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Abstract—Passive microwave satellite observations provide crit-
ical information for global forecast models, particularly in cloudy
and/or precipitating conditions. The limited temporal sampling
provided by current operational polar orbiters cannot capture
rapidly changing conditions such as the development of convective
storms. This is a significant issue for open-ocean weather systems
such as tropical cyclones and hurricanes that can only be effectively
monitored from satellites. The recent development and demon-
stration of miniaturized microwave radiometers on-board low-cost
CubeSat satellites has the potential to dramatically improve the
temporal and spatial sampling of all-sky microwave observations
by deploying a substantial constellation of satellites in low Earth
orbit. Two constellations of 60 CubeSats in 550 km orbits are com-
pared to the current operational microwave sensors. One approach
employs all polar orbiters, while the other approach uses multiple
inclination orbits for increased sampling over convective storm
regions. Both approaches reduce average revisit times to approx-
imately 20–30 min globally, and the multi-inclination approach
also provides irregular 5–10 min sampling over selected latitudes.
Improved global temporal sampling would provide all-sky obser-
vations to global forecast models over rapidly changing environ-
ments, while millimeter-wave observations over convective storm
regions would be valuable for both forecasting and studying the
development of convective storms. This article demonstrated that
a constellation of low-cost CubeSats with microwave radiometers
has the potential to provide equivalent temporal resolution to that
observed from sensors on geostationary orbit.

Index Terms—Passive microwave remote sensing, radiometers,
satellite constellations.

I. INTRODUCTION

R ECENT technological advances have enabled the develop-
ment of small and low-cost satellites capable of providing
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science-quality passive microwave observations from low Earth
orbit (LEO), with similar capabilities to existing operational
sensors. The development of these low-cost satellites and sensors
makes possible the deployment of a constellation of satellites
capable of providing greatly enhanced temporal sampling on a
global basis. While current operational microwave sensors are
limited to two different LEO orbits, and therefore a maximum of
four observations per day for a given location, the dramatically
lower cost of CubeSat satellites has the potential to provide
much more frequent temporal sampling for improved global
forecasting and hurricane/storm monitoring applications.

A number of CubeSat satellites with microwave radiometers
have already demonstrated the capability of this new technology
for Earth observations from LEO [1], [2]. The first CubeSat
mission to provide multifrequency microwave brightness tem-
peratures for Earth observations on a global basis is the Temporal
Experiment for Storms and Tropical Systems–Demonstration
(TEMPEST-D). TEMPEST-D is a 6U CubeSat technology
demonstration satellite with a cross-track millimeter-wave ra-
diometer measuring at five frequencies from 87 to 181 GHz
[3]. The 87 GHz observations are sensitive to both the surface
and water vapor in the lower troposphere, and the four fre-
quencies from 164 to 181 GHz provide water vapor profiling
information using the pressure broadening of the 183.31 GHz
absorption line. TEMPEST-D was deployed into orbit from the
International Space Station (ISS) on July 13, 2018 and has
been operated for nearly three years. On-orbit validation of the
calibrated TEMPEST-D brightness temperatures indicates that
it has comparable or better performance in terms of instrument
noise, calibration accuracy, and calibration stability than sim-
ilar operational radiometers such as the microwave humidity
sounder (MHS) [4].

The TEMPEST concept takes advantage of low-cost mi-
crowave sensors on CubeSats for a potential constellation to
provide frequent observation of rapid-evolving storms and the
surrounding water vapor environment. Using a similar concept,
the Time-Resolved Observations of Precipitation structure and
storm Intensity with a Constellation of CubeSats (TROPICS) is
a NASA Earth Venture science mission that is planned for launch
in 2022. TROPICS will consist of six 3U CubeSats in three or-
bital planes, each with a 12-channel microwave/millimeter-wave
radiometer, to demonstrate the capability of a small constellation
of CubeSats to improve temporal sampling over the tropics
(± 30° latitude) [5].

