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Hyperspectral Unmixing Based on Spectral and
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Abstract—Hyperspectral unmixing refers to the process of ob-
taining endmembers and abundance vectors through linear or
nonlinear models. The traditional linear unmixing model assumes
that each mixed pixel can be represented by a linear combination
of endmembers. Considering real-world situations, a sparse con-
straint is normally added to the linear unmixing model. However,
the linear model does not take into account that the spectrum of
mixed pixels is not simply linearly mixed. To fully study the mixing
characteristics of ground object spectra before being imaged by
the sensor, we propose a supervised unmixing architecture based
on a one-dimensional convolutional neural network (CNN) by con-
sidering the spectral information and the sparse characteristics in
the mixed pixel. Since 1-D CNN only considers feature learning,
we combine the traditional root-mean-square error (RMSE) and
�1 regularization in its loss function to minimize training error.
The performance of our proposed unmixing model is assessed by
comparing the unmixing results with three traditional linear sparse
unmixing algorithms and the fuzzy ARTMAP neural network in a
simulated dataset and three real datasets. The RMSE was used to
verify the unmixing accuracy of the different methods. The results
showed that the RMSE obtained by our proposed CNN-based
method was the lowest among the methods on all three real datasets,
proving the effectiveness and stability of the CNN in unmixing
tasks.

Index Terms—Convolutional neural networks (CNNs),
hyperspectral unmixing, spectral information.

I. INTRODUCTION

IN RECENT years, with the rapid development of hyper-
spectral technology and the wide accessibility of remote
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sensing images, hyperspectral images have been continuously
applied in different applications, such as classification [1] and
segmentation [2], change detection [3], [4], object recognition
[5], and resource exploration [6]. However, due to the limitation
of the spatial resolution of Earth satellite sensors and the influ-
ence of the complex diversity of the surface, a single pixel in a
remotely-sensed image contains a variety of materials, leading
to the presence of so-called mixed pixels [7]. The traditional
classification method considers each pixel in the image as a
category of ground objects, which is clearly inaccurate. Mixed
pixels exist at the junctions of different ground objects, and
the classification of such pixels is often difficult because the
spectrum of mixed pixels is often a mixture of various ground
objects, which does not refer to a single ground object type.

At present, hyperspectral unmixing models are mainly divided
into linear [8] and nonlinear [9]–[11]. The physical meaning
of the linear unmixing model is simple and very clear, and
the results of the unmixing can basically meet the application
requirements. Therefore, the linear model is still the most widely
used model in the field of unmixing. The traditional linear
unmixing model assumes that a variety of land cover spectra
are weighted together to form a mixed spectrum of one pixel,
so the unmixing process usually includes two parts: endmem-
ber extraction and abundance estimation. For example, vertex
component analysis [12], the pixel purity index [13], and the
simplex growing algorithm [14] are all based on the pure pixel
assumption and need to extract endmembers from the dataset,
which may be difficult if the resolution of the dataset is low or
the features are highly mixed.

With the continuous development of theories such as com-
pressed sensing and sparse representation [15] in the fields
of classification and denoising, as well as the expansion and
popularization of spectral libraries, adding sparse constraints
to hyperspectral unmixing has become a major research focus.
Currently, linear sparse unmixing algorithms (relying on spectral
libraries) have achieved extraordinary results, and their represen-
tative methods include sparse unmixing using the variable split-
ting and augmented Lagrangian (SUnSAL) algorithm, which
achieved good results. However, this method only considered
sparsity, without considering spatial information [8]. There-
fore, a hyperspectral sparse unmixing algorithm based on total
variation (TV), namely SUnSAL-TV, was proposed [16]. This
method can effectively promote the smoothness between pixels
to optimize the understanding of mixing accuracy. Subsequently,
a hyperspectral unmixing algorithm based on collaborative
sparse regression (CLSUnSAL) was proposed [17] by utilizing
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the row sparsity characteristic shown by the abundance coef-
ficients. Based on sparse unmixing, Feng et al. [18] proposed
spatial regularized sparse unmixing. The algorithm combines
spatial information and known standard spectral features with
the traditional spectral unmixing model in the form of sparse
regression to make full use of the role of spatial information
in unmixing. In 2020, inspired by the feature classification of
kernel functions, Weng used nonlinear feature mapping to apply
HMC library decomposition to the kernel space to improve the
accuracy of unmixing [19].

In the nonlinear spectral mixing model (LSMM) [20]–[22],
due to the complex interactions between ground features and the
sun, a model based on radiance theory usually aims at specific
ground features and requires extensive prior knowledge to an-
alyze the source of the mixed spectra. However, the nonlinear
unmixing model takes into account the distortion and noise of
the spectrum before it is collected by the sensor, and it is very
difficult to simulate such mixed data artificially. Therefore, the
nonlinear unmixing method has not been widely used. With
the wide application of deep learning methods such as neural
networks (NNs) in computer vision of remote sensing image
classification, recognition, and detection, increasing attention
has been given to the application of NN models in the study
of hyperspectral unmixing, which is characterized by extracting
high-dimensional features of data. Although the linear model is
still the mainstream direction of unmixing research, for hyper-
spectral data, the linear model has not been able to make full
use of the spectral information of the image. An NN method
represented by a convolutional neural network (CNN) [23], [24]
has a unique ability to mine spectral features. Applying it to
unmixing can make full use of the deep spectral properties.

