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Estimating Optimal Number of Compressively
Sensed Bands for Hyperspectral Classification via

Feature Selection
C. J. Della Porta, Member, IEEE, and Chein-I Chang , Life Fellow, IEEE

Abstract—Compressive sensing (CS) has received considerable
interest in hyperspectral sensing. Recent articles have also exploited
the benefits of CS in hyperspectral image classification (HSIC) in
the compressively sensed band domain (CSBD). However, on many
occasions, the requirement of full bands is not necessary for HSIC
to perform well. So, a great challenge arises in determining the
minimum number of compressively sensed bands (CSBs), nCSB,
needed to achieve full-band performance. Practically, the value of
nCSB varies with the complexity of an imaged scene. Although
virtual dimensionality (VD) has been used to estimate the number
of bands to be selected, nBS, it is not applicable to CSBD because
a CSB is actually a mixture of nCSB bands sensed by a random
sensing matrix, while VD is used to estimate nBS which is the
number of single bands to be selected. As expected, nCSB will be
generally smaller than nBS. To estimate an optimal value of nCSB,
two feature selection approaches, filter and wrapper methods, are
proposed to extract scene features that can be used to estimate
the minimum value of nCSB required to maximize performance
with minimum redundancy. Specifically, these methods are fully
automated by leveraging optimal partitioning schemes which en-
able classification to further reduce storage requirements in CSBD.
Finally, a set of experiments are conducted using real-world hy-
perspectral images to demonstrate the viability of the proposed
approach.

Index Terms—Compressively sensed bands (CSBs),
compressively sensed bands domain (CSBD), compressive sensing
(CS).

I. INTRODUCTION

HYPERSPECTRAL sensing technologies continue to find
great success in many new applications. Advances in sen-

sor design have also allowed for new, smaller sensors to be im-
plemented on remote and autonomous platforms. The wealth of
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information provided by hundreds of contiguous spectral bands
also comes with challenges of more stringent requirements on
size, weight, and power, on-board storage, and computation.
Such restrictions certainly limit what data processing can be
accomplished remotely as well as in real time.

To resolve these issues, one general approach is data reduc-
tion (DR) which reduces a high-dimensional hyperspectral data
cube to a low-dimensional dataset via various dimensionality
reduction techniques [1]. One commonly used DR is the use
of data transformations, referred to as spectral-transformed DR
(STDR), which represents the original data cube in a lower
dimensional data space specified by a particularly designed
transformation as a finite number of components such as prin-
cipal components analysis [1], maximum noise fraction [1],
independent component analysis [2], and nonlinear transfor-
mation [3]. In particular, many deep learning (DL) methods
have been applied to hyperspectral DR [4]. For example, DL
methods use an approach of error reconstruction of estimating
the best components in hyperspectral data such as autoencoder
[4]. Since these structures are complicated and requires many
training data, Makantasis et al. introduced methods of using
tensors where the main principal components are identified as a
reconstruction error between the test data and the data learned by
the network model [5] and later also proposed a common mode
patterns method by taking the information of labels into account
to ensure that tensor objects that belong to different classes do
not share [6]. However, DL has issues regarding explainability,
since the whole model is treated as a black box and also requires
tuning many model parameters empirically without providing
constructive guidelines. In addition, the main issue resulting
from STDR is that the original spectral band information will be
lost and compromised. For hyperspectral imaging, preserving
original spectral information is crucial and STDR has mixed
spectral information by transformations.

Another DR approach is band selection (BS) which selects a
set of appropriate bands to represent the original data cube with
spectral data fidelity, while discarding all unselected spectral
bands. As a result, BS does not use the information provided by
all spectral bands as STDR does. Due to the fact that BS retains
the data integrity of each of selected bands, BS is generally
preferred to STDR in hyperspectral data exploitation. Accord-
ingly, many BS methods have been developed and reported in
the literature. In general, to best utilize BS, an application must
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be identified so that a specific BS strategy can be designed, such
as the classification problem considered in this article. Many
BS methods have been proposed for classification in recent
years. For band clustering, Wang et al. [7] proposed a general
framework for hyperspectral BS which adopts an adaptive sub-
space partition strategy to partition a hyperspectral image cube
into multiple subcubes by maximizing the ratio of interclass
distance to intraclass distance. Wang et al. [8] further proposed
a fast neighborhood grouping method for hyperspectral BS to
partition a hyperspectral image cube into several groups using
coarse-fine strategy and then obtain the most relevant and infor-
mative bands simultaneously as a subset in accordance with two
factors, such as local density and information entropy. Using
mutual information (MI), Torres et al. [9] developed a spatial
spectral MI BS method that utilizes a spatial feature extraction
technique as a preprocessing step, followed by the clustering of
the MI of spectral bands for enhancing the efficiency of the BS.
Chang et al. [10] recently derived a new approach, referred to as
self-MI-based BS for hyperspectral image classification (HSIC).
For graph-based representation, Yuan et al. [11] developed a
multigraph determinantal point process approach. Cai et al. [12]
proposed an efficient graph convolutional self-representation
BS method by incorporating graph convolution into the self-
representation model. Sui et al. [13] proposed a robust un-
supervised BS method to reveal bandwise representativeness
based on the comprehensive interband neighborhood structure.
For DL network, Feng et al. [14] considered hyperspectral BS
as a reinforcement learning problem where a semi-supervised
convolutional neural network, called EvaluateNet, is constructed
by adding the intraclass compactness constraint of both limited
labeled and sufficient unlabeled samples. For band subset selec-
tion (BSS), Yu et al. [15] investigated a BSS approach to HSIC
which utilized a linearly constrained minimum variance to select
multiple bands simultaneously as a band subset, referred to as
simultaneous multiple BS rather than one band at a time se-
quentially as most traditional BS methods do. Yu et al. [16] later
developed a novel approach, called class signature-constrained
background suppression approach to BS for HSIC where class
signatures can be obtained either by a priori or a posteriori
knowledge or training samples and BKG suppression can be ac-
complished by the sample correlation matrix R. Unfortunately,
similar to STDR, BS also faces two challenging issues, how to
determine the number of spectral bands to be selected, nBS, and
how to select appropriate spectral bands once nBS is known.

