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Improved Accuracy of Velocity Estimation for
Cruising Ships by Temporal Differences Between

Two Extreme Sublook Images of ALOS-2 Spotlight
SAR Images With Long Integration Times
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Abstract—A method for improving the estimation accuracy of
the velocity of cruising ships is proposed using synthetic aperture
radar (SAR) sublook images in the spotlight mode. The main
purpose of spotlight SAR is to obtain high resolution utilizing
longer integration times than those of other imaging modes, and
the proposed method is based on these long integration times. The
principal methodology is to produce successive N sublook images
of a cruising ship, where N is more than approximately 10. The
positions of the look-1 and look-N subimages differ by a substantial
distance proportional to the cruising speed and the long interlook
time difference. The distance, and hence the velocity of the cruising
ship, can be computed from the cross-correlation function of these
two sublook images with improved accuracy compared with other
modes. We tested using PALSAR-2 spotlight subimages with N =
2, 10, and 20, and the results are compared with the automatic
identification system data. Five images of ships cruising close to the
azimuth direction were tested; the best result was obtained for the
10-look images with an average error of 13.8%, followed by 17.9%
and 40.5% errors for the 20- and 2-look images, respectively. The
reason is also given for the best result of the 10-look case over the
20-look case.

Index Terms—Spotlight mode, sublook processing, synthetic
aperture radar (SAR), velocity of cruising ships.

I. INTRODUCTION

B ECAUSE of all-weather and day-and-night imaging ca-
pability, synthetic aperture radar (SAR) has been used

effectively for monitoring the vast ocean where in-situ data
collection is difficult [1]. Apart from the natural oceanic phe-
nomena, ship detection is one of the major issues in the maritime
domain awareness, and many studies have been reported such
as ship detection [2]–[9] and classification of ships [10]–[13].
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In addition, multilook processing was applied to improve ship
detection [14], [15]. Meanwhile, estimating the velocity of
cruising ships is also important for providing further informa-
tion. To date, several methods have been proposed for velocity
measurement, including those by along-track interferometric
SAR (ATI SAR) [16]–[23]. Although ATI SAR can measure
only the range velocity component, multichannel SAR [24] and
dual-beam ATI SAR with two squint beams [25], [26] to obtain
multiple velocity components. In addition to this, Ouchi et al.
[27] proposed a theory of multiaperture ATI SAR (MA-ATI
SAR) to estimate velocity utilizing multi-/sublook processing
applied to the conventional ATI SAR data [28], [29].

Apart from the above methods, it was reported that Doppler
parameters can be utilized for surveying velocity of ships [30].
On the other hand, another simple robust method is based on
the azimuth image shift where the image of a ship with a range
velocity component is displaced in the azimuth direction from
the image of its ship wake [31]–[33]. The problem, however,
is that ship wakes are not always visible, and the application
is limited. Another method was suggested to use the images
acquired by TerraSAR-X and TanDEM-X in tandem with a large
along-track baseline configuration [34]. Although it is simple,
well-controlled two SAR platforms are required.

In this paper, we propose a simple method to estimate the
velocity of cruising ships using a single SAR in the spotlight
mode. The novelty of this article is the utilization of spotlight
data. The main purpose of spotlight SAR is to achieve high
spatial resolution in the azimuth direction using a long inte-
gration time compared with that of other modes such as the
Stripmap mode. For example, the azimuth resolution of L-band
PALSAR-2 onboard ALOS-2 is 1 m in the spotlight mode with
the integration time of 20–30 s; while in the stripmap mode, the
resolution is 3–10 m with the integration time of around 10 s
[35]. In this research, aforementioned long azimuth integration
time is an important factor. For the same resolution, the required
synthetic aperture time for the stripmap mode can be the same
as the spotlight mode. After this, the spotlight and stripmap
modes are discussed, however, it is the case that focuses on
ALOS-2/PALSAR-2.

Now, if a ship moves during this long integration time, the
spotlight image is blurred and degraded. On the other hand, the
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distance over which the ship propagates is long in comparison
with that in the stripmap mode of short integration times. By
taking this as an advantage, the proposed method is to estimate
the velocity of cruising ships with increased accuracy by ap-
plying multilook processing to the spotlight data. The principal
theory is, thus, based on the positions of a moving ship, which
differ by the substantial distance between the start and end of
the integration time in the spotlight mode. The measurement
process is, first, N-look processing is applied to the spotlight
data, producing successive N-look subimages where N is more
than about 10 depending on the integration time. Then, from the
positions of look-1 and look-N subimages, the cruising speed,
direction, and hence the velocity of the ship can be estimated.