Although the historical application of an NN method in un-
mixing is far less than that of a linear method, the origin of
its application in unmixing is not recent. For example, in 2007,
Wu et al. proposed an NN unmixing method with endmem-
ber changes [25]. Based on the fuzzy ARTMAP NN model
[26], the method utilized cross-spectral matching technology
to dynamically adjust endmembers to improve the unmixing
accuracy. Li proposed a remote sensing image unmixing algo-
rithm based on an improved backpropagation (BP) NN [27].
This method needs to modify the output of the BP model. The
main focus of the improvement is in the output layer node.
Subsequently, methods based on deep autoencoders [24], [28]
and convolutional autoencoder networks [29] were developed.
Palsson et al. proposed a blind unmixing method of an NN
autoencoder based on deep learning [30]. This method requires
the number of endmembers in the image to be known in ad-
vance, the sparsity of abundance to be constrained by a custom
activation function, and the original image to be reconstructed
by a linear decoder. Subsequently, Qi et al. used CNNs to
unmix hyperspectral images [31]. Ozkan and Akar extended
and improved the deep spectral convolution network (DSCN)
model [32]. The Wasserstein generative adversarial network
was introduced into the network to improve the stability of
the model and capture endmenber uncertainty. In general, the
network is composed of an encoder and a decoder. The encoder
introduces several mixed cores and trainable uncertainties based
on NN architecture to obtain more accurate and stable solutions.

Second, the abundance of each pixel was estimated by simulat-
ing the mixed Gaussian distribution, and finally, the optimal
abundance estimation solution was determined according to the
residual of optical endmember spectral estimation. Zhang et al.
proposed a deconmixing method based on three-dimensional
CNN (3-D CNN) [33], which can learn spatial and spectral
information of images at the same time, effectively solving the
spatial correlation problem of abundance in traditional mixed
pixel decomposition methods. For the input hyperspectral pixels,
the CNN could extract spectral and spatial features and, through
network training, approximate the corresponding abundance of
the hyperspectral pixels. However, these hyperspectral unmixing
algorithms based on deep autoencoding use nonlinear activation
functions in the encoder part of the network to extract spectral
features and map them into abundance vectors. In the last layer,
a simple linear decoder is added to obtain endmember spectra
and reconstruct the original data. It is not reasonable to obtain
the endmember spectra in such a simple and crude way, and the
reconstructed data obtained in a linear way cannot reasonably
account for the network error.

The supervised CNN-based unmixing network developed in
this article does not need a cascade decoder, thereby reducing
both the errors in network training and the complexity of the net-
work. By comparing the unmixing results and accuracy obtained
from the classical linear model and our newly proposed CNN
model, the advantages of the deep learning method based on
CNN in hyperspectral unmixing can be summarized as follows.

1) In the past, CNNs have been widely used in ground
object classification. In this article, CNNs are used to
deeply mine the characteristics of image features, extract
the spectral features of hyperspectral images, gradually
compress the high-dimensional spectral information to
the low-dimensional spectral information, and finally map
the element abundance vectors associated with the image
pixels. In this article, the structure of the proposed CNN
hyperspectral unmixing model has been adjusted to adapt
to mixed pixel unmixing in different environments, which
is of great significance in large-scale ground object inver-
sion. In addition, in feature extraction of different spectral
data, the structure adjustment of our proposed CNN can
also become traceable according to actual requirements.
Besides, we also streamlined the network as much as
possible to make it more efficient.

2) Our newly developed pixel-based CNN model is an end-
to-end framework with a simple and fast processing pro-
cess and can improve the unmixing accuracy by training
samples to learn the mapping process from mixed spec-
trum to abundance vector. In addition, the combination of
the root-mean-square error (RMSE) and �1 regularization
is used as the loss function of the network to achieve a
sparse constraint on the abundance vector. The RMSE is
used to measure the deviation between the predicted abun-
dances and the true abundances, and �1 regularization is
used to constrain the sparsity of the predicted abundance.

RMSE plays an important role in error evaluation, and the
abundance vector is a continuous value between 0 and 1. Using
RMSE for network error training is beneficial to measure the
deviation between the observed value and real value. Second,



WAN et al.: HYPERSPECTRAL UNMIXING BASED ON SPECTRAL AND SPARSE DEEP CONVOLUTIONAL NEURAL NETWORKS 11671

RMSE is equivalent to �2 regularization and will not ignore
smaller values as the number of network calculations increases,
so it is also more sensitive in the processing of pixel outliers.
Third, combining �1 regularization in the loss function is more
conducive to selecting the eigenvalues we need, and also to
reduce the abundance smoothing caused by �2 regularization
of RMSE.

The rest of this article is organized as follows. Section II
introduces the classical linear unmixing method and the newly
proposed unmixing models. Section III presents the obtained
results. The discussion is given in Section IV, followed by the
conclusions in Section V.

II. METHODS

A. Linear Spectral Mixing Model (LSMM)

The LSMM has been widely used to determine and quantify
the abundance of ground objects in mixed pixels [34], [35]. It
assumes that the spectral response of a pixel in any given spectral
band is a linear combination of all the endmembers in the pixel.
For example, in a typical remote sensing scene, the mixed pixel
spectrum can be expressed as y = [y1, . . . , yL] , where L is the
number of spectral bands. Meanwhile, let M be the endmember
matrix, denoted as [m1,m2, . . . ,mq], where mj is the column
vector L× 1 denoting the spectral vector of the jth endmember,
and q is the number of endmembers existing in the observed
image. Let α = [α1, α2, . . . , αq]

