ P (yk) in (17). Thus, (17) can be simplified

as

∂Lgather

∂zi
= P (yi)((yi − ŷ)2 − Λ). (18)

The gradient in (18) has the following properties:

yi ∈
(
ŷ −

√
Λ, ŷ +

√
Λ
)
,

∂Lgather

∂zi
< 0. (19)

and

yi ∈
[
0, ŷ −

√
Λ
)
∪
(
ŷ +

√
Λ,M

]
,

∂Lgather

∂zi
> 0. (20)

Eq. (19) shows that the network will be updated to increase
the probabilities of the classes yi close to ŷ (yi ∈ (ŷ −√

Λ, ŷ +√
Λ)) via their negative gradients. By contrast, (20) shows that

the network will be updated to decrease the probabilities of the
classes yi far from ŷ (yi ∈ [0, ŷ −√

Λ) ∪ (ŷ +
√
Λ,M ]) via

their positive gradients.
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Fig. 5. Architecture of SSB. Fb is the feature map from the backbone. Ls is
used to supervise the output feature map Fs. The visualized semantic heatmap
for one object (red rectangle) shown on the right is the element-wise addition of
all the keypoint heatmaps in the channel dimension. The CGK is used to encode
all the keypoints.

D. Semantic Supervision Branch

The feature of a center point cannot accurately represent the
entire object; thus, some methods [30], [31] have been proposed
to extract an informative corner or border features to enhance the
object detection accuracy. Different from these methods, SSB
uses keypoints both on the boundary and within the interior
of an object to extract the semantic features. Consequently,
supervising this branch can force the backbone to learn more
semantic information (i.e., in addition to the center point). The
semantic heatmap Fs ∈ RH×W×N shown in Fig. 5 is the output
of SSB, where N is the number of keypoints.

To train SSB, we use a CGK Gc(x, y) =

exp(− (x−x0)
2+(y−y0)

2

2σ2 ) to encode the target heatmap, where
(x0, y0) denotes the location of a keypoint and σ is the
standard deviation adapted to the object size [10], [11]. The
loss Ls required to supervise SSB is also the modified focal
loss, which is the same as Lc. The keypoints are uniformly
distributed along the spatial dimensions (rows and columns)
of the object. Different from those of the CPB output, all the
object categories of the SSB output share the same keypoint
heatmap. Specifically, a channel in Fs represents a keypoint in
a different location of an instance. For example, the heatmap in
Fig. 5 signifies the sum of the keypoint heatmaps in the channel
dimension, which includes four keypoints in the horizontal
or vertical direction. Note that Fs does not include the center
point of an object. Therefore, when there are odd numbers of
points in the rows and columns, the center point is deleted. In
addition, we verify the influence of the number of keypoints in
Section IV-C3.

E. Total Loss

The total loss LT is the summation of the above three branch
losses with different weighting coefficients. Specifically,

LT = λcLc + λsLs + λeLe (21)

where λc = 1.0, λs = 0.1, and λe = 0.3, which are empirically
set. In the previous sections, we summarize the network structure

and training process. To better understand the overall inference
process of AFDet, we list the steps in Algorithm 1.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset and Implementation Details

We conduct experiments on three extensively used datasets,
i.e., the NWPU VHR-10 [22], DIOR [23] and HRRSD [24]
datasets. The NWPU VHR-10 dataset contains 650 annotated
images distributed into ten categories. There are no partitioned
training, validation, and test sets in the original NWPU VHR-10
dataset; thus, in accordance with previous studies, we randomly
use 60 % for training, 20 % for validation and the remaining
20 % for testing. For the DIOR dataset, 11 725 remote sensing
images are used as the training set, and the remaining 11 738
images are employed as the test set. Likewise, the HRRSD data
are divided into three parts (training, validation, and test sets),
with 5401, 5417, and 10 913 images, respectively.