A third approach is compressive sensing (CS) that was re-
cently introduced in [20]. It is CS-based DR with the concept of
CS reviewed in [18]–[20]. In particular, the universality model
was explored for HSIC in [21]–[25] via the compressively sensed
band domain (CSBD). Several other applications were also
investigated, restricted entropy property [26], [27], endmember
finding [28], [29], unmixing [30], BS [31], [32], and target
detection [33]. Interestingly, CSBD offers a new look into DR.
It can be considered as a hybrid of STDR and BS in the sense
that it works as STDR without specifying any particular spectral
transformation and also as BS without specifying a BS strategy
to randomly selected bands.

Motivated by recent articles which took advantage of the
university model in [20] to develop CBSD, this article explores
the potential of CBSD by integrating STDR and BS into one
approach which combines both advantages.

As recalled, DR makes use of transformations to reduce the
entire set of spectral bands to a number of reduced dimensions
by a small number of components, nSD to represent the original
data cube, while BS only selects a desired set of appropriate
spectral bands to represent the entire spectral bands. Therefore,
theoretically speaking, nSD should not be greater than nBS

selected by BS. On the other hand, since CSBs take advantage
of its particular properties, maximum incoherence and sparse
representation to randomly sense mopt bands from the full band
set to perform data conversion, the number of CSBs, mopt

is expected to be no greater than nSTDR. Furthermore, CSBs
are random mixtures of mopt sensed bands. Therefore, mopt is
expected to be smaller than nBS. Accordingly, from a DR point
of view, CSBs are randomly generated by sensing mopt mixtures
of full spectral bands. On the other hand, from a BS point of view,
CSBs only uses mopt bands randomly sensed from and mixed
by the entire full band set. Most importantly, CSBs are sensed
and obtained during data acquisition, which can be particularly
implemented in a designed sensing hardware that can greatly
reduce the computational requirements, while still maintaining
a high level of algorithm performance.

There are several distinct differences of CSBD from STDR
and BS. First of all, CSBD randomly senses spectral bands via
a Gaussian or Bernoulli random matrix compared to BS which
selects deterministic bands. From this point of view, CSBD can
be regarded as a dynamic BS as opposed to BS to be considered
as a static BS. Second of all, each CSB is actually a mixture of
full spectral bands via randomly sensed spectral bands. In other
words, CSBD offers a new insight into DR and can be considered
as a hybrid of STDR and BS in the sense that it works as
STDR without specifying any particular spectral transformation
as well as works as BS without specifying a BS strategy to
randomly selected bands. Finally, both STDR and BS need to
select components by a specific transformation or spectral bands
by a custom-designed BS method, but CBSD does not. This is
because CSBD generates the sensing matrix based on the two key
CS properties, maximum inherence and sparsity that can achieve
sampling rate lower than the Nyquist rate. As anticipated, CSBD
generally requires fewer bands than STDR and BS do to achieve
the same level of performance.

The main focus of our article is to predict the minimum
number of bands that are required by a compressively sampled
system to maintain full-band classification performance. This
task, while related, is markedly different from BS and traditional
DR.

For CSBD to work effectively, the only remaining issue is
how to determine an optimal number of CSBs, mopt. Recently,
the virtual dimensionality (VD) developed in [1], [34]–[37] has
been used to estimate an appropriate value of nBS. It seems
that VD may be also used to estimate mopt. However, it should
be noted that VD was originally developed to estimate the
number of single spectrally signatures as pure signatures and
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a CSB is actually a mixture of full bands sensed by a ran-
dom sensing matrix. Consequently, it is expected that mopt

should be generally smaller than nBS due to the fact that a
CSB is sensed from full bands compared to a BS-selected
band which is only and simply a single band. With this in
mind VD may be applicable to estimating mopt but may not
produce a desired value of mopt. In this case, instead of ap-
pealing for VD, this article develops a feature selection-based
approach to determining mopt for HSIC based on a given set of
training data.

In [24], HSIC was performed in CSBD and the effects of
scene complexity were investigated where the experimental re-
sults demonstrated that mopt varied with both individual classes
and scene complexity. This observed variability motivated an
interesting issue in how an appropriate number of CSBs can be
selected. For BS, the data is considered as a whole and selects
the same bands for classification of all the classes. However,
since a class has its own characteristics and requires a different
number of bands to specify its class. Using the same number of
bands to specify all of classes is not realistic unless all classes
are considered equally significant. To address this issue, Song
et al. [38] is believed to be the first work to propose an idea of
using self-information arising in information to determine the
number of bands required to process a class. It took advantage of
class features developed in [39] to calculate the significance of
each class as a probability from which the self-information of
each class can be measured as class information to be used as
a guide for selecting its required number of bands. Inspired by
this approach, each CSB is considered as a feature. Since CSBs
are sensed in the sense of maximum incoherence, each sensed
band will be considered equally significant. In this case, only the
number of CSBs matters. This is similar to uniform BS widely
used in BS which generally performs well provided that nBS is
appropriately sufficient. So, the main issue for CSBs is reduced
to determination of mopt for each class.

For a compressed hyperspectral classification problem, CSBs
can be considered as classification features in which case mopt

corresponds to the optimal number of features. As a result, the
task of estimating mopt can then be considered as a feature
selection problem. More specifically, feature selection is an
approach which selects a set of features with the goal of remov-
ing redundancy or maximizing relevance. In a typical feature
selection problem, there are n disparate classification features
that must be chosen from, each of which is independent and has
varying, unknown levels of discriminatory power. The challenge
is to determine an appropriately sized subset of features which
are the most effective for classification. This becomes an NP-
complete problem where each of the subsets must be searched
exhaustively.

Given that the CSBs are sensed incoherently, all of the features
can be considered to have equal discriminatory power. More
specifically, we can simply state that the nature of the incoherent
sampling will cause all possible subsets of a fixed size to be
approximately equivalent. This greatly reduces the problem
because it implies that only the number of features needs to
be determined rather than a specific combination of features.
This is simply due to the fact that CBSs are randomly selected

with maximum possible inherence. As a consequence, using
CBSs can significantly reduce the problem complexity and also
remove the computational burdens that would otherwise limit
the practicality of an exhaustive technique.