T be an abundance vector of
dimensions q × 1, where αj represents the percentage of the nth
endmember in pixel y. The mixed pixel vectors can be modeled
as follows:

y = Mα+ n (1)

where n is the L× 1 vector, representing the noise and model
error. According to the actual situation, we impose the follow-
ing two constraints on the LSMM: the abundance nonnegative
constraint (ANC) and abundance sum-to-one constraint (ASC):

αi ≥ 0 (i = 1, 2, . . . , q)

q∑
i=1

αi = 1. (2)

B. Sparse Unmixing Model

The sparse unmixing model finds the linear combination of
endmembers of each observed pixel from a large spectral library
and replaces the set M of endmembers with a known library A
[36]. In other words, there is no need to extract endmembers
from the image or to assume the existence of endmembers
in the image. According to the decomposition mechanism of
hyperspectral mixed pixels and the actual ground object dis-
tribution, the spectral number p in A is generally much larger
than the number of endmembers q contained in each pixel, so
the abundance vector of y in A is sparser. This sparsity takes
into account the mixed spectra of actual ground objects and can
improve the accuracy of the mixed pixel decomposition model
and the stability of the abundance solution. The sparse unmixing

model is written as follows:

min
x

1

2
‖AX − Y ‖2F + ‖λX‖0

s.t. X ≥ 0, 1TX = 1 (3)

where ΔF represents the Frobenius norm, λ is a regularization
parameter, and X0 represents the �0 -regularization of X . Ac-
cording to compressed sensing and sparse representation theory,
�0-regularization can describe sparsity well, but the problem of
�0 minimization is nonconvex and difficult to solve. Therefore,
�1-regularization can be used to replace �0-regularization, so
a relatively satisfactory sparse solution can be obtained. As a
result, (3) can be rewritten as follows:

min
x

1

2
‖AX − Y ‖2F + ‖λX‖1,1

X1,1 =
n∑

j=1

‖xj‖1

s.t. X ≥ 0, 1TX = 1 (4)

where xj represents the j th column of the abundance matrix X .
The model can be solved using the SUnSAL [8] algorithm based
on alternate iterations. However, since the �1 regularization is
not sufficient to describe signal sparsity, the unmixing accuracy
is affected to some extent. Therefore, Iordache et al. adopted
�2,1-mixed regularization to replace �1-regularization and then
proposed an unmixing algorithm based on CLSUnSAL [17]:

min
x

1

2
‖AX − Y ‖2F + ‖λX‖2,1

‖X‖2,1 =

√∑n

j=1
xj

2

s.t. X ≥ 0, 1TX = 1 (5)

The unmixing algorithm based on collaborative sparsity ef-
fectively solves the problem of abundance sparsity, but it does
not take into account the local spatial smoothness of the image,
resulting in the lack of local spatial information, which further
affects the understanding accuracy of mixing. Therefore, Ior-
dache et al. proposed SUnSAL-TV [16], whose model can be
expressed as

min
x

1

2
‖AX − Y ‖2F + λ‖X‖1,1 + λTV (X)

s.t. X ≥ 0, 1TX = 1 (6)

where TV(X) ≡∑{i,j}∈ε ‖xi − xj‖1 promotes similar abun-
dance coefficients between adjacent pixels, xj represents adja-
cent pixel sequences of xi in the abundance matrix X , xi and
xj are column vectors of abundance matrix X , ε represents the
horizontal and vertical neighborhood sets in X , and the sparsity
of the above models is added to the abundance coefficients.

C. Fuzzy ARTMAP Neural Network (NN)

Adaptive resonance theory (ART) [37] is a self-organized NN
proposed in 1976 by G. A. Carpenter for the unified mathemati-
cal theory of human psychological and cognitive activities. The
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Fig. 1. Fuzzy ARTMAP network.

fuzzy ARTMAP NN combines fuzzy set theory and the ART
self-organizing feedback function to realize real-time nonoffline
learning [25]. The network consists of two ART modules (ARTa
and ARTb) plus a mapping field (MapField). The mapping do-
main connects the two ART modules and can conduct real-time
supervised learning for any input vector [38]. In the learning
process, tracking matching rules are also implemented so that
errors in the matching process do not occur repeatedly. Fig. 1
shows a graphical illustration of fuzzy ARTMAP.

The workflow of mixed pixel decomposition using the fuzzy
ARTMAP NN [25], [26] is as follows.

1) Training phase: ARTa receives an input a in the training
mode, whereas ARTb receives the expected output b in the
training mode.

2) Test phase: During the discrimination, ARTa receives the
input and obtains the learning result from ARTb. The
function of MapField is used to control the learning of
association mapping between ARTa classification and
ARTb classification. It controls the warning parameters
until it can drive the network to look for better ARTa

classification. Therefore, the size of the warning parameter
controls the classification accuracy to some extent.

Fuzzy ARTMAP has superior adaptability and can maintain
the same sparse and nonnegative distribution as the label abun-
dance without changing the internal structure of the network,
which is in sharp contrast to the CNN structure. The fuzzy
ARTMAP NN for mixed pixel decomposition is a recognition
algorithm with supervised learning [25]. This algorithm is rel-
atively complex, and its variables and parameters are given in
Table I.

D. CNN Unmixing Model

In this section, the structure of the CNN and its application in
hyperspectral unmixing are described in detail. Since machine
learning was proposed, a variety of NN structures have been
proposed to solve a variety of complex problems, and CNN is
one of its representative models. Based on the linear unmixing

TABLE I
FUZZY ARTMAP PARAMETER TABLE

Fig. 2. Structure of the proposed CNN.

model, the spectral mixing process and the sparse principle based
on the spectral library are explained in this article. On this basis,
the principle and role of the CNN in unmixing are studied, and
the linear and NN models are compared. Combined with the
advantages of the CNN in feature extraction and other aspects,
it is introduced into hyperspectral unmixing to extract spectral
features in depth and improve the unmixing accuracy.