In order to validate the theory, we processed 2-, 10-, and
20-look subimages acquired by the PALSAR-2 over the southern
waters of Tokyo Bay, Japan. The results are compared with
the automatic identification system (AIS). It should be noted,
at this stage, that due to a short integration time of individual
sublook, the spatial resolution of sublook images is decreased,
but are less blurred and less degraded in comparison with the
full-look image. It should also be noted that the sublook images
are not fully correlated since the azimuth sublook directions are
opposite between the look-1 and look-N, and the difference is
large.

In the following, the methodology is described for producing
sublook images from a single-look complex (SLC) image. The
velocity estimation is then made with two sets of PALSAR-2 data
using the cross-correlation function (CCF) of sublook images,
followed by discussion and conclusions.

II. METHODOLOGY

The sublook processing approach from an SLC image is not
a new method, since it had been used previously for target
detection [36]–[38]. The sublook image is defined as an image
formed by a portion of the full bandwidth. As a consequence,
the resolution of the sublook image is lower than the original
full-look image proportional to 1/N. It is a useful method since
the sublook processing requires only SLC images without SAR
raw data and SAR processor.

For example, Brekke et al. [36] extracted sublook images from
SLC images with partially overlapped subapertures to improve
the subaperture cross-correlation magnitude for ship detection.
The theory is based on the assumption that the sea surface has
very short decorrelation times compared with the center time
difference between subapertures. However, Ouchi and Wang
[39] showed theoretically and experimentally using JERS-1
and RADARSAT SAR data that the interlook cross-correlation
depends only on the subaperture weighting function and is
independent of the temporal correlation of sea surface.

Sanjuan-Ferrer et al. [37] also examined both the partially
over-lapped and nonoverlapped subimages for a point-like bright
target on land. They considered the techniques of sublook coher-
ence, entropy, phase variance, and generalized likelihood ratio
test (GLRT). TerraSAR-X data over the glacier in Greenland
were used to compare the four techniques, yielding that the
GLRT outperformed the others. However, the data they used

were in the X-band Stripmap mode, and the azimuth bandwidth
was narrower than those of spotlight mode and L-/C-band data.
This is, indeed, the main theme of the present work for improving
the detection accuracy with L-band PALSAR-2 data at the
spotlight mode of long integration times.

Marino et al. [38] compared the ship detection algorithms
including sublook coherence, cross-correlation, entropy, and
GLRT in both azimuth and range directions with extensive
ground-truth data of AIS in the North Sea and Tokyo Bay. They
concluded that the best algorithm is GLRT with large signal-
to-noise ratio (SNR) among the others. But, again, the data
used were in the polarimetric mode of the TerraSAR-X (Dual),
RADARSAT-2 (Quad), and ALOS-PALSAR (Quad). Although
the polarimetric mode of shorter azimuth integration times than
the spotlight mode, the results of Marino et al. [38] showed that
the HV-polarization is better than the other polarizations. This
is an expected result since the radar backscatter from the sea
surface is small at cross-polarization than copolarization [40].

It is also well known that the radar backscatter from the
sea surface increases with decreasing incidence angles at co-
polarization while the increase at cross-polarization is relatively
uniform [40]. Vachon and Wolfe [41] reported the results of ship
detection by C-band ENVISAT-ASAR data with 300–670 ships
of different sizes and AIS data. Their results indicate that at the
incidence angle θ T∼33°, the SNR increased by 4 dB from small
ships (length <100 m) to large ships (length >160 m) for both
the co- and cross-polarizations, and that, on average, the SNR of
the cross-polarization is larger at θ T than co-polarization, but
the SNR of the co-polarization becomes larger with increasing
incidence angles from θ T.

Although the above observations are based on the StripMap
and PolSAR data, in this article, the most important and novel
part is the utilization of sublook processing on spotlight SAR
data. The increased accuracy can be expected by the proposed
method using the spotlight SAR data of longer integration times.
Here, we show the process to estimate velocity by means of
sublook processing on spotlight SAR data.