The current constellation of operational sensors pro-
viding global microwave observations consists of the Ad-
vanced Technology Microwave Sounder (ATMS) on board
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Fig. 1. Probability density functions (PDFs) of correlation intervals. (Upper left): PDF of temperature at 700 mb isobar pressure altitude. (Upper right): PDF of
water vapor mixing ratio at the same altitude. (Lower left): PDF of total cloud liquid water content. (Lower right): PDF of total cloud ice water content. For all
plots, the red, green, and blue curves represent PDFs for footprint sizes of 3×3, 12×12, and 30×30 km, respectively.

Fig. 2. Cumulative distribution functions (CDFs) of correlation intervals. (Upper left): CDF of temperature at 700 mb isobar pressure altitude. (Upper right):
CDF of water vapor mixing ratio at the same altitude. (Lower left): CDF of total cloud liquid water content. (Lower right): CDF of total cloud ice water content.
For all plots, the red, green, and blue curves represent PDFs for footprint sizes of 3×3, 12×12, and 30×30 km, respectively.

the Suomi National Polar-orbiting Partnership and NOAA-20
satellites, and the AMSU-A and MHS instruments on board
the ESA/EUMETSAT MetOp-A/B/C satellites. These satellites
are in polar sun-synchronous orbits with the NOAA satellites
providing observations near 1:30 am/pm local time and the
MetOp satellites providing observations near 9:30 am/pm local
time. This provides a total of four observations per day over
most of the globe with gaps between subsequent observations
ranging from approximately 4 to 10 h. While this is generally
adequate for tracking changes in large-scale temperature and
water vapor fields in clear-sky or nonprecipitating conditions,

it lacks the capability to observe the changes associated with
convective storm cells, which typically develop on a time scale
of a few hours or less. While geostationary visible and infrared
observations can provide frequent updates on the location, shape
and horizontal extent of hurricanes, typhoons, and tropical cy-
clones, they are limited to observing cloud-top properties and
cannot detect changes internal to the clouds (or, of course,
the underlying sea surface properties) that might lead to rapid
intensification. In contrast, microwave observations can provide
information on cloud microphysical properties internal to a
storm, but are presently limited by their much lower temporal
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Fig. 3. Simulated ground tracks of (a) TEMPEST Polar constellation and (b) TEMPEST MIC constellation over a single orbital period (i.e., approximately
95 min).

Fig. 4. Mean revisit time for the NOAA-20/MetOp-C polar orbiters (blue),
the TEMPEST MIC (red), and TEMPEST Polar (green) constellations. On the
horizontal axis labels, “m” indicates the revisit time in minutes, and “h” in hours.

sampling and spatial resolution. Deploying a constellation of
low-cost CubeSat radiometers to provide frequent microwave
observations has great potential for improving forecasts and
many other atmospheric science applications.

Designing a constellation to provide improved temporal sam-
pling with global coverage involves a number of tradeoffs. The
purpose of the simulation results presented in this article is to
provide the reader with a sense of how microwave observations
from a constellation of low-cost CubeSat satellites could pro-
vide dramatically improved temporal sampling for both global
forecasting and storm tracking applications. Considering the
substantially lower cost of a CubeSat compared to current opera-
tional satellites, we chose to simulate two different constellation
configurations with a total of 60 satellites each. While this may
seem like a large number of satellites, private companies like
SpaceX are already deploying thousands of CubeSats into orbit.
There are also a number of smaller constellations such as Spire
Global (90 satellites [6], [7]) or BlackSky (up to 60 satellites [8]),
which shows the feasibility of designing such constellations with
current technology. Considering the dramatically lower cost of
CubeSats along with the availability of low-cost launch options,
we feel this is a realistic goal in the near future.