A CNN is a deep learning model, which is similar to the
multilayer perceptron of artificial NNs [39]–[41]. It is widely
used in the field of image visual analysis. The model was intro-
duced by LeCun [42], and it was the first to solve the problem
of handwritten numbers in the MNIST dataset through a CNN.
A CNN is characterized by local connections, weight sharing
and downsampling, which greatly reduces the parameters that
the network needs to train, thus reducing the complexity of
the model, reducing the risk of overfitting, and making the
model highly robust. The structure of a general CNN consists
of an input layer, several continuous convolutional layers and
pooling layers, a fully connected layer, and an output layer.
The most commonly used activation functions include Sigmoid,
Tanh, ReLU, and LeakyReLU. In this article, image features
are extracted by a deep network, and then the abundance of
hyperspectral unmixing is approximated through the final fully
connected layer. The structure of the proposed CNN used for
unmixing is shown in Fig. 2.

1) Convolution Operation: The convolutional layer is the
most important layer in the CNN, and it is the key layer to extract
image features [43], as shown in Fig. 3. During the convolution
operation, the size of the convolution kernel (filter), namely
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Fig. 3. Convolutional layer structure diagram.

M×M (M is the size of the convolution kernel), should be given
first, and the size of the matrix is also called the receptive field.
According to the data dimension features to be extracted, the
depth of the convolution kernel is consistent with the depth of
the input layer, so the size of a convolution kernel of M×M×N (N
is the depth of the convolution kernel) can be obtained. Assume
that the size of the input image is 4×4, the size of the convolution
kernel is 2×2, and the moving step is 1. When the convolution
kernel moves on the input image in turn, an output image of
size 3×3 can be obtained. It can be seen that the size of the
convolution kernel varies with M and N. When M = 1, the input
data is 1-D spectral data, and the size of N determines the number
of spectral features extracted during each convolution operation.
When N is too small, the more feature layers are obtained,
but it may also cause feature redundancy, thereby reducing the
unmixing accuracy; otherwise, it may cause the network to lose
important features. Therefore, the value of N needs to be set
according to different data dimensions.

Previously, we talked about how the convolutional layer ex-
tracts features, but the features extracted by the convolutional
operation are random, so it is necessary to tell the network
which features are useful. Similar to feature extraction by many
NNs, CNN perceives the local spectral information through
kernel function in the process of extracting spectral features,
and then synthesizes the previously extracted local features at a
higher level to obtain global information. The nonlinear feature
extraction of spectral dimension is opposite to linear unmixing.
In short, linear unmixing is the multiplication of the endmember
matrix and abundance vector. CNN can extract spectral features
layer by layer and map them to abundance vectors. In this
process, features extracted by kernel and activation functions
cannot be explained by a single linear equation.

2) Pooling operation: The pooling layer, which can also be
called the downsampling layer, is the transition layer between
the convolutional layers [44]. Its goal is to gradually reduce
the dimensionality of the input data, reduce the number of
parameters in the network, shorten the calculation time, and
effectively control overfitting. The pooling and convolution lay-
ers need to set the size of the sliding window, mainly including
the max-pooling layer and mean-pooling layer. In the forward
propagation of max-pooling, the maximum value in the window
is passed to the next layer, while the value of other pixels is
directly discarded. In the BP, the gradient is directly passed to a
pixel in the previous layer, whereas other pixels do not accept the
gradient. The forward propagation of average pooling calculates
the average value of a window and passes it to the next layer,
and the BP divides the gradient of an element into n parts that
are passed back to the previous layer.

3) Batch Normalization (BN): The input data need to be
standardized before entering the deep NN, but in the subsequent
process of feature extraction, as with convolution and pooling,
it is easy to cause drastic changes in the output data as the
model parameters are constantly updated. BN [42] calculates the
mean and standard deviation of small batch data and constantly
adjusts the output data size of the network middle layer to keep
the data size of different middle layers of the whole network
in a relatively stable range. Let xi, i = 1, . . . , n be the input
value of the batch processing normalized layer, and the final
standardized output value is y = BNγ,β (x) = γx̄+ β. The
specific processing process is as follows:

y = γ
x− μβ√
σ2
β + ε

+ β

μβ =
1

n

R∑
i=1

xi

σ2
β =

1

n

R∑
i=1

(xi − μβ)
2 (7)

where γ and β are learnable parameters and ε is a very small
number.

4) Fully connected layer: All the fully connected layers [45]
have the effect of a classifier in the CNN. In front of the convolu-
tion, pooling layer and layer activation function operations, such
as mapping to the hidden layer, is the original feature space. We
expand the output data of the last convolution layer, connect each
node of the current layer with the node of the next layer, and set
the number of categories according to the activation function and
the number of nodes of the last fully connected layer. Different
from hyperspectral classification and target recognition, we use
the softmax activation function for the last layer, which makes
the output value within the range of [0,1], satisfying both ASC
and ANC conditions, and can be expressed as the abundance of
hyperspectral unmixing. According to the softmax function, the
abundance ai corresponding to class i is given by the following
formula:

ai = ebi
/ q∑

j=1

ebij = 1, 2, . . . , q (8)

where bi represents the output value of the jth endmember, and
q represents the number of endmembers.