There are three general categories of supervised feature selec-
tion algorithms: filter methods, wrapper methods, and embedded
methods. A detailed review of such feature selection algorithms
can be found in [40]. One one end, filter methods are independent
of a particular classifier and based on characteristics of the used
dataset. They are typically fast because classifiers do not need to
be trained on various sets of features. On another end wrapper
methods are a brute force approach in which a particular clas-
sifier is trained using various sets of features and performance
metrics such as classification accuracy or precision is used as
an optimal feature set. This approach is typically very slow for
general feature selection. Embedded methods are a combination
of filter and wrapper methods, where data characteristics are
used to limit the selection of features and then wrapper methods
are applied to ensure that maximum performance is achieved.
Embedded methods are often applied to achieve the accuracy of
wrapper methods but with a reduced search time.

Additionally, each pixel may also require a different nCSB. In
this case, a new CS metric for hyperspectral images, referred to
as compressively sensed pixel number ratio (CSPNR), is defined
and shown to be a convenient representation of compression per-
formance. This metric facilitates the comparison of compression
performance across different images and is easily relatable to file
sizes and hardware storage.

Several contributions made in this article are summarized as
follows:

1) Two feature extraction algorithms are proposed for esti-
mating mopt needed to achieve full classification perfor-
mance. One is classifier independent and is based solely on
characteristics of the training data. The other is classifier
dependent and directly leverages the training accuracy of
a trained classifier.

2) The proposed algorithms are fully automated by adopting
an optimal partitioning approach. Such algorithm automa-
tion allows users to estimate individual minimum number
of CSBs for each class.

3) A new pixel-based metric, CSPNR, is introduced to mea-
sure pixel performance in terms of nCBS.

II. HSIC IN COMPRESSIVELY SENSED BAND DOMAIN

CS has emerged as a new technique in communications/signal
processing. Since its inception in early 2000s, CS has found its
great success in many different disciplines. The central goal of
CS is to sample data under the Nyquist rate, while still being
able to recover a continuous signal that can be reconstructed
without distortion. In order to achieve this goal, it must satisfy
two crucial and important properties: maximum incoherence
and sparsity. Maximum incoherence enables the signals to be
sampled randomly under the Nyquist rate with no signal aliasing,
while sparsity allows signals to be represented by only a few
nonzero components. In other words, CS allows signals to be
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directly acquired in a compressed form and then later uncom-
pressed using a sparse recovery process. Due to its potential
in reducing hardware costs, on-board storage, computational
costs, and communications bandwidths, CS draws considerable
interest in many applications. Most recently, CS has also found
many applications in hyperspectral data exploitation.

A. CSBD

A hyperspectral image, HSI ∈ �Nx×Ny×L consists of two
spatial dimensions, Nx and Ny and a spectral dimension L.
A CSBD image, HSICSBD ∈ �Nx×Ny×m can be formed by
sensing m linear mixtures of the original spectral bands. The
compressed acquisition of a single hyperspectral pixel vector
can be mathematically represented using the following model:

y = ΦΨr+ n (1)

where y ∈ �m×1 is the compressed measurement vector, Φ ∈
�m×L is a sensing matrix, Ψ ∈ �L×L is the sparse repre-
sentation basis, r ∈ �L×1 is a hyperspectral pixel vector, and
n ∈ �m×1 is a noise term. The model in (1) requires that the
signals are sparse and sensed incoherently [20]. The challenge
in designing a CS system is choosing Φ and Ψ to satisfy these
requirements for a given application. Previous work [21]–[33]
showed that a hyperspectral model, well-suited for analysis in
the compressed domain, can be developed by using random
sensing matrices. More specifically, Φ, is generated from any
random distribution that satisfies the concentration of measure
inequality [20]. Such random sensing matrices have been shown
to be incoherent with any representation basis,Ψ, and also satisfy
the restricted isometry property (RIP) that is often desired in CS
applications [17]–[20], [26], [27]. RIP guarantees that relative
measures of distance are preserved in the compressively sensed
space, effectively making the sensing matrix an orthonormal
projector ΦΦT ≈ I. According to the “universality” property
of random sensing described in [20] the sparse basis, Ψ is only
needed for signal recovery. Since HSIC does not require data
reconstruction, this guarantees that all the needed information is
captured in CSBD provided that a sufficient number of CSBs is
ensured. Consequently, the sensing matrix Φ is the main consid-
eration in the CS model design. In other words, the commonly
used CS model in (1) can be further simplified to

y = Φmr+ n (2)

where Φm represents a random sampling matrix using m CSBs.
To be more precise, (2) can be re-expressed as

yΩCSBD
= ΦmrΩB

+ nΩCSBD
(3)

where y and r are defined on ΩCSBD and the original data cube
with full band set ΩB, respectively.

B. Classification in CSBD

A classifier is basically a class membership assignment func-
tion f(r) that assigns an HSI pixel r to one of P possible classes,
{Cp}Pp=1, resulting in a classification map, CMap ∈ �Nx×Ny .
Based on the simplified CS model (3), Della Porta et al. [24]
showed that it was possible to derive a CSBD-based classifier,

δCSBD(r) which would converge to full band performance for
a given sufficient number of CSBs. Specifically, the support
vector machine (SVM) was chosen as the spectral classifier and a
guided edge-preserving filter (EPF) was used to incorporate the
spatial context of the image. The EPF-based method in [41] is
adopted as the classifier to be studied in this article with specific
details referred to the CSBD adaptation performed in [24], where
SVM was shown both analytically and empirically to converge
to full band performance.

III. FEATURE SECTION FOR CSBS

In compressed hyperspectral classification problems, CSBs
can be considered as classification features in which case mopt

corresponds to the optimal number of features. As a result, the
task of estimating mopt can then be considered as a feature
selection problem. Feature selection is an approach which selects
a set of features with the goal of removing redundancy or
maximizing relevance. In a typical feature selection problem,
there are n disparate classification features that must be chosen
from, each of which is independent and has varying, unknown
levels of discriminatory power. The challenge is to determine an
appropriately sized subset of features which are the most effec-
tive for classification. This becomes an NP-complete problem
where each of the subsets must be searched exhaustively.