Fig. 1 shows the flowchart of the proposed method to estimate
the velocity of a cruising ship utilizing sublook processing of
a spotlight SAR image. First, an SLC image is Fourier trans-
formed, yielding a full-look image spectrum. This spectrum is
divided into N sub-spectra. To extract a look-1 subimage, for
example, the full spectrum is zero-padded except the look-1
subspectrum, and the inverse Fourier transform of this subspec-
trum yields the look-1 sub-image as illustrated in Fig. 2. Fig. 2
also shows the look-N sub-image produced by the IFT of the
look-N sub-spectrum.

Now, back to the flowchart of Fig. 1, after extracting the
second sublook image by repeating the processes labeled 4 to
6, we have two sublook images of different center times. As
depicted in Fig. 2, these sublook images of the cruising ship are
separated by the azimuth displacement, La, and it is given by

La = VaΔt (1)

where Va is the azimuth velocity component of the cruising
speed andΔt is the interlook time difference. Since the interlook
time difference and cruising direction are known, the cruising
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Fig. 1. Flowchart of estimating the velocity of a cruising ship by sublook
processing applied to the spotlight SAR SLC image.

velocity can be estimated from the CCF of the two sublook
amplitude or intensity images. Then, the results of the interlook
CCF and autocorrelation function (ACF) of one sublook are
examined. Note that the correlation function represents the
degree of similarity between two different data. For instance,
in Fig. 2, ACF shows the correlation between sublook 1 and
sublook 1, and therefore, the peak is shown at the center of the
image, while CCF is between sublook 1 and sublook N, thus the
peak is shifted from the ACF image due to ship velocity. The
comparison with ACF and CCF is understandable to obtain the
difference, however, the ACF step can be skipped if this point is
kept in mind during the analytical process.

The shift of the CCF peak position from the center of the
coordinate axes provides the displacement of the ship during
the interlook time difference, and the velocity vector can be
estimated. The azimuth velocity component can be estimated
from (1). As to the range component, we had, in this pre-
liminary study, only two sets of PALSAR-2 spotlight images
where almost all ships were cruising in the azimuth direction.
Although two ships appear to be propagating in the off-azimuth
direction with small angles, the interlook position differences in
the range direction can not be detected by the present method.
Nevertheless, we can estimate the velocity vector, V, from the
azimuth velocity component and the shape of a ship as shown
in Fig. 3, and

V =
Va

cos θ
(2)

Fig. 2. Illustrating the N-look sublook processing in the azimuth direction from
spotlight SAR SLC data, showing the look-1 and look-N sublook images as an
example. The azimuth displacement can be obtained by the cross-correlations
of different sublook images.

Fig. 3. Estimate the velocity vector by the azimuth velocity component and
ship moving angle.

where θ is the ship moving angle from the azimuth direction.
As noted previously, the spatial resolution of subimages is

lower than that of the full-look image, but image degradation by
the ship’s motion is less severe. In addition, the degradation, that
is, blurring and shapes of subimages are, to some extent, different
due also to the different azimuth sublook angles, resulting in a
decrease of the degree of correlation (coherence). However, the
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Fig. 4. Calculate the time difference between sub looks. For instance, two
cases of look-1 and -2, and look-1 and -10 are depicted.

TABLE I
SAR DATA SPECIFICATION (SCENE 1)

TABLE II
SAR IMAGE SPECIFICATION (SCENE 2)

decrease does not appear significant at first glance. In fact, the
sublook images are correlated sufficiently for the purpose, as
detailed in the following section.

Using velocity estimation, the results are compared with AIS
data. The primary contribution of the proposed theory is the
improved estimation accuracy using spotlight SAR with long
integration times as compared with other modes of shorter inte-
gration times such as stripmap mode. However, there have been
no simultaneous data of different modes. The same spotlight
data are then used by applying two-look processing with the
integration time close to the stripmap mode. In order to calculate
the time difference between sublooks, Fig. 4 is depicted briefly.
As shown in the example of 10 looks in Fig. 4, the time difference
is close to the original long azimuth integration time, however,
it is short in the case of two looks. The time difference of two
looks in the spotlight mode is similar to that of 10 or 20 looks
in the stripmap mode for the case of ALOS-2/PALSAR-2.

III. RESULTS AND DISCUSSION

A. SAR Data

In order to validate the proposed method, two sets of ALOS-2
L-band PALSAR-2 data in the spotlight mode are used as listed
in Tables I and II. They are labeled as scene 1 and scene 2,

Fig. 5. PALSAR-2 spotlight images (upper) and five full-look images of ships
for analyses (bottom). The ship images are enlarged arbitrarily at the bottom
columns.

respectively. Both the data are in the descending mode with
the integration times of 23 and 29 s, respectively (We cited
from AUIG2 ALOS-2/ALOS User Interface Gateway).1 The
resolution is 1 m × 3 m in the azimuth and range directions,
respectively, and the pixel sizes are the same in both directions.