5) Network Optimization Process: The use of a CNN for su-
pervised unmixing means that a large number of labeled samples
are needed in the model training process. In this article, part of
the real hyperspectral data and the corresponding real abundance
data were input into the network for training, and then the
whole hyperspectral dataset was tested and the final abundance
map was obtained. The experimental datasets we selected were
all verified public datasets, and their true abundance vectors
were all obtained by presumed measurement. The number of
endmember categories also determines the dimension of the
abundance vector. For example, in the Urban dataset, the num-
bers of endmembers are four and six. This is mainly based on the
reality of our degree of subdivision of different ground objects.
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CNN structure in this article is mainly used to extract spectral
features. Although spatial features are lost in this process, spatial
features are added to the subsequent loss function. Since NNs are
an infinite approximation problem, the estimation from spectral
dimension to abundance is not only a supervised classification
problem but also an approximation fitting problem. The pooling
layer in the network uses the maximum pooling layer, and the
activation function used is ReLU. This activation function not
only overcomes the problem of gradient disappearance but also
accelerates the training speed. Therefore, when ReLU is used
as the activation function, the value of the input data will not
change greatly and remains in a relatively stable interval, thus
ensuring the training network of the deep CNNs. Its expression
is

f (x) =

{
x, x ≥ 0
0, x < 0

. (9)

In the network training stage, the CNN parameters were ran-
domly initialized, the error BP algorithm was used for training,
and the parameters were updated using the mini-batch strategy.
To find the optimal NN structure and obtain the optimal unmix-
ing result, the loss function between the predicted abundance
and the true index in the training is minimalized

L = RMSE
(
X, X̄

)
+ λ�1 (X)

LRMSE = sqrt

(∣∣X̄ −X
∣∣2

n

)
(10)

where X is the predicted abundance of the network, X̄ is the
corresponding true abundance value, and λ is the regularization
parameter �1. Since the abundance vector we finally obtained
is a continuous value, the RMSE can better measure the error
between the predicted value and the true value in network
training rather than calculate the degree of similarity between
them. In the formula, the first term is the error term, which is
used to calculate the error before the predicted abundance and
the true abundance. The second term is the sparse regularization
term, which is used to constrain the sparsity of the predicted
abundance through �1 regularization. In the network training
process, we not only need to ensure that the training error is as
small as possible, but also hope that the predicted abundance
has a certain sparseness, so we need to add the �1 regularization
term. From (4), we know that �1 regularization is the product
term of the absolute value of the predicted value X and the
parameter. When calculating the gradient, the derivative of (10)
can be obtained as follows:

∂L∂X = ∂LRMSE∂X + λΔsign (X) (11)

where sign is a symbolic function. When X >0, sign(X) =
1; when X = 0, sign(X) = 0; and when X <0, sign(X) =
−1. We further analyze the regularization term and let ∂L1

∂X =
sign(X). According to X > 0, the update formula of �1(X)
is X = X − λ ∗ 1, which means that X will be reduced by a
specific value every time it is updated (for example, λ = 0.05),
then after several iterations, X may be reduced to zero. It can
be seen from this process that �1 regularization can make the

predicted value close to zero become zero faster, resulting in a
sparse effect.

In practical application, both �1 and �2 regularization can
be used to reduce the risk of overfitting, but �1 regularization
more easily obtains sparse solutions than �2 regularization; that
is, the weight vector obtained has fewer nonzero components.
Second, compared with 2-D and 3-D CNNs, the pixel-based 1-D
CNN used in this article only considers the spectral features
of pixels in feature extraction but does not consider the spatial
correlation features of images. However, the modification of
the loss function is sufficient to compensate for the lack of
abundance space features, and the computation time and speed of
a 1-D CNN are much faster than those of a 2-D CNN. Therefore,
to satisfy the abundance accuracy, the efficiency of a 1-D CNN
is higher, which is also one of the important reasons why a 1-D
CNN is used in hyperspectral unmixing in this article.

There is no doubt about the superiority of a CNN in feature
extraction, but the network structure also greatly affects the
network performance and learning efficiency. Therefore, the
proposed CNN structure in this article aims to deal with different
mixed image metadata and simplify the network structure as
much as possible to improve the computing speed. Otherwise,
the learning ability of CNN cannot be targeted only at a single
type of data, that is, it is difficult for CNN structure to adapt to
the characteristics of two data types at the same time, even if the
same type of data also has the problem of migration. Therefore,
it is very important to adjust CNN structure to adapt to various
remote sensing image data.

III. EXPERIMENTS AND RESULTS

A. Parameter Settings

In this article, RMSE is used to evaluate the accuracy of the
mixed pixel decomposition of the four methods.

After many experimental tests, in the linear methods, i.e.,
SUnSAL, CLSUnSAL, and SUnSAL-TV, λ was set as 0.001,
λTV was set as 0.003, and the number of iteration epochs
was 4000. The set values of these parameters can not only
obtain effective unmixing results but also ensure the operational
efficiency of the model. Through many experiments, it is most
appropriate to set the warning parameter of fuzzy ARTMAP as
0.8. Besides, to fully compare the unmixing effects of different
CNN methods, 3-D CNN [33] and SPMCNN-ESPCN [46]
were selected to conduct an experimental comparison with our
proposed CNN methods.

The Proposed CNN needs to set different network structures
for different data. In the experiment, λ in the loss function was
set as 0.05, the size of the mini-batch was set as 30, and the epoch
was set as 100. Specific parameters are shown in Table Ⅱ, where
FC is the fully connected layer. The table represents a total of
12 layers of networks, whose values represent the number of
output neurons of the hidden layer. The Adam optimizer was
used for network training, and the learning rate of the optimizer
was set as 0.0001. Compared with other optimizers, Adam is
more suitable for correcting bias errors and has good robustness
in the selection of super parameters. Finally, fuzzy ARTMAP
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Fig. 4. Spectral curves of nine endmembers of simulated data.