A significant tradeoff in the design of a CubeSat constellation
involves spatial resolution versus temporal sampling. A higher
orbit results in a wider observation swath and therefore improved
temporal sampling, but it also decreases the spatial resolution of
the sensor. To provide reasonably high spatial resolution in order
to sample changes in storm systems such as hurricanes or tropical
cyclones, we propose to use a 12U CubeSat (twice the volume of
the actual TEMPEST-D 6U CubeSat). This approach enables an
improvement in the spatial resolution by doubling the size of the
antenna. The four water vapor profiling frequency channels on
TEMPEST-D have a spatial resolution of 12.5 km. Because the
TEMPEST-D CubeSat was deployed from the ISS, the mission
operated from an initial orbital altitude of 405 km. This worked
well, since the TEMPEST-D mission is in a period with low
solar activity (2018–2021), but it could lead to a relatively short
lifetime and potential attitude control issues in a period with
high solar activity. Therefore, these simulations were conducted
using a slightly higher but still relatively low orbital altitude
of 550 km. The larger antenna afforded by the 12U spacecraft
bus combined with a 550 km orbital altitude provides a spatial
resolution of approximately 9 km for the four TEMPEST-D
frequency channels near the 183.31 GHz water vapor absorption
line.

II. METHODOLOGY OVERVIEW

An important consideration in the design of a satellite con-
stellation to provide observations for global weather forecasting
is the revisit time between subsequent observations. Long gaps
between subsequent revisits, as is the case for the current polar
constellation with only two different LEO orbits, at times miss
rapid changes in atmospheric conditions, resulting in large sam-
pling errors. This is the case for convective activity, in which
the life cycle of individual storm cells often lasts for less than a
few hours [9]. Achieving rapid revisit times, however, requires a
larger number of satellites in a constellation, thereby increasing
operational complexity and cost.

In this context, Section III of the article is focused on deter-
mining an optimal constellation revisit time, which depends on
the spatiotemporal variability of the atmospheric parameter to be
sampled. This variability in turn depends on the sensor’s spatial
resolution and the nature of the parameter being observed, which
vary both regionally and seasonally.

Once the desired revisit time is estimated, the constellation
design analysis is performed, as described in Section IV-A
variety of quality metrics can be used to estimate the perfor-
mance of the constellation. The simplest metric is the mean
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Fig. 5. Revisit time for 25% (red), 50% (green), and 90% (blue) of total observation time (6, 12, and approximately 21.5 h per day, respectively) for current polar
orbiters, NOAA 20 and MetOP-C (left), the TEMPEST-MIC (center), and TEMPEST Polar (right) constellations.

Fig. 6. (Upper panel) Temporal sampling of water vapor mixing ratio at 700 mb pressure altitude at Corpus Christi, TX. (Lower panel) The corresponding
temporal representativeness error for the three constellation configurations studied.

revisit time. More complex metrics are based on cumulative
distribution function (CDF) analysis. The most straightfor-
ward way to compare the performance of a variety of con-
stellation designs is to sample a dynamic atmospheric pro-
cess, e.g., the development of a convective cell resulting in a
thunderstorm. Section IV presents the sampling of such an event
simulated using the Weather Research and Forecasting (WRF)
Model.

III. DETERMINING OPTIMAL REVISIT TIME TO OBSERVE

ATMOSPHERIC VARIABILITY

A common method to characterize spatiotemporal variability
is to evaluate the longest separation in time or space over
which the autocorrelation between values of the process is still
statistically significant.

This separation is typically referred to as the correlation
interval, correlation window, or duration of correlation [10].

Steinke et al. [11] performed a simulation within the ICOsahe-
dral Nonhydrostatic modelling framework to study the variabil-
ity of integrated water vapor (IWV) in spatial and temporal scales
of less than 10 km and 1 h, respectively. Their results show that
spatial differences of 3–4 km or temporal differences of 10–15
min correspond to changes in IWV on the order of 0.4 kg/m2.
This article also shows that the correlation between simultaneous
IWV observations 10 km apart drops to 0.84. A similar decrease
in the correlation occurs for collocated measurements separated
by ∼1 h. Vogelmann et al. [12] investigated the spatiotempo-
ral variability of water vapor above the Zugspitze mountain
in Germany using a Fourier-transform infrared spectroscopy
instrument. A 20-min sampling interval resulted in a standard
deviation of the sampling error of 0.15 mm (0.15 kg/m2) in IWV,
which increased to 0.25 mm (0.25 kg/m2) for a 40-min sampling
interval.