The area of interest is the western coast of the Miura peninsula
in Tokyo Bay, Japan as shown in Fig. 5. Tokyo Bay is one of the
busiest ports, and many ships can be seen in the figure; there also
are some faint ghost images due to azimuth ambiguity and/or
radio frequency interference.

In the present study, five cruising ships, of which the full-look
images are shown in Fig. 5, were used for analyses. The images
are degraded due to the movement of ships. The image pixels are
300 × 900, 300 × 900, 300 × 1600, 300 × 1400, 400 × 600 for
ships 1 to 5, respectively. In particular, the images are smeared
in the azimuth direction because of the long integration times of
spotlight mode as mentioned earlier. These images were divided
into 2, 10, and 20 sublook images in the azimuth direction by
the sublook processing as in Fig. 2.

Examples of the sublook images in terms of ships 1 and 5 are
shown in Figs. 6 and 7 for the cases of 2- and 20-look processing,

1[Online]. Available: https://auig2.jaxa.jp/ips/home

https://auig2.jaxa.jp/ips/home
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Fig. 6. Examples of sublook images of cruising ships for the ships 1 (upper)
and 5 (bottom) in the case of two-look processing. The image pixel sizes are
300 × 900 and 400 × 600 for ships 1 and 5.

Fig. 7. Examples of sublook images of the ships 1 (upper) and 5 (bottom) in
the case of 20 sublook processing.

respectively. As in both the figures, the subimages show the
difference in the azimuth position due to ship movement during
the interlook azimuth time. It is obvious that the azimuth shift of
20-look is larger than that of 2-look though the image resolution
is worse. As expected, the differences of the interlook image
positions are clearly larger for the 20-look case than 2-look case.

In the case of 20 subimages of ship 1 in the upper row of
Fig. 7, the azimuth position of the sublook 20 image is similar
to that of the sublook 1 image. In the spotlight mode, the SAR is
squinted to look forward and backward, then the received signals
are superimposed to obtain fine resolution. If the position of a
ship is deviated from the center of the SAR image, the center

Fig. 8. ACF of sublook image 1 (left), and CCF of sublook images of 1 and
2 (right), for (a) ship 1 and (b) ship 5 with two sublook images. The pixel sizes
are double as the original due to two-dimensional correlation, the pixels are 600
× 1800 and 800 × 1200 for ships 1 and 5.

frequency of the azimuth direction may be shifted by the above
reason (the upper figures of Fig. 7). However, if the position
of a ship is close to the center of the SAR image, it cannot be
seen such shift in sublook 20 (the bottom figures of Fig. 7), and
therefore the 2 and 19 submages are used for analysis. Similarly,
the two and nine subimages are analyzed in the 10 sublook cases.

B. Estimation of Cruising Velocity

We focus on the measurement of the azimuth velocity, since
the cruising direction is known from the shape of the ship’s
image, and hence the velocity vector can be estimated. Another
reason is that the cruising direction is predominantly in the
azimuth direction in the Tokyo bay where the data were taken.

To calculate accurate azimuth image displacement, the CCF
was used for interlook subimages. Examples are shown in Figs. 8
–10 for the cases of 2-look, 10-look, and 20-look processing of
the shipping numbers 1 and 5, respectively. The ACF of the
sublook 1 image is shown on the left of Fig. 8, and the CCF of
the sublook 1 and 2 images on the right. Similarly, the ACF of the
sublook 2 image and its CCF with the sublook 9 and 19 images
are shown on the left and right of Figs. 9 and 10, respectively.
The interlook image displacement can then be calculated from
the difference of the peak positions of the ACF and CCF.
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Fig. 9. ACF of sublook image 2 (left), and CCF of sublook images of 2 and 9
(right), for (a) ship 1 and (b) ship 5 with 10 sublook images. The pixel sizes are
as in Fig. 8.

Fig. 10. ACF of sublook image 2 (left), and CCF of sublook images of 2 and
19 (right), for (a) ship 1 and (b) ship 5 with 20 sublook images. The pixel sizes
are as in Fig. 8.