Given that the CSBs are sensed incoherently, all of the features
can be considered to have equal discriminatory power. More
specifically, we can simply state that the nature of the incoherent
sampling will cause all possible subsets of a fixed size to be
approximately equivalent. This greatly reduces the problem
because it implies that only the number of features needs to
be determined rather than a specific combination of features.
This is simply due to the fact that CBSs are randomly selected
with maximum possible incoherence. As a consequence, using
CBSs can significantly reduce the problem complexity and also
remove the computational burdens that would otherwise limit
the practicality of an exhaustive technique.

There are three general categories of supervised feature selec-
tion algorithms: filter methods, wrapper methods, and embedded
methods [40]. Filter methods are independent of a particular
classifier and based on characteristics of the used dataset. They
are typically fast because classifiers do not need to be trained
on various sets of features. Wrapper methods are a brute force
approach in which a particular classifier is trained using various
sets of features and performance metrics such as classification
accuracy or precision is used to select an optimal feature set. This
approach is typically very slow for general feature selection.
Embedded methods are a combination of filter and wrapper
methods, where data characteristics are used to limit the selec-
tion of features and then wrapper methods are applied to ensure
that maximum performance is achieved. Embedded methods can
be considered as a compromise between these two and are often
applied to achieve the accuracy of wrapper methods but with a
reduced search time.

In this section, filter and wrapper methods are studied for
estimating mopt.
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A. Filter Method

Filter methods are based on calculating measures of effective-
ness for classification features, without directly applying them
to a classifier. This benefit offers their potential in extracting
features that are universally effective for any type of a classifier.
However, this filter-based approach also raises a challenge of
identifying an appropriate measure of effectiveness for each
feature. The choice of such a measure is often dependent upon
the type of data and also its discriminatory power needed in
classification which is not always straightforward.

In general, filter methods can be further classified into uni-
variate and multivariate. In the univariate approach, each feature
is considered one at a time, making implementation simple
and also reduces the overall search space. A typical univariate
filter approach consists of individually scoring each feature and
then choosing the highest score-ranked features to be used for
classification. A disadvantage to the univariate approach is that
it is incapable of identifying the combined discriminatory power
of multiple features since they are only considered one at a time.
Additionally, a univariate approach also overlooks the corre-
lation among features and is unable to recognize redundancy
between the features.

A multivariate approach considers features in batches giving
it the ability to solve the two challenges faced by a univariate
approach. Multivariate approaches consider both the number
and specific combination of features being considered jointly
for classification. The task of estimating the optimal number of
CSBs, mopt, can be considered as a special case of a multivariate
filter approach, where mopt is a batch size. Furthermore, since
each CSB is sensed incoherently, all CBSs will be considered
to have approximately the same discriminatory power (i.e.,
one CSB is no more informative than another), meaning that
the priority of CSBs can be ignored. The training dataset to
be used for filter methods must be grouped into individual
classes, denoted as Sp

train = {rpk}np

k=1. A representative vector,
zp can be calculated for each class and selected to form a class
representation matrix Z = [z1z2, . . . , zP ]. Such representative
vectors can be generated in many ways. However, an obvious
and meaningful approach is to simply calculate the mean for
each class

zp =
1

np

∑np

k=1
rpk (4)

where np is the number of samples in class p. The represen-
tative matrix, Zm = ΦmZ with m CSBs can be generated. A
distance measure ζ is then used to calculate the normalized
distance between any pair of class representative pixel vectors
among P classes to produce a distance matrix:⎡

⎢⎢⎢⎢⎣
ς11 ς12 · · · ς1P

ς11 ς11
. . .

...
...

...
. . . ς(P−1)P

ςP1 · · · ςP (P−1) ςPP

⎤
⎥⎥⎥⎥⎦ (5)

where

ς(zk, zl) = ςkl (6)

Algorithm 1: Filter-Based Feature Selection.

Input: Training data set, Strain = ∪P
p=1S

p
train.

1. Summarize each class into P representative vectors,
zp one for each class.

2. Choose an initial number of CSBs, m = mmin and a
CSB step size Δ.

3. Randomly generate a compressive sampling matrix,
Φ ∈ �m×L.

4. Compressively sample the summary statistic vectors,
Zm = ΦZT

5. Calculate a measure of distance to form a distance
matrix, [ςkl]

P,P
k=1,l=1 (4) between all pairs of class

representative pixel vectors.
6. Set m = m+Δm and repeat steps 3 through 5 until
m ≥ L.

7. Chose the value of m where the distance measure
converges.

Output: The estimated minimum number of CSBs: mopt

and a set of trained classifiers,
{δm+Δ(r), δm+2Δ(r), · · · , δmmax

(r)}

denotes the normalized distance between two vectors zk and zl.
This process can then be repeated for all values of m so that mopt

can then be selected by observing the point at which adding
additional features (i.e., CSBs) no longer significantly affects
the distance measure. A general filter-based approach feature
extraction algorithm is summarized in Algorithm 1.

Once each class has been reduced to a representative vector, a
distance measure defined by (6) can be used to calculate close-
ness between any pair of two individual classes. The diagonal
of the distance matrix in (5) will have to be zero, since a pixel
vector will always be perfectly similar to itself. Furthermore, the
distance metric is generally symmetric, i.e., ςkl = ςlk, then the
matrix in (4) is always symmetric, resulting in onlyP (P − 1)/2
unique distance values.

To further reduce the distance metric to a single per-class
metric, we can define the average class distance for class p

ς̄p =
1

P − 1

∑P

k=1
ςkp with ςpp = 0 (7)

which provides a simple way of observing the effect of varying
the number of CSBs.

Since various hyperspectral distance metrics are used to
quantify the impact of increasing the number of CSBs, it is
imperative that these metrics be normalized by the total number
of used CBSs to allow for a fair comparison. Five different
distance metrics are of particular interest: normalized Euclidean
distance (NED), normalized variance distance (NVD), spectral
variance angle (SVA), Pearson variance coefficient (PVC), and
spectral information divergence (SID) [42].