For spatiotemporal variability in cloudy atmospheres, Bley
et al. [13] studied the evolution of warm convective cloud fields
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Fig. 7. (Upper panel) Temporal sampling of atmospheric temperature at 700 mb pressure altitude at Corpus Christi, TX. (Lower panel) The corresponding
temporal representativeness error for the three constellation configurations studied.

over central Europe based on Meteosat data. They found that the
spatial decorrelation length of cloud liquid water path (LWP)
varied from 6.5 to 8 km, and the temporal decorrelation interval
ranged from 10 to 15 min for a spatial resolution of 21 km2.
These studies provide some insights into the spatiotemporal
variability of water vapor and clouds, although they are limited
to certain cloud features [13] or regions ([12]) or are focused
on intercomparisons among different instruments or between
observations and simulations [11].

To further evaluate the spatiotemporal variability of atmo-
spheric parameters over a range of temporal and spatial scales,
several weather events occurred over CONUS, including thun-
derstorms and intense winter storms, were simulated using the
WRF Model. The WRF simulations were run using the physics
options set as suggested in [14] for 1–4 km grid distances. To
initialize the simulations, the NCEP GFS 0.25 Degree Global
Forecast Grids Historical Archive data [14] was used. The
simulation time step and grid spacing were set to 5 s and 3
km, respectively. To keep the amount of output data reasonable,
the temporal resolution of the model output was set to 10 min.
This analysis focused on the spatiotemporal variability of the
model outputs of atmospheric temperature, water vapor mixing
ratio, cloud liquid water, and ice water path (IWP) variables. To
analyze the spatiotemporal variability of atmospheric parame-
ters, three output resolution settings were chosen: 3 × 3 km,
corresponding to the resolution of the WRF model output, 12
× 12 km, corresponding to the approximate spatial resolution of
the water vapor profiling channels of the constellation satellites,
and 30 × 30 km, corresponding to the lowest resolution of the
89 GHz channels on ATMS.

Autocorrelation functions of the simulation time series were
calculated for all grid points, and the resulting correlation times
were analyzed. Probability density functions (PDFs) and CDFs
of atmospheric temperature and water vapor mixing ratio at 700
mb pressure altitude, along with total cloud liquid and IWPs,
are shown in Figs. 1 and 2, respectively. Fig. 1 shows that
the correlation intervals for atmospheric temperature and water
vapor mixing ratio at 700 mb pressure altitude vary between

40 and 90 min and do not depend significantly on the spatial
resolution. Not surprisingly, cloud LWP and IWP exhibit much
higher temporal and spatial variability. PDFs corresponding to
a sensor spatial resolution of 3 × 3 km indicate a correlation
interval of less than 10 min for both LWP and IWP. For a sensor
spatial resolution of 12 × 12 km, the correlation interval of
LWP increases to 10–30 min and to 30–60 min for a resolution
of 30 × 30 km IWP exhibits even larger variability, with a
correlation interval in the range of 10 min or less at finer spatial
resolutions, increasing to ∼20 min at 30 × 30 km. The CDFs in
Fig. 2 indicate that for 50% of the analyzed area, the correlation
intervals for both temperature and water vapor are 60 min or
less. Correspondingly, for 50% of the analyzed area covered by
clouds, the correlation intervals of LWP and IWP decrease to 10,
25, and 40 min for 3 × 3, 12 × 12, and 30 × 30 km footprints,
respectively.

As mentioned previously, the spatiotemporal variability of
these atmospheric parameters has a strong seasonal and geo-
graphic dependence. As a result, the CDFs and PDFs shown
in Figs. 1 and 2 are not necessarily applicable on a global
basis. Considering these limitations, however, the results from
the WRF simulations are similar to results from the studies
in [11]–[14] and are therefore useful guidelines to consider in
the design of a satellite constellation. Therefore, to adequately
capture the spatiotemporal variability in temperature and water
vapor, a mean revisit time on the order of ∼1–2 h is needed. For
a spatial resolution of 12 × 12 km, more frequent observations
on the order of 20–30 min are needed to capture the development
of convective storm systems.