Fig. 5. RMSE with respect to different noise levels.

and the proposed CNN use 30% of the dataset for training and
100% of the dataset for testing.

B. Simulated Dataset

The dataset is 100×100 in size with 221 bands and was created
to benchmark the accuracy of spectral decomposition provided
in the HyperMix tool [21]. The mixed pixels use the fractal repre-
sentation of some natural objects, including clouds, mountains,
shorelines, and vegetation, to provide a baseline for simulating
the spatial patterns often found in nature. The composite images
were modeled from a linear mix of a randomly selected set of
endmember features from a spectral library compiled by the
United States Geological Survey, totaling 420 features. In a
composite image, each scene is fixed with 9 endmembers, and
the spectral curve is shown in Fig. 4. In addition, different levels
of Gaussian noise (SNR = 20, 25, 30, 35, and 40 db) are added
to the image.

Fig. 5 shows the RMSE with respect to different noise levels.
Except for the fuzzy ARTMAP, linear sparse unmixing methods
and the three CNN-based methods both show good unmixing
potential. The simulated dataset was also designed to test the
unmixing performance of different methods and then to evaluate
the impact of different levels of noise on the unmixing perfor-
mance by adding different SNRs. In general, with the increase in
SNR, most of the methods show a downward trend. In principle,
sparse constraints have a certain denoising capability, which
makes the unmixing results stable in different noise environ-
ments. The three linear sparse unmixing algorithms all show

good unmixing performance in different noise environments. In
the case of a large number of endmembers, sparse regularization
imposes a good constraint on the abundance of endmembers.
Although the proposed CNN did not achieve the best results in
this experiment, its accuracy was always stable and not much
different from the results of the sparse linear decomposition.

Due to the large number of endmembers in this dataset, we
only selected the abundance maps of endmembers 1, 5, and 9
for quantitative evaluation, as shown in Fig. 6. As seen from the
original spectral curves in Fig. 4, except for endmembers 3 and
5, other spectral curves have similar peaks or troughs, which
creates great difficulty in unmixing. The phenomenon of “for-
eign bodies in the same spectrum” often appears in hyperspectral
images. Especially when the NN learns these spectral features,
a large number of similar spectral curves are superimposed
together, making it difficult for the model to distinguish these
features in the learning process. Although the accuracy of fuzzy
ARTMAP is the lowest and the accuracy of the proposed CNN
is slightly lower than that of the linear method and 3-D CNN,
from the visual effect, the noise of the two NN methods in the
dark region is less than that of the linear sparse methods. This
dataset is simulated using the K-means algorithm and contains a
large number of linear relationships. Although noise is added, it
is still not possible to simulate the nonlinear relationship in the
real dataset. In contrast, the decomposition results obtained by
SPMCNN-ESPCN method failed to distinguish the three kinds
of endmember abundance. However, 3-D CNN and proposed
CNN in this article have better results, and 3-D CNN has the
lowest RMSE among all methods.

C. Real Data Experiments

We evaluated all approaches on three real-world datasets,
Samson, Jasper Ridge, and Urban, as shown in Fig. 7, from
different sensors with different sizes, resolutions, and the num-
ber of endmembers to fully compare the effectiveness of the
different approaches.

1) Samson Dataset: The image contains 952×952 pixels,
and each pixel contains 156 bands, with a wavelength range of
401–889 nm and a spectral resolution of 3.13 nm. Because the
original image was too large, we extracted an area of 95×95
size for the experiment, as shown in Fig. 7(a). The image
contains rock, tree, and water [as shown in Fig. 7(d)]. In the
data experiment, the parameters of the CNN network structure
are shown in Table II.

Table III shows the RMSE quantitative comparison results of
all the methods, among which the proposed CNN method has the
best result, and the RMSEs of the three kinds of ground objects
are all lower than those of the other methods. The result of fuzzy
ARTMAP is slightly worse than that of the CNN, which reflects
the advantage of a deep CNN over a shallow network. Although
the error of the linear sparse unmixing algorithm is not more
than 0.06, compared with the accuracy of the NN, which is less
than 0.03, the error is still too large.

Fig. 8 shows the unmixing results obtained by all methods
for Samson Dataset. It can be seen that the SUnSAL, CLSUn-
SAL, and SUnSAL-TV linear unmixing methods have different
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Fig. 6. Abundance maps obtained by all methods for the simulated dataset with no noise. (a) Reference abundances. (b) SUnSAL. (c) CLSUnSAL. (d) SUnSAL-TV.
(f) SPMCNN-ESPCN. (g) 3-D CNN. (h) Proposed CNN.

TABLE II
CNN NETWORK STRUCTURE FOR EACH DATASET

Fig. 7. Three real-world datasets used in this study. (a) Samson. (b) Jasper
Ridge. (c) Urban. (d) Endmember spectrum of Samson. (e) Endmember spec-
trum of Jasper Ridge. (f) and (g) Endmember spectrum of Urban.