The Euclidean distance between class means is a suitable
choice for a distance metric since it provides an easily under-
stood measure of class separation. Unfortunately, the standard
Euclidean distance is unbounded and will potentially grow
monotonically as the number of dimensions is increased. To
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consider the Euclidean distance as a tractable metric, it must
be normalized to ensure bounded outputs. This gives rise to the
NED given by

NED(zk, zl) =
||zk − zl||2

||zk||2 + ||zl||2 ≤ 1. (8)

In addition, we can also modify (8) by subtracting its mean
from each pixel vector r to yield an NVD defined by

NVD(rk, rl) =
|| (rk − μk1)− (rl − μl1) ||2
||rk − μk1||2 + ||rl − μl1||2 ≤ 1 (9)

where rk and rl are pixel vectors with their corresponding means,
μk = 1

L

∑L
j=1 rkj and μl =

1
L

∑L
j=1 rlj , subtracted and 1 =

(1, 1, . . . , 1)T is an L-dimensional unity vector with all ones in
its components.

Spectral angle is also a metric that can be used to measure the
distance between the spectral signature of two variance pixel
vectors rk−μk1 and rl−μl1, called SVA defined by

SVA(rk, rl) = cos−1

(
(rk − μk1)

T (rl − μl1)

||rk − μk1||||rl − μl1||

)
. (10)

It should be noted that the inherent normalization of SVA in
(10), lends itself straightforwardly as a multivariate filter metric.
Another spectral metric, called PVC, can be defined by

PVC(rk, rl) =
(rk − μk1)

T (rl − μl1)

||rk − μk1||||rl − μl1|| . (11)

In addition to NED, NVD, SVA, and PVC, an information
distance measure, called SID, is introduced to quantify spectral
similarity. Unlike the NED or SVA which treat the pixel vectors
as points in anL-dimensional space, SID views each pixel vector
as a random variable and estimates differences between the dis-
tributions of the spectral bands. A normalized band probability
is defined for a pixel vector, p = (p1, p2, . . . , pL)

T ,with pj =
rj

∑L
i=1 ri

for1 ≤ j ≤ L.Furthermore, the Kullback–Leibler (KL)

divergence between two arbitrary pixel vectors r1 and r2 is
defined as

SID(rk, rl) =
∑L

k=1
pk log

pk
qk

+
∑L

l=1
ql log

ql
pl

(12)

where pj =
rkj

∑L
i=1 rki

and qj =
rlj

∑L
i=1 rli

.

In the original form, SID cannot be readily used as a distance
metric, due to the unnormalized output of the KL-divergence. A
simple adjustment can be made by normalizing by the number
of bands, L

NSID(rk, rl) =
SID(rk, rl)

L
(13)

to account for the total number of bands. The resulting metric
will be an average estimate of how correlated high probability
events are between both pixel vectors, and more importantly,
will provide a normalized upper bound on the metric.

B. Wrapper Method

Given that only the number of compressed bands needs to
be determined rather than finding a specific combination of

Algorithm 2: Wrapper-Based Feature Selection.

Input: A hyperspectral training data, Strain = ∪P
p=1S

p
train

sampling matrix Φ ∈ �mmax×L

1. Choose an initial number of CSBs, m = mmin and a
CSB step size Δ.

2. Form a valid sampling matrix, Φ ∈ �m×L and project
all of the training pixels into the CSBD,
rpCSBD,k = Φrpk

3. Train the classifier δm(r) and calculate a performance
metric.

4. Increment the number of compressed bands by Δ.
5. Set m = m+Δm and repeat steps 2 through 4 until
m ≥ L

6. Choose the value of m where the performance metric
asymptotes or when a desired performance level has
been met.

Output: The estimated minimum number of CSBs, mopt

and a set of trained classifiers,
{δm+Δ(r), δm+2Δ(r), · · · , δmmax

(r)}

bands, the wrapper feature selection method is well-suited to this
problem. A wrapper method often shows the best performance
but tends to be intractable since the combinations of features
must be exhaustively searched. If we consider all of the features
to have approximately equal discriminatory power, then all fixed
size feature sets will be equivalent. This premise significantly
reduces the parameter space that must be searched for estimating
mopt, and therefore reduces the total amount of computational
time required for training the classifiers.

A straightforward and effective algorithm for estimating mopt

can be designed by observing the performance of a classifier, as
m is increased. As a compressed classifier is trained for a range
of CSBs, the classifier performance is evaluated at each step. The
minimum number of CSBs can then be determined by observing
the point at which the classifier performance asymptotes or
reaches a desired minimum performance level. The wrapper
feature selection algorithm is summarized in Algorithm 2.

IV. AUTOMATIC CSB BOUND ESTIMATION

In Sections III and IV, two feature selection algorithms were
proposed. However, a stopping rule for terminating these algo-
rithms was not specified. In this section, a change-point detection
algorithm is proposed for adaptively determining an optimal
number of CSBs, mopt. The proposed change-point algorithm
can be combined with either the feature selection algorithm
described in Algorithm 1 or the wrapper algorithm described
in Algorithm 2, to create a fully automated algorithm.

A. Optimal Partition Change-Point Detection

Change-point detection is a task of determining a point within
a data sequence at which the signal characteristics abruptly
change. A large number of related works have been reported
[43]. The optimal partitioning developed in [44] is a global
approach to change-point detection where all possible change
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Algorithm 3: Optimal Partitioning Change-Point Detection.

Input: A data sequence h(τ) ∈ �1×T

1. Choose a candidate change-point, τ .
2. Divide the data sequence into lower segment,
hlower(τ) = h[1, · · · , τ ] and upper segment,
hupper(τ) = h[τ + 1, · · · , T ].

3. Calculate the summary statistics for the lower and
upper data segments.
4. Calculate the total cost,
J(h(τ)) = J(hlower(τ)) + J(hupper(τ)).
5. Repeat steps 1 through 4 for all candidate

change-points, τ ∈ [1, T ].
6. Chose the value of τ that minimizes J(h(τ )).

Output: The optimally partitioned change-point, τopt.

points are simultaneously detected by minimizing a single cost
function J(h) constructed as a function of a data sequence,
h ∈ �1×T . For a given candidate change-point, τ ∈
[1, T ], the data are partitioned into a lower segment,
hlower(τ) = h[1, . . . , τ ] and an upper segment, hupper(τ) =
h[τ + 1, . . . , T ]. That is

J(h(τ)) = J(hlower(τ)) + J(hupper(τ)) (14)

where

J(hlower(τ)) =

(
1

τ

∑τ

t=1
(ht − μh)

2

)1/2

(15)

J(hupper(τ)) =

(
1

T − (τ + 1)

∑T

t=τ
(ht − μh)

2

)1/2

.