IV. ORBITAL CONFIGURATION FOR A CUBESAT

CONSTELLATION

To achieve significantly shorter revisit times to capture the
spatiotemporal variability discussed above, several options were
considered. To keep things manageable, this article focuses on
possible configurations with a constellation of up to 60 satellites.
Given the constraint of a fixed number of satellites, one possible
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Fig. 8. (Upper panel) Temporal sampling of total liquid cloud water at Corpus Christi, TX. (Lower panel) The corresponding temporal representativeness error
for the three constellation configurations studied.

way to decrease the mean revisit time is to increase the satellite
orbital altitude. For example, four satellite subconstellations in
low inclination, high-altitude orbits, with periods of 24 and 48
h, provide nearly continuous observation of Earth surface [16].
As mentioned previously, however, increasing the altitude also
decreases the spatial resolution of the observations, so that such
a constellation is of limited use for capturing storm dynamics or
areas with strong temperature or water vapor gradients.

Another example of a remote sensing constellation providing
short revisit times but limited coverage is the BlackSky [8]
constellation. This constellation was designed to provide a mean
revisit time of approximately 18 min over highly populated
areas using a constellation of 60 LEO satellites in 10 orbital
planes. Such a constellation would provide frequent observa-
tions of CONUS and Europe, but would provide no coverage
for areas above 55o latitude. In contrast, the current polar or-
biter constellation with the NOAA-20 and MetOp-C satellites
in sun-synchronous, 820 km altitude orbits provides about 6
h mean revisit time over most of the Earth, but significantly
oversamples the polar regions. A constellation deployed in a
single orbital plane provides significantly a shorter mean revisit
time over a range of latitudes near the orbital inclination. For
that latitude band, however, periods of frequent observations
are followed by relatively long gaps in coverage. For regions
at lower latitudes than the zone of maximum coverage near the
top and bottom of the orbit, observations are more evenly dis-
tributed over time. To provide more uniform temporal sampling
over the Earth, the constellation should consist of satellites in
multiple orbital planes with high inclination. If observing storm
evolution and its associated dynamics is a high priority, then
multiple lower inclination orbits should be selected to provide
frequent coverage over regions with a high probability of those
events. This is the case with the TROPICS mission, which chose
to use three orbital planes at an inclination angle of 30°, to
maximize temporal sampling in the latitude range where rapid
intensification of hurricanes, typhoons, and tropical cyclones
most frequently occurs, i.e., about 25o N and 25o S.

As discussed previously, an orbital altitude of 550 km provides
approximately 10 km radiometer footprint size using a 12U

CubeSat while providing an extended satellite lifetime and a
reasonable swath width. For a cross-track scanning sensor with
a maximum instrument scan angle of 50°, similar to that of
the ATMS sensor [17], the swath width is ∼1400 km. Those
parameters were used to simulate coverage for all constellations
described below.

Constellation configurations were analyzed both for uniform
sampling over the globe as well as a multi-inclination case for
observing convective storm evolution, as described above. Re-
sults for two different satellite constellations simulated using the
AGI Systems Tool Kit [18], [19] for a 5-day duration are shown
here. The first constellation consists of 15 sun-synchronous
orbital planes with ascending nodes distributed over a 180° span
(Walker star pattern [20]). Each orbital plane contains four satel-
lites (60 satellites total). The separation between orbit planes is
chosen to maintain contiguous coverage near the equator. This
configuration is subsequently referred to as the TEMPEST Polar
constellation. The second constellation consists of groups of
satellites in multiple orbital planes at inclination angles of 30°,
40°, 50°, 60°, and 70°. Each orbital inclination has two groups
of satellites in separate orbital planes, for a total of 10 orbital
planes, each populated with six satellites. This constellation
configuration has a total of 60 satellites and is referred to as the
TEMPEST Multi-Inclination Constellation (TEMPEST MIC).
The coverage for these two constellations over a single orbital
period is shown in Fig. 3. Calculations are based on the assump-
tion that there is complete overlap between IFOVs, which is the
case for the sampling time used. For reference, a constellation
consisting of only the current NOAA-20 and MetOp-C polar
orbiter constellation was also simulated.