For all experiments implemented based on our proposed de-
tector, DLA-34 series networks (DLA-34 and DLA-34-DCN)
are used as the backbone networks. DLA-34 series networks
are more lightweight than the commonly used ResNet-101
networks. Compared with DLA-34, DLA-34-DCN modifies
every convolution layer in upsampling stages to a deformable
convolutional layer [38]. We initialize the backbone networks
with the weights pretrained on ImageNet. Specifically, rectified
Adam (RAdam) [39] is selected as the optimizer for our model.
For the HRRSD and DIOR datasets, the model is trained within
a total of 30 epochs, and the batch size is 6. The learning rate
is set to 0.0005 at the beginning, which is multiplied by 0.1 at
epochs 20 and 25. For the NWPU VHR-10 dataset, the model
is trained within a total of 140 epochs. The learning rate is set
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to 0.0001 at the beginning, which is multiplied by 0.1 at epochs
90 and 120. For all the datasets, the input image is padded with
zeros to a size of 800× 800 if its size is smaller than 800× 800.
We use simple data augmentation operations including random
horizontal flipping, vertical flipping, and random scaling to en-
hance the robustness of the detector. We perform the experiments
under the PyTorch framework on a PC with an Intel single-core
i7 CPU and a GeForce RTX 1080 Ti GPU.

B. Evaluation Metrics

To evaluate the detection performance of our proposed net-
work, we use two types of methods following the evaluation
protocol in Common Objects in Context (COCO) [40] and PAS-
CAL Visual Object Classes (VOC) [41]. Among the PASCAL
VOC metrics, the mean average precision (mAP) represents the
mean value of the average precision of each class (APv) at
the intersection over union (IoU) = 0.50. APv is the value of
the area enclosed by the coordinate axes and a precision-recall
curve (PRC). The PRC is plotted by the precision P and recall
R, which are defined as

P =
TP

TP + FP
(22)

R =
TP

TP + FN
(23)

where TP, FP, and FN denote the numbers of true-positives,
false-positives, and false-negatives, respectively. APv can be
defined as

APv =

∫ 1

0

Pm(r)dr (24)

where Pm(r) is the measured precision when the recall R
equals r.

Among the COCO metrics, AP,AP50,AP75 are used in this
article. Different from the APv metric in PASCAL VOC, the
AP50 metric in COCO is defined as the mean precision at a set
of 101 equally spaced recall levels [0, 0.01, ..., 1] at IoU = 0.5

AP50 =
1

101

∑
r∈{0,0.01,...,1}

Pm(r). (25)

AP75 is at IoU = 0.75, andAP corresponds to the mean average
precision for IoU from 0.5 to 0.95 with a step size of 0.05.

C. Ablation Experiments

We conduct comprehensive experiments to evaluate the con-
tribution of each component in the proposed algorithm. We use
the DLA-34 network as the backbone. All the results in this
section are presented in the COCO evaluation metric style.

1) Evaluation of CPB: As mentioned in Section III-B, CPB
is used to predict the center of an object. To improve the detection
accuracy, the positive sample in the heatmap is encoded by an
EGK, which is more suitable for objects with a large aspect ratio
than a CGK. The EGK Ge(x, y) = exp(− (x−x0)

2

2σ2
x

− (y−y0)
2

2σ2
y

)

has two variances, σx and σy , which are proportional to the
height and width of the object, respectively. The larger the

Fig. 6. Visualization of EGK with different values of γ varying from 0.1 to
0.9. From left to right, the highly responsive region increases with increasing γ.

TABLE I
PERFORMANCE OF AFDET WITH A CGK (CGK) AND EGK OF VARYING γ

FROM 0.1 TO 0.9 USING THE HRRSD DATASET

TABLE II
PERFORMANCE OF AFDET WITH DIFFERENT BOX ESTIMATION METHODS

USING THE HRRSD DATASET

variance, the faster the rate at which the confidence level of
the deviation from the center of the object drops. Therefore, we
verify the AP under different values of the regulatory factor γ
(from 0.1 to 0.9) in σx and σy . EGK with different γ values
are visualized in Fig. 6. The highly responsive region clearly
increases with increasing γ. In Table I, we report the results on
HRRSD, in which CGK and EGK denote the circular and EGK,
respectively. Except for the situations where γ equals 0.1 and
0.9, the AP of EGK is higher than that of CGK. This discrepancy
arises because small values of γ lead to few training samples,
and a large γ value introduces confusing location information.
Therefore, the value of AP first increases and then decreases
with increasing γ. When γ equals 0.5, the values of AP and
AP75 reach their maximums; however, AP50 does not reach its
maximum because AP50 is a relatively loose metric compared
with AP and AP75.