(16)

A criterion is calculated for segments to form an associated
cost J(h(τ)) for that particular change-point τ . The optimal
change-point, τopt is then determined by choosing the value of
τ that minimizes the cost function J(h(τ)). The details of im-
plementing the optimal partitioning algorithm are summarized
in Algorithm 3.

In general, a criterion used to find an optimal partitioning
value τopt can take any form. Nevertheless, in this article, the
partition mean and partition standard deviation are specifically
considered. To understand the differences between these ap-
proaches, two simple simulations were created to show how
the change-point detection works for filter method and wrapper
methods. For a filter method, a distance metric always tends to
converge quickly; however, the overall variance will be reduced
at a slower rate. For the classifier performance observed in
[24], there was a lower amount of variance, but the point of
convergence spanned a larger range of values.

For both simulations, a logarithmic convergence was mod-
eled. The data sequence, h(τ ), was calculated using the following
form:

h(τ) = min(log(βτ), log τmax) (17)

where the scale factor, β, can be used to control how quickly
the data sequence will converge and τmax corresponds to the

Fig. 1. Optimal partitioning simulation for the filter approach.

Fig. 2. Optimal partitioning simulation for the Wrapper approach.

point of convergence, for a unity scale factor. The true point
of convergence, for the general case, can be calculated by
multiplying τmax by the inverse of β as τconverge =

τmax

β .
Fig. 1 shows the results for the filter method with τmax ∈

{5, 10, 15, 20}, τ ∈ [1, 200], and β = 1. To account for the
slower reduction in variance, Gaussian noise with zero mean
and standard deviation, linearly decreasing from 4 to 0.8, was
added directly to the data sequence. Thin gray lines represent 10
individual random trials, and the thick green line is the mean over
all trials. The dashed blue and red lines represent the optimal
partitioning estimate for the partition mean and the partition
standard deviation summary statistics, respectively. The black
dashed line represents the true convergence index. For this case,
the mean statistic provided a fairly robust estimate of the true
convergence point. The standard deviation metric was clearly
biased by the increased variance and was unable to provide a
robust estimate.

Fig 2 shows the results for a wrapper method simulation
with τmax = 100, τmax ∈ {5, 10, 15, 20} , τ ∈ [1, 200], and
β ∈ {1, 1.5, 2, 4}. To introduce a level of uncertainty, zero-
mean, Gaussian random noise, with a standard deviation of 0.8,
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was added directly the sequence. The thin gray lines represent
10 individual random trials, and the thick green line is the mean
over all trials. The dashed blue and red lines represent the optimal
partitioning estimate for the partition mean and the partition
standard deviation summary statistics, respectively. The black
dashed line represents the true convergence index.

In general, both statistics underestimated the true conver-
gence; however, they both appeared to perform better for se-
quences that converged quickly. The standard deviation consis-
tently provided a better estimate than the mean.

Based on the above simple experiments, the optimal parti-
tioning algorithm using mean as the criterion will be employed
to automate the filter method approach. Conversely, the opti-
mal partitioning algorithm using the standard deviation as the
criterion will be used to automate the wrapper method approach.

V. PIXEL-BASED ADAPTIVE COMPRESSION

The estimation of an appropriate value of mopt for CBSs
provides an opportunity to further compress the acquired images
before storing them to disk. For most hardware implementations,
the number of CSBs should be estimated by either on average
or worst case of the lower bound among all classes. However, it
is possible to further compress some of the pixels in each class
based on its own class lower bound on the number of CBSs. In
other words, for the number of CSBs of the pth class, mp the
pth classification map can be combined with the class-specified
CSB bound, mp, to further save each pixel using its particularly
determined-mp compressed bands.

To measure the effectiveness of this approach, a new metric
must be introduced to account for the number of compressed
bands used for each pixel. The compressively sensed band ratio
(CSBR), introduced in [24], can be generalized to the CSPNR
for this purpose and defined by the average of individual pixels
in a class rather than compressed bands for a class as

CSPNR =
1

LN

∑P

p=1
mpnp. (18)

Furthermore, it can be easily shown that the CSBR is simply a
special case of the CSPNR with mp = m for 1 ≤ p ≤ P . In this
case,

∑P
p=1 mpnp = m

∑P
p=1 np = mN and (17) is reduced to

CSPNR =
m

LN

∑P

p=1
np =

mN

LN
=

m

L
(19)

which is exactly the CSBR defined in [24].
Another convenient property of the CSPNR metric in (19)

is that it can easily be related to the storage requirement. This
can be accomplished by multiplying the number of pixels in a
class, np with its assigned mp as

∑P
p=1 mpnp. For a specific

value of CSBs, m fixed for each pixel, this is reduced to m×N .
Similarly, for the case of a full L-band image, this becomes
L×N . As an example, assume there is a 2-class image with
L = 100 bands, and N = 200 000 pixels, that is stored with
single precision (4 bytes per element). The required number of
bytes to store the full band image would be 100× 200 000×
4 bytes = 80MB. Further assume that a CSB lower bound was
estimated to be m1 = 5 and m2 = 10 and that each of these
two classes has an equal number of pixels, N/2. Then, the total

Fig. 3. Indian Pines (left) and Salinas (right) ground truth images.

Fig. 4. Pavia University (left) and Pavia Centre (right) ground truth images.

required number of bytes to store the compressed image would
be (5× 200000

2 + 10× 200000
2 )× 4bytes = 6MB. The storage

savings in this example would simply be 80−6
80 = 92.5%. Alter-

natively, this can be directly calculated using the CSPNR, as
1− CSPNR = 1− 7.5

100 = 92.5%. Thus, the CSPNR provides
a normalized metric for comparing various images and can
be use directly to relate compression performance to storage
requirement.

VI. EXPERIMENTS

A. Real-World Hyperspectral Images

Four real-world hyperspectral images were used for the ex-
periments. The first image is of the Indian Pines scene [45]
shown in Fig. 3(left), which was collected using the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor [46]
and consists of 16 agricultural classes and a background class.
The second image, shown in Fig. 3(right), is the Salinas scene
[47] which was also collected using the AVIRIS sensor, and
consists of 16 agricultural classes and a background class. The
third image is of the Pavia University scene [47] shown in
Fig. 4(left), which was collected using the Reflective Optics
System Imaging Spectrometer (ROSIS) sensor [47] and consists
of nine urban classes and a background class. The fourth image
is of the Pavia Centre scene [47] shown in Fig. 4(right), which
was also collected using the ROSIS sensor, and consists of nine
urban classes and a background class.
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Fig. 5. Indian Pines filter results for the mean-based optimal partition algo-
rithm over 2000 trials.