As shown in Fig. 3 for the TEMPEST MIC constellation,
the regions near latitudes of ± 30°, ± 40°, ± 50°, ± 60°, and
± 70° latitude might have more frequent sampling followed by
relatively long gaps, while areas near the equator have more
evenly distributed revisits.

Evaluating the mean revisit time as a function of latitude is one
simple way to evaluate the temporal sampling performance of a
constellation. Fig. 4 shows the mean revisit times for the current
polar orbiter constellation, as well as the TEMPEST MIC and
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TEMPEST Polar constellations, as a function of latitude. The
simulation results show that the mean revisit time of the current
polar orbiter constellation ranges from 4.0 to 6.5 h for latitudes
between 60° N and 60° S. The enhanced TEMPEST Polar and
TEMPEST MIC constellations reduce the mean revisit time to
∼20 and 10–15 min, respectively, for latitudes between 60° N
and 60° S. Mean revisit time is a less useful metric, however,
for scenarios in which a set of very frequent observations is
followed by long periods with no observations (i.e., data gaps).
In such a case, a relatively short mean revisit time does not
adequately characterize the temporal sampling provided by the
constellation.

Another way to examine temporal sampling of a satellite
constellation is as a percentage of the time over which a given
region is sampled within a specified revisit time. Fig. 5 shows the
revisit time as a function of latitude for 25%, 50%, and 90% of the
total observation time, i.e., 6, 12, and 21.5 h per day, respectively.
For example, for the current polar orbiter constellation [Fig. 5(a)]
at the equator, 50% of the time subsequent observations occur
within 8 h, while 25% of the time they occur within ∼5 h. The
TEMPEST MIC constellation exhibits much larger variability in
revisit time. For the latitude range from 20° N to 40° N and 20°
S to 40° S, 25% of the time the revisit time is within 5 min, while
50% of the time the revisit time is within 15 min for latitudes
from 70° N to 70° S.

TEMPEST MIC also exhibits an increase in 50% revisit time
(green curve) from 15 to almost 50 min near the equator, which
is related to the fact that the coverage area with short revisit
time, which occurs at the top and bottom of the orbit, for
the lowest inclination orbit (30°) does not quite extend to the
equator.

It is important to note that the TEMPEST MIC constellation
does not provide coverage over polar regions with latitudes
above 76°, although it is assumed that this region would be
covered by existing and planned large operational satellites
providing microwave observations from polar orbits.

For the TEMPEST Polar constellation, the 25%, 50%, and
90% threshold lines are very similar to each other for latitudes
between 60° N and 60° S, demonstrating that TEMPEST Polar
provides consistent and uniform revisit times of ∼20 min over
most of the globe.

Perhaps the most intuitive way to visualize the advantages of
the proposed constellations to track rapid atmospheric changes
is to examine how each constellation samples variations in tem-
perature, water vapor, and cloud properties for a specified loca-
tion. Unfortunately, available global analysis datasets, including
GEOS-5 and the ERA-5 reanalysis, do not provide sufficient
temporal and spatial resolution. Therefore, results from WRF
simulations with 10 min temporal and 12 km spatial resolution
are shown here. The WRF simulation was run for a 2-day
period from June 23, 2020 at 12:00 UTC to June 25, 2020 at
12:00 UTC over Corpus Christi, Texas. This simulation includes
atmospheric conditions resulting in a severe thunderstorm and
flood event on June 24, 2020 [21], thereby providing an example
with high temporal variability. The corresponding temporal rep-
resentativeness error for the three constellation configurations
studied.