TABLE III
TIME DIFFERENCE BETWEEN SUBLOOK IMAGES 1 AND N (2, 10, 20)

TABLE IV
ESTIMATED RESULT USING TWO SUBLOOK IMAGES AND AIS DATA

TABLE V
ESTIMATED RESULT USING 10 SUBLOOK IMAGES AND AIS DATA

TABLE VI
ESTIMATED RESULT USING 20 SUBLOOK IMAGES AND AIS DATA

As listed in Table III, the time differences between sublook
images were roughly 11.5–14.5 s, 16.1–20.3 s, and 19.6–24.7
s for the 2-look, 10-look, and 20-look cases, respectively. The
pixel spacing was 0.625 m. Thus, from these interlook time and
correlation peak differences, the azimuth velocity components
can be computed.

Next, the ship cruising direction is examined from the shapes
of the ships’ images. While the ships 1 and 2 were cruising
almost in the azimuth direction, the ships 3, 4, and 5 were
cruising at angles from the azimuth direction as can be seen
in Fig. 4. These angles are 10°, 25°, and 25° for ships 3, 4,
and 5, respectively. By taking into consideration the cruising
directions, the cruising velocities of all five ships can finally be
estimated as shown in Tables IV–VI, where the velocities from
the AIS data as the ground-truth are also listed for comparison.

The comparison of the results with AIS data shows that
the range of errors is 34.4–52.9% for the two-look case, and
3.9–30.0% and 5.9–29.2% for the 10-look and 20-look cases,
respectively. The average errors are 40.5%, 13.8%, and 17.9%
for the 2-look, 10-look, and 20-look cases, respectively. Thus,
substantial improvement in velocity estimation is made using the
spotlight data with increased sublook numbers in comparison
with the simulated stripmap mode of short interlook times.
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The most accurate estimation is the 10-look case, followed
by the 20-look and 2-look cases. We expected that the 20-look
case is the most accurate although the difference from the
10-look case is not large. This may be because the azimuth
sublook angles of the 20-look case are larger than those of
the 10-look case, resulting in a larger difference between the
2-look and 19-look subimages. In the case of the 10-look case,
the estimation errors of ships 4 and 5 are relatively large. It
is considered that the estimation can be accurately applied for
ships cruising close to the azimuth direction. The other reason
may be because of the change of cruising direction during the
interlook time. The present method is based on the assumption
that ships do not change their course during the observation.
If the cruising direction changes during the interlook azimuth
time, the difference in image structure is large, and the interlook
images are less correlated. Longer the interlook azimuth time is,
the larger the interlook image difference becomes. In fact, the
cruising directions of the ship 2 sublook images in the 20-look
case appear slightly different. Further, the cruising direction of
ship 4 is about 25°, so that the azimuth velocity component is
small, causing an increased potential error.

In the present preliminary study, only five ships cruising
mainly in the azimuth direction in spotlight SAR data were used.
As a future study, increased numbers of ships cruising at various
speeds and directions, as well as the other observation mode
are required. Especially, the method can be adopted for ships
cruising close to the azimuth direction, therefore, the quantitative
evaluation in terms of the ship that has both radial and azimuth
velocity components. In particular, if the ship moving angle
is close to the range direction, the current estimation could
be influenced. In addition, signal-to-noise ratio (SNR) can be
another factor to affect the analysis. The moving ship images are
sometimes blurred in the subimages, and if SNR is low, it can
be a barrier to extract the ship motion from the subimages. Also,
the other ground truth data such as ocean current and direction
of movement may provide us additional insight on this method.
They are required to discuss as a next step.

IV. CONCLUSION

In this article, preliminary results are presented on the im-
provement of velocity estimation of cruising ships by applying
sublook processing to the SAR data in the spotlight mode. The
principle is to utilize the long azimuth integration times of
the spotlight data as compared with, for example, the stripmap
data. The interlook time difference between the well-separated
subimages in the number of sublooks is, therefore, long, and the
subimage positions of a cruising ship are also well-separated.
To test the theory, 2, 10, and 20 sublook images of five ships are
produced in the two sets of PALSAR-2 spotlight data over the
Tokyo bay, Japan. Comparison with the AIS data shows substan-
tial improvement in velocity estimation by 10-look processing
with a 13.8% average error in comparison with the two-look case
of 40.5% error. Further study is in progress using an increased
number of ships cruising with different speeds and directions
to clarify the estimation accuracy for various kinds of moving
ships.
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