B. Filter-Based Feature Extraction Experiments

An experiment was performed to explore the effectiveness
of the filter-based algorithm. Given the probabilistic nature of
random projections, the experiment was setup in a Monte Carlo
fashion, and repeated for 2000 trials to provide representative
statistics for each of the proposed similarity measurements. In
each trial, the class mean vector was calculated for each class
and then projected into the compressed domain following the
model specified by (2). The number of CSBs, m, was varied
from 5 to 55 in a step size of 5 and then from 65 to L in a step
size of 10. Average class distances using (6) were calculated at
each value of m, based on NED, NVD, SVA, PVC, and NSID
according to (8), (9), (10), (11), and (13), respectively. Finally,
mopt was estimated by the optimal partitioning algorithm using
the mean partition statistic.

The estimated lower bound from each trial has been sum-
marized into a separate probability distribution for each of the
distance metrics. The resulting distributions for Indian Pines are
shown in Fig. 5. The NVD, SVA, and PVC distributions all show
maximum probability with five CSBs or less, which is in line
with the classification results reported in [24]. However, these
distributions also show much lower tails that extend through
nearly all possible values of m. NED shows a peak closer to 15
CSBs, but with tails that do not extend beyond 50 CSBs. Finally,
the NSID distribution shows a peak probability between 5 and
10 CSBS and is very tightly bound. The resulting distributions
for Salinas are shown in Fig. 6 and are very similar to Indian
Pines. Given that the types of image scenes and classes are very
similar, this result is not surprising.

Similarly, distributions were also calculated for both of the
ROSIS images. The resulting distributions for Pavia University
and Pavia Centre are shown in Figs. 7 and 8, respectively. All of
the distance metrics show distributions with highest probabilities
occurring within the first 15 CSBs. NVD, SVA, and PVC show
the extended low tails, and NED and NSID show much tighter
distributions. In general, all metrics provide results that are in
line with the performance that was observed for nearly all of the
classes reported in [24].

Fig. 6. Salinas filter results for the mean-based optimal partition algorithm
over 2000 trials.

Fig. 7. Pavia University filter results for the mean-based optimal partition
algorithm over 2000 trials.

Fig. 8. Pavia Centre filter results for the mean-based optimal partition algo-
rithm over 2000 trials.
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Fig. 9. Comparison of PAA for Indian Pines.

In general, NVD, SVA, and PVC gave comparable results.
Each of these metrics provided distributions with peaks near the
expected values; however, they showed a lot of variances. The
NED and NSID distributions showed lower amounts of variances
but were biased to be higher than what was observed in [24]. It is
also important to note that these results were all sensitive to the
specific change-point algorithm that was implemented, as well
as the averaging sizes that were used in the experiment.

C. Wrapper-Based Feature Extraction Experiments

For the wrapper method experiments and the algorithm com-
parison, the classifier experiments presented in [24] were re-
peated and all applicable algorithm parameters were maintained.
Specifically, the RBF-based SVM was used as the spectral
classifier with the tunable kernel parameter set to 0.72, 0.64,
0.75, and 0.59 for Indian Pines, Salinas, Pavia University, and
Pavia Centre, respectively. The edge preserving filtering process
was based on a guided filter with a color guidance image,
based on the first three principal components, i.e., EPF-G-c.
Furthermore, the same approach was used for modeling the CS
process. Random Gaussian sensing matrices were used to model
the sparse acquisition and the number of CSBs, m, was varied
from 5 up to full bands, L for each image. Finally, algorithm
performance was measured using overall accuracy (OA) and
average accuracy (AA) metrics. Training and test samples were
the same as that described in [24].

The first experiment was conducted for the wrapper approach
to see if the value of mopt determined by the training data and
the test data was consistent. That is, can the training data alone
provide a robust estimate of mopt? While it may be thought to
potentially be biased by the training dataset compared to the
test dataset, it turned out that mopt was indeed unbiased. This is
demonstrated empirically by comparing PAA obtained by train-
ing dataset (training PAA) to PAA obtained by the test dataset
(test PAA). In this case, the test samples represent the unobserved
pixels that will be encountered in a real-world application.

Fig. 9 shows an example of the training PAA and test PAA for
the Indian Pines image scene. Note that there was approximately

2% difference between the training and test PAA. Nevertheless,
the relative effect from varying the number of CSBs was consis-
tent. Similarly, a strong correlation existed between the training
PAA and test PAA for all of test image scenes as well. Although
the training PAA and test PAA did show some varying amounts
of bias in PAA, the relative behavior as a function of the number
of CSBs was again consistent.

The correlation between the training and test performance
can be easily quantified by using a measure such as the Pearson
correlation coefficient (PCC) defined by

PCC =
cov(a, b)

SD(a)SD(b)
(20)

where a and b are arbitrary vectors of equal length, cov(a,b)
represents the covariance between a and b, and SD(a/b) repre-
sents the standard deviation a/b. The PCC between the training
and test performance was equal to 0.9980, 0.9811, 0.9996, and
0.9996 for Indian Pines, Salinas, Pavia University, and Pavia
Centre, respectively. It was quite clear for these images that
the relationship between the training and test data are highly
correlated as a function of the number of CSBs. Accordingly,
the training data can be used reliably for the test dataset. This is
an important realization because it allows for mopt to be selected
based solely on the training data and ensures that it will be also
applicable to the test dataset as an unseen dataset.