2) Evaluation of BEB: As mentioned in Section III-C1, BEB
is used to predict the distances from the center point to the
four sides through the corresponding distributions. Moreover,
we can obtain a more accurate boundary by supervising the
distributions using the focus loss and gather loss. First, to verify
the effectiveness of the classification method, we compare it
with conventional regression methods using HRRSD. As shown
in Table II, the wh+ offset method denotes the width and



12564 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 7. Comparison of detection results and visualized output distribution in BEB (Lcls) and BEB (Lcls + Lfocus + Lgather). Note that the yellow box represents
the predicted box and the white box is the ground-truth box. The distances from the predicted center point to the top (red line), bottom (green line), left (blue line),
and right (pink line) are shown in the predicted figures. (a), (c), (e) Detection results in BEB (Lcls). (b), (d), (f) Detection results in BEB (Lcls + Lfocus + Lgather).

height of a bounding box and the offset from the center point,
while the tblr method denotes the distances from the center to
the top, bottom, and left and right sides. Our method clearly
outperforms these two commonly used regression methods on
all evaluation metrics. Second, we investigate the effect of Lfocus

and Lgather. Table II reveals that BEB (Lcls + Lfocus) performs
better than BEB (Lcls) on all metrics. With the help of Lgather,
BEB (Lcls + Lfocus + Lgather) outperforms BEB (Lcls + Lfocus),
except for AP50. To further intuitively highlight the effectiveness
of Lfocus and Lgather, we visualize the distance distributions
from the center point to the four sides. As shown in Fig. 7,
the figures in the first column include a golf field, windmill,
and chimney in a complex scenario. (a), (c), (e) present the
detection results and distributions in BEB (Lcls), while (b), (d),
(f) present the results in BEB (Lcls + Lfocus + Lgather). As shown
in Fig. 7(a) and (b), the golf field has an irregular shape, and

the boundaries are difficult to regress. Although BEB (Lcls)
performs a relatively accurate estimation, the results can be
further optimized with the help ofLfocus andLgather. The distance
distributions in the first row have a relatively large standard de-
viation due to the ambiguous boundaries. However, the distance
distributions of BEB (Lcls + Lfocus + Lgather) in the second row
have a sharper appearance, enabling more accurate boundary
estimation. In Fig. 7(c) and (d), the windmill has some subtle
structures similar to the background area. The detection results
in BEB (Lcls + Lfocus + Lgather) are more accurate than those in
BEB(Lcls). For the chimney with thick smoke and shadow in
Fig. 7(e) and (f), BEB (Lcls + Lfocus + Lgather) can obtain the
same boundaries as the ground truth due to the more focused
and accurate distributions.

3) Evaluation of SSB: As mentioned in Section III-D, SSB
is used to force the backbone network to focus on the semantic
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Fig. 8. Visualization of semantic heatmaps for one object in SSB with different
values of the number of keypointsN . The visualized heatmap is the elementwise
addition of N keypoint heatmaps in the channel dimension.