Time series of WRF-simulated water vapor and temperature
at 700 mb pressure altitude are shown in Fig. 6, along with cloud
LWP and cloud IWP over the 48-h period for Corpus Christi,
TX. The black solid curve in Fig. 6(a) shows the simulated water
vapor mixing ratio at 700 mb pressure altitude, which varies
between 5 and 10.5 g/kg. The blue dashed curve shows this

time series as sampled by the current polar orbiter constellation,
while the red and green dashed curves show the time series as
they would be sampled by the TEMPEST MIC and TEMPEST
Polar constellations, respectively. The resulting sampling error,
defined as the difference between the actual and sampled WRF
model data, is shown in Fig. 6(b), indicating that the large
decrease in water vapor at about 0:00 UTC on June 24, as well
as the one at about 6:00 UTC on June 25, are not captured by the
current polar-orbiting constellation, but would be captured by
both the TEMPEST MIC and TEMPEST Polar constellations.
The large increase in water vapor at 21:00 UTC on June 23
is also missed by the current polar orbiter constellation, but it
would be captured by the TEMPEST MIC and TEMPEST Polar
constellations, albeit with a 20–30 min time delay.

The corresponding time series for temperature at 700 mb in
Fig. 7 shows that the enhanced TEMPEST MIC and TEM-
PEST Polar constellations have significantly lower temporal
representativeness errors than the observations provided by the
current polar orbiter constellation. For this case, the sampling
error for both of the TEMPEST constellations is very similar.
Corresponding time series of cloud LWP and cloud IWP are
shown Figs. 8 and 9, respectively. For several storms during this
period, the TEMPEST MIC constellation captures the highly
variable cloud properties better than the TEMPEST Polar con-
stellation. However, occasional gaps in the coverage by the
TEMPEST MIC constellation cause it to miss some features
that are captured by the more regular sampling provided by the
TEMPEST Polar constellation (e.g., after midnight on June 24
and June 25).

V. CONCLUSION

The microwave radiometer on board the TEMPEST-D 6U
CubeSat has demonstrated the capability of small, low-cost
satellites, and sensors to perform science-quality all-sky obser-
vations for global forecasts and other science applications. An
analysis of several previous studies along with WRF simulations
indicates that capturing temporal variability of atmospheric
temperature and water vapor requires temporal sampling of
1–2 h, while capturing the development of convective storms
requires temporal sampling of about 20–30 min. To achieve
this, two different constellations are considered and compared
to the temporal sampling capabilities of the existing operational
satellites providing microwave observations. The TEMPEST
Polar constellation consists of 60-each 12U CubeSats in 15 dif-
ferent orbital planes, all of which are in sun-synchronous polar
orbits. This constellation configuration provides the most evenly
spaced global temporal sampling at∼20 min, but cannot capture
higher temporal variability associated with rapidly developing
convective storm systems. The second constellation considered
also employs 60 satellites, but in a range of different orbit
inclinations at 30°, 40°, 50°, 60°, and 70°. This constellation,
referred to as the TEMPEST MIC, exhibits occasional longer
gaps between successive observations, but also provides periods
with much more frequent revisit times of 5–10 min that enable
this constellation approach to better capture storm development
for applications like rapid intensification of hurricanes and
typhoons.

This article advances the understanding of the dramatic
improvement in temporal sampling of all-sky atmospheric
conditions enabled by a constellation of low-cost CubeSat satel-
lites with microwave radiometers, compared with the existing
operational satellites providing microwave observations. Due to
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Fig. 9. (Upper panel) Temporal sampling of total ice cloud water at Corpus Christi, TX. (Lower panel) The corresponding temporal representativeness error for
the three constellation configurations studied.

the improvement observed in the temporal representativeness
of the state of the atmosphere, an expanded constellation of
microwave sensors could improve global forecasts, particularly
in regions with rapidly changing conditions, as well as provide
valuable observations for research on the development of hurri-
canes and intense oceanic storms, as well as over regions of the
globe with limited ground-based observations.
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