D. Algorithm Comparison

As a final comparison, a single mopt(p) was estimated for
each class, from all of the images. The individual bound was
then combined with the classifier results, to determine what the
resulting CSPNR in (17) and algorithm efficacy (Eff) defined by

PEff=
PCSBD

PFull
, andPEff(Cp) =

PCSBD(Cp)

PFull(Cp)
(21)

would be. Here, P can be either AA or OA, AAEff or OAEff,
and Cp is the pth class. For the filter approach, the value of mopt

corresponding to the expected value of the estimated distribution
was selected. For the wrapper approach, the value of m was
determined by the change-point detection algorithm using the
standard deviation as a criterion. For each of the experimental
cases, the results have been summarized into a collection of
tables. The efficacy of the individual class accuracy is shown
for all the five filtering methods, as well as the SVM wrapper
method. Additionally, AA, OA, and CSPNR are shown at the
bottom of the table. Finally, the results achieved using VD are
also included for comparison. Note, that VD only provides a
single estimate of mopt which is assumed to be the same for all
classes. The required threshold value for VD has been set to 1e-6
for all image scenes for simplicity since there is not prescribed
way of determining this value.

The results for both algorithms run on all four of the im-
ages are shown in Tables I –IV where best cases are bold-
faced. First, we see that VD did reasonably well at estimating
mopt and produces AA and OA results similar to the filter
approaches. However, since it only produces a single number for
mopt, it is not possible to make per-class comparisons with the
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TABLE I
COMPARISONS AMONG NED, NVD, SVA, PVC, NSID, AND WRAPPER METHOD FOR PURDUE’S INDIAN PINES DATA

TABLE II
COMPARISONS AMONG NED, NVD, SVA, PVC, NSID, AND WRAPPER METHOD FOR SALINAS
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TABLE III
COMPARISONS AMONG NED, NVD, SVA, PVC, NSID, AND WRAPPER METHOD FOR PAVIA UNIVERSITY

TABLE IV
COMPARISONS AMONG NED, NVD, SVA, PVC, NSID, AND WRAPPER METHOD FOR PAVIA CENTRE

other methods. Furthermore, this approach is somewhat arbitrary
since the VD input threshold could be increased which would
result in lower mopt estimates. For these reasons, VD should be
used at most as an initial guess.

As expected, the wrapper method was able to select a value
of m that produced the highest efficacy for most cases since it
is specifically tuned to the SVM classifier. The wrapper method
achieved the highest AAEff on three of the four images, and the
highest OAEff on all four images. While this approach provided
nearly the best efficacy, it also produced the highest estimates
of m, resulting in the highest CSPNR (i.e., the lowest amount of
compression).

The filter method also performed reasonably well on esti-
mating reasonable lower bounds for all of the images. Despite
the fact that there was some variability between the different
variants of the filter methods, they all nearly provided lower
estimates of m than the wrapper method. Of the filter variants,

SVA provided the highest efficacy with NSID producing the
lowest CSPNR, and NED, NVD and PVC all provided very
similar results between these two extremes.

The Indian Pines scene showed the most variability between
all of the algorithms. This image showed the largest differences
in both AAEff and OAEff, with the NSID filter resulting in values
of 0.92 and 0.89, while the wrapper method provided a 0.98
efficacy for both AA and OA. For the remaining three images,
all of the algorithms were able to achieve efficacies 1.0 in nearly
all cases.

The CSPNR showed much more variability than the efficacies
and these differences were apparent in three of the four images.
For Indian Pines and Pavia Centre, the NSID filter method
was able to achieve approximately a factor of five times more
compression than the wrapper method. Similarly, in the Salinas
image, NSID achieved a factor six times more compression than
the Wrapper method.
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It is generally difficult to select a single method as the best
choice. Nevertheless, there are a few general guidelines that can
be constructed from these results. First, the wrapper method
was likely to give the best possible efficacy at expense of much
lower amounts of compression. So this method should be used
in the case when achieving the highest efficacy is the priority and
the increased computational costs of the wrapper method can be
tolerated. Second, NSID consistently provided the best CSPNR.
So it should be selected for cases when achieving the most
compression is the priority. Finally, based on the four test images,
SVA appeared to provide the most balanced performance in
terms of providing efficacies nearly as high as the wrapper
methods, but with consistently lower CSPNRs.

VII. CONCLUSION

HSIC in CSBD was a recently developed new approach [24].
However, the issue of determining the minimum number of
CSBs, nCSB, to achieve full band performance was not inves-
tigated in [24]. In real applications, nCSB should vary with the
complexity of the imaged scene to be studied. Despite that VD
has been used to estimate the number of bands to be selected,
nBS, its use of estimating nCSB seems not applicable because
a CSB is actually a mixture of full bands sensed by a random
sensing matrix, not a single original band. So it requires a new
way to estimate nCSB.

As also noted above, DL will certainly offer many advantages,
but many considerations/alterations must be made to the algo-
rithms designed for them to be applied directly in the compressed
domain. As far as we know, this has not happened. According to
the best of our knowledge, very little work on DL methods has
been proposed for compressive hyperspectral processing thus
far.

One of main contributions in this article is two supervised
feature selection-based approaches developed to find an optimal
nCSB so as to maximize classifier performance, while minimiz-
ing redundancy. The first approach is a filter method based on
observing the behavior of an average class distance measure, as
a function of the number of CSBs. The filter-based approach
results in a probability distribution of possible values of mopt. A
hard estimate can then be derived by selecting a characteristic of
the distribution such as the maximum probability or the expected
value. The second approach is a wrapper-based method based on
observing the behavior of classifier performance on the training
data. A hard bound is directly estimated by choosing the value
of m when the performance improvement is saturated.

Another main contribution is that both methods can be au-
tomated by a change-point detection algorithm via optimal
partitioning and their fully automated versions are tested us-
ing the classification results presented in [24]. Accordingly,
an individual mopt can be estimated for each class and then
used to perform class specific compression. Specifically, both
algorithms successfully estimate adequate bounds for nCSB and
are demonstrated to be valid methods that can be used to predict
the minimum number of CSBs needed to achieve desirable
levels of compressed classifier performance and overall band
reduction.

Since for each pth class, the number of CSBs of the pth
classification map can be combined with its class-specified CSB
bound, mp, to further save each pixel using its particularly
determined-mp compressed bands. A third main contribution
is to generalize the CSBR introduced in [24] to the CSPNR to
account for the number of compressed bands used for each pixel.
Compared to the filter method, the wrapper method estimates
bounds more consistently with higher efficacy at the expense of
a CSPNR up to six times larger than that estimated by the filter
method. Finally, some guidelines were provided as to which
algorithms might be used depending on the priorities of the use
case.
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