TABLE III
PERFORMANCE OF AFDET WITH DIFFERENT VALUES OF THE NUMBER OF

KEYPOINTS N USING THE HRRSD DATASET

features of the entire instance. In addition to the center point,
the keypoints of other locations are the learning objectives of
the network. Hence, the use of different numbers of keypoints
N affects the final accuracy. Heatmaps with different values of
N are shown in Fig. 8. When N equals 4, the network can learn
the corner information of the entire object, and for N equals 8,
the network can learn the corner and middle point features. For
the value of N larger than 8, information on both boundary and
internal keypoints can be obtained. In Table III, we report the
performance of AFDet with different values for the number of
keypointsN using the HRRSD dataset, in which w/ SSB and w/o
SSB indicate that the SSB is and is not used, respectively. The
networks under the supervision of SSB all clearly perform better
than those without the supervision of SSB, especially regarding
the AP and AP75. The AP achieves its maximum when N
equals 16, suggesting that the feature information inside objects
is as crucial as the information along the boundary. However,
when N equals 24, the accuracy declines, which may be due
to the introduction of confusing information among different
keypoints. To better understand the benefits of SSB for object
detection, we visualize the output feature maps of CPB under
different conditions using the DIOR dataset. Fig. 9 presents the
w/ SSB and w/o SSB heatmaps. Fig. 9(a) shows the input images,
which include a car, three harbors, and densely distributed ships,
while Fig. 9(b) and (c) present the harbor category heatmap and
ship category heatmap, respectively, and Fig. 9(d) shows the final
detection results. Fig. 9(b) indicates that the w/ SSB method can
accurately locate the center of the harbor because the supervision
of extra points plays a positive role in locating the center of the
harbor. By contrast, the harbor heatmap of the w/o SSB method
is ambiguous, as this approach leads to missed detections and
errors in the final results. Moreover, the w/ SSB method detects

almost all ships and cars compared with the w/o SSB method,
which yields some errors regarding the ships and cars in the
images.

D. Comparisons With State-of-The-Art Methods

In this section, we compare AFDet with several state-of-
the-art object detectors, including two-stage methods such as
HRCNN [24], GACL [45], and CSFF [12]; single-stage anchor-
based methods such as SSD [7], YOLOv3 [6], MFPNet [43],
HawkNet [44], and RetinaNet [8]; and single-stage anchor-free
methods such as CenterNet [10], FCOS [9], RepPoints [30],
and O2-DNet [42]. First, we compare the mAPs of the above
methods and our methods using the DIOR, HRRSD and NWPU
VHR-10 datasets, and we then compare the number of param-
eters and frames per second (FPS) using the NWPU VHR-10
dataset.

Table IV shows a comparison of the performance of our pro-
posed method with that of other methods using the DIOR dataset.
Our method performs well for almost all categories, especially
airplanes, basketball courts, bridges, and tennis courts. The
scale distribution of objects in this dataset varies greatly, so the
performance of the anchor-based methods is limited by the rigid
setting of anchors. Moreover, RepPoints performs better than
FCOS because it uses multiple points to capture the geometric
information of objects. Different from RepPoints and FCOS,
our method and O2-DNet do not adopt the multilayer prediction
strategy of an FPN. However, our method using only the DLA-34
backbone can achieve similar performance toO2-DNet using the
Hourglass-104 backbone, which has many more parameters than
DLA-34. The addition of DCN to DLA-34 can further improve
the network, yielding a gain of 2.8% over AFDet using DLA-34,
which also performs better than MFPNet and HawkNet.

The quantitative results of applying different methods to the
HRRSD dataset are shown in Table V. Most of the methods
achieve good results because this dataset is not as complex as the
DIOR dataset and has fewer object categories. The anchor-free
methods still perform better than the anchor-based methods, and
it is worth mentioning that AFDet (w/ DLA-34) is even better
than the strong anchor-free detector RepPoints (w/ ResNet-101).
AFDet (w/ DLA-34-DCN) achieves the best mAP and AP for
some categories, such as vehicles and ships. AFDet appears to
be good at detecting objects with fine textural features, such as
basketball and tennis courts.

Table VI shows the mAPs of different methods using the
NWPU VHR-10 dataset, demonstrating that the performance
of anchor-free methods is similar performance to that of other
methods because this dataset is relatively small compared with
the HRRSD and DIOR datasets. However, our method achieves
a very high mAP, which verifies that our method can maintain
good performance with both large and small datasets. Fig. 10
shows several detection results of our proposed method. The
images in the first, second and third rows are from the Dior,
HRRSD, and NWPU datasets, respectively.