TABLE III
RMSE ON SAMSON DATA (THE BOLDED NUMBER MEANS THE LOWEST RMSE

IN EACH ROW)

degrees of misclassification of water, which are mainly concen-
trated in the upper right corner of the image, namely the tree and
the shadow area. Because the light is blocked, the tree in this
area appears as a black shadow on the image, and its spectrum
is similar to that of water, thus increasing the abundance of
water in this area. Through training and learning, the four NN
algorithms have achieved good unmixing results, whereas the
abundance maps obtained by the proposed CNN model are the
best, which also reflects that the proposed CNN has a better
capability of feature learning and extraction. On the basis of
the design of the proposed CNN structure, this article adds �1
regularization to the constrained abundance sparsity in the loss
function, which makes the abundance value more consistent with
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Fig. 8. Abundance maps obtained by all methods for Samson Dataset. (a) Reference abundances. (b) SUnSAL. (c) CLSUnSAL. (d) SUnSAL-TV. (e) Fuzzy
ARTMAP. (f) SPMCNN-ESPCN. (g) 3-D CNN. (h) Proposed CNN.

TABLE IV
RMSE ON JASPER RIDGE DATA (THE BOLDED NUMBER MEANS THE LOWEST

RMSE IN EACH ROW)

the actual ground object distribution. However, there are only
three kinds of ground objects in the Samson dataset. A large
number of pixels in the image are pure pixels, and mixed pixels
are mainly distributed at the junction of different ground objects.
�1 regularization makes the abundance value of pixels close to
zero according to the extracted feature part. Compared with the
other two improved methods based on CNN, the RMSE obtained
by the method proposed in this article is the lowest at each
endmember. Especially, the result based on SPMCNN-ESPCN
is the worst, while the image block boundary effect seriously af-
fects the decomposition accuracy, and the decomposition result
between adjacent blocks is obviously not smooth.

2) Jasper Ridge Dataset: The image comprises 512 × 614
pixels, the spectral range of each pixel is 380–2500 nm, a total
of 224 bands, and the spectral resolution is 9.46 nm. Due to the
complexity of the original image, we extracted a subimage of 100
× 100 pixels in the experiment, removed bands 1–3, 108–112,
154–166, and 220–224 caused by water vapor and atmospheric
effects, and retained 198 bands. The preprocessed image is
shown in Fig. 7(b), which includes four endmember ground
features: tree, water, soil, and road [as shown in Fig. 7(e)].

Table IV shows the RMSE for all methods. Clearly, except for
the RMSE value of water endmember, the RMSE value of the
other three endmembers and the average RMSE obtained by the
proposed CNN method is the lowest, indicating the advantages
of the proposed method.

Fig. 9 shows the abundance maps obtained by all methods.
In the figure, the brighter the region, the higher the abundance
value, the darker the region, the lower the abundance value, and
the lower the proportion of the endmember. First, the seven meth-
ods clearly distinguish the four kinds of ground features, which
are very close to the reference abundance maps. However, in the
water abundance map obtained by three linear sparse algorithms,
the road area on the right side is brighter and the abundance
value is higher, which is also the main reason for higher water
error than other methods. Second, in the distribution of ground
features, the shape of the road is relatively long and narrow.
If the spatial resolution of the image is not high, the road is
easily mixed with other ground features, which brings difficulty
in classification and unmixing. Similar to the results of Samson
dataset, the average RMSE of the proposed method is still the
lowest, and 3-D CNN also achieves good results. Therefore,
compared with the blocking results, the global analysis of each
pixel spectrum is very important. However, the blocking effect
of SPMCNN-ESPCN is likely to make the spectral features of
individual pixels over-amplified. The overall error of the image
block is large.

3) Urban Dataset: Urban is one of the most widely used
hyperspectral image datasets in the study of hyperspectral un-
mixing. The data were obtained from the HYDICE sensor in
October 1995. The image is of Texas in the United States, and
the size is 307 × 307 pixels. The dataset has a broad spectrum
with a total of 210 bands, a spectral resolution of 10 nm, and
a spatial resolution of 2 m. As shown in Fig. 7(c), the number
of endmembers in the image are four, namely, asphalt, grass,
tree, and roof (the spectrum is shown in Fig. 7(f), and the CNN
structure is shown in Table II), and six, namely asphalt, grass,
tree, roof, metal, and dirt (the spectrum is shown in Fig. 7(g), and
the CNN structure is shown in Table II). The bands affected by
the atmosphere (1–4, 76, 87, 101–111, 136–153, and 198–210)
were removed, and the remaining 162 bands were reserved for
the subsequent testing of the method.

The unmixing results obtained by the different methods on
the Urban dataset are shown in Figs. 10 and 11. Tables V and VI
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Fig. 9. Abundance maps obtained by all methods for Jasper Ridge dataset. (a) Reference abundances. (b) SUnSAL. (c) CLSUnSAL. (d) SUnSAL-TV. (e) Fuzzy
ARTMAP. (f) SPMCNN-ESPCN. (g) 3-D CNN. (h) Proposed CNN.

Fig. 10. Abundance maps obtained by all methods for Urban dataset (4 endmembers). (a) Reference abundances. (b) SUnSAL. (c) CLSUnSAL. (d) SUnSAL-TV.
(f) SPMCNN-ESPCN. (g) 3-D CNN. (h) Proposed CNN.

show the RMSE results for all methods with these data. Clearly,
the RMSE obtained from the proposed CNN method is still
the lowest. The Urban dataset has two kinds of endmember
numbers. Compared with the case of four endmembers, the
classification of the Urban dataset by six endmembers is more
detailed, which means that the mixed spectrum involved in each
pixel is more complex. However, according to the RMSE in
the table, the unmixing error of the proposed CNN method is
the lowest in the two endmember cases, so it can be seen that
the proposed CNN method can still obtain the best unmixing

result with an increasing number of endmember categories, and
it has good stability. Compared with the first two real datasets,
the Urban dataset is clearly more complex, especially because
the decomposition of impervious water surfaces and vegetation,
involving many local species with a complex distribution, is very
difficult. Therefore, extracting the spectrum of each fine ground
object and solving linearly will not only further expand the
endmember spectrum library and increase the solution difficulty
but also make it more difficult to constrain the abundance spar-
sity. As mentioned above, the complexity of this dataset affects
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Fig. 11. Abundance maps obtained by all methods for Urban dataset (six endmembers). (a) Reference abundances. (b) SUnSAL. (c) CLSUnSAL. (d) SUnSAL-TV.
(f) SPMCNN-ESPCN. (g) 3-D CNN. (h) Proposed CNN.