In addition to precision, the speed and number of parameters
of detectors are important indicators. Hence, we report the FPS
and numbers of parameters of commonly used methods and
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Fig. 9. Comparison of detection results and visualized output heatmaps in CPB without SSB and with SSB using sample images from the DIOR dataset. Note
that the blue boxes represent detected ships, pink boxes represent detected harbors, and green boxes represent cars. The first row presents the results without SSB,
and the second row presents the results with SSB. (a) Original image. (b) Heatmap in CPB corresponding to harbor category. (c) Heatmap in CPB corresponding
to ship category. (d) Detection results.

TABLE IV
PERFORMANCE OF OBJECT DETECTORS USING THE DIOR DATASET

The abbreviations for the categories are AP-Airplane, AI-Airport, BF-Baseball Field, BC-Basketball Court, BR-Bridge, CH-Chimney, DA-Dam, ESA-Expressway Service
Area, ETS-Expressway Toll Station, GF-Golf Field, GTF-Ground Track Field, HA-Harbor, OV-Overpass, SH-Ship, SD-Stadium, ST-Storage Tank, TC-Tennis Court, TS-Train
Station, VE-Vehicle, and WM-Windmill.

TABLE V
PERFORMANCE OF OBJECT DETECTORS USING THE HRRSD DATASET

The abbreviations for the categories are defined as Follows: AP-Airplane, BD-Baseball Diamond, BC-Basketball Court, BR-Bridge, CR-Crossroad, GTF-Ground Track
Field, HA-Harbor, PL-Parking Lot, SH-Ship, ST-Storage Tank, TJ-T Junction, TC-Tennis Court, and VE-Vehicle.
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Fig. 10. Detection results of the AFDet for sample images. The images in the first, second and third rows are from the Dior, HRRSD and NWPU datasets,
respectively.

TABLE VI
PERFORMANCE OF OBJECT DETECTORS WITH THE NWPU VHR-10 DATASET

USING 60 % FOR TRAINING, 20 % FOR VALIDATION AND 20 % FOR TESTING

our method in Table VII. AFDet (w/ DLA-34) can process
20.3 images per second, while AFDet (w/ DLA-34-DCN) can
process 17.1 images per second; this slightly reduced FPS is
due to the use of the DCN. The computing performance and
numbers of parameters are comparable to those of CenterNet.
Although YOLOv3 yielded the best speed performance, the
number of parameters and precision using the testing datasets
are not satisfactory. FPN-based methods (RetinaNet, FCOS, and
RepPoints) yield good performance with respect to accuracy, but
they are limited by their parameters and speed. Compared with
the above methods, our methods achieve a good speed-accuracy
tradeoff.

TABLE VII
COMPUTING TIME AND NUMBER OF PARAMETER COMPARISONS OF DIFFERENT

METHODS AS THE AVERAGE NUMBER OF PROCESSED IMAGES PER SECOND

USING THE NWPU VHR-10 DATASET

V. CONCLUSION

In this article, we propose a more accurate and faster detector
named AFDet, which consists of a backbone network, CPB,
SSB, and BEB. CPB is used to predict the center point of an
object. SSB is used to force the network to capture more seman-
tic information of an object but is active only in the training
process. BEB can obtain the distance distributions from the
center point to the four sides of an object under the supervision
of a classification loss. Moreover, the focus loss and gather
loss can ensure that the distance distributions are more focused
on the correct values, thereby retrieving sharper distributions
and leading to higher detection accuracy. Ablation experiments
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using the HRRSD dataset verify the effectiveness of the different
components in AFDet. Our methods achieve state-of-the-art per-
formance on large and small datasets, such as DIOR, HRRSD,
and NWPU VHR-10. Furthermore, AFDet performs better than
most commonly used methods due to its simple structure. Hence,
our method can achieve a good speed-accuracy tradeoff. In the
future, we will consider reducing the redundancy of the head of
AFDet to further improve its performance.
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