TABLE V
RMSE ON URBAN DATA (FOUR ENDMEMBERS) (THE BOLDED NUMBER MEANS

THE LOWEST RMSE IN EACH ROW)

the decomposition accuracy. In practical application, we may
face a variety of ground conditions. Under the condition of six
endmembers, the accuracy of SPMCNN-ESPCN is improved,
but its RMSE is still higher than that of 3-D CNN and the method
proposed in this article.

IV. DISCUSSION

Influence of the Number of Endmembers: To compare the
complexity of the ground feature coverage in different areas in
horizontal and vertical applications, the number of endmembers
in the selected simulated dataset and the three real datasets

vary within 3–9, and the image size also varies, as does the
mixing of ground features in different images. By comparing
the five unmixing results obtained from the four scenes, the
RMSE of the real datasets obtained by the CNN method is
always lower than that obtained by the other methods, which also
proves the effectiveness of the extraction of high-dimensional
information and the simulation of hyperspectral mixing based
on a CNN. Although the proposed CNN does not achieve the
best results in the simulated dataset, its accuracy is 0.01–0.02
lower than that of 3-D CNN, so its unmixing results still have
some validity. Second, the dataset was synthesized by artificial
linear simulation. Although noise was added in the later stage, it
could still not fully represent the real data results. However, the
NN mainly solves the deep feature mixing problems, so the NN
method may complicate simple linear problems and extract too
many spectral features, thus making the decomposition results
worse than the linear method.

Comparisons Among Different CNN-Based Methods: Similar
to 3-D CNN [33] and SPMCNN-ESPCN [46] methods, the
network structure in this article is mainly improved based on
a CNN. In particular, 3-D CNN is superior to 1-D CNN in
extracting spatial features of images. Although the mixed pixel
is due to the spatial resolution of the image is not enough to
distinguish each type of ground object to a certain extent, the
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TABLE VI
RMSE ON URBAN DATA (SIX ENDMEMBERS) (THE BOLDED NUMBER MEANS THE LOWEST RMSE IN EACH ROW)

final information we get is the mixed spectrum, so the feature
analysis of the spectral dimension is the focus of the study of
unmixing. However, both 2-D and 3-D CNN focus on the anal-
ysis and extraction of spatial features, which is the reason why
2-D and 3-D CNN are not selected for the study of unmixing.
Decomposition results based on different datasets also confirm
the superiority and adaptability of our proposed CNN method
in unmixing. In the previous analysis of different datasets, we
also mentioned the blocking influence of SPMCNN-ESPCN
method. Just like the network migration problem, the features
of the mixed pixels between blocks are different. When some
image blocks are randomly selected for network training, the
features of some blocks are likely to be lost, resulting in poor
decomposition results of the whole image. Although 3-D CNN
and the method proposed in this article also require random
selection of some data for training, it is more difficult to select
adjacent data from random selection points in the whole image
compared with random selection of image blocks. After all, there
are certain similarities between adjacent data, and it is most
important for us to select mixed pixels with different features,
so that the network can learn more features.

Comparison of the Linear and NN Methods: The essence of
linear unmixing is to solve the Y = AX +B problem, and it is
very dependent on the extraction of the pure pixel spectrum. On
the simulated dataset, the accuracy of fuzzy ARTMAP is clearly
lower than that of the other four methods. Compared with the
CNN, the two NNs have essential differences in training and
learning. The results also show that the CNN is more effective
than fuzzy ARTMAP in learning complex data using training
matching. On the Samson and Jasper Ridge datasets, all five
methods have achieved good results, and fuzzy ARTMAP and
the CNN are superior to the three linear methods. However,
compared with the Urban dataset, the linear unmixing method is
clearly worse than the other two methods. From the perspective
of images, its size is larger, and the ground objects are more
complex; that is, the same objects have more seriously different
spectra. The mixed pixels in the image cannot be completely
solved by simple spectral superposition of pure pixels. However,
the fuzzy ARTMAP and CNN unmixing methods use a small
amount of spectral data and labels as the training set to train
the network and then use the whole spectrum for testing to
obtain better unmixing results. With its superior ability to extract
high-dimensional features, the CNN method maps features into
abundance vectors, and its performance is better than the track-
ing matching learning between data and tags in fuzzy ARTMAP.
Compared with the linear decomposition model, the CNN model
and other three NN models are all nonlinear decomposition

models. Although the simulated data we use are linear synthesis,
the proposed CNN models we propose have achieved good
results based on the joint experiments of real data sets. Therefore,
although we cannot simulate nonlinear mixing mode in data,
CNN shows superior performance in processing unknown noise
in real mixed pixels.

Influence of the Network Structure: The CNN is widely used
in the fields of scene classification, recognition, and monitor-
ing, and its ability to extract spatial and spectral features is
utilized to gradually compress high-dimensional spectral data
and finally map it into abundance vectors. Compared with the
CNN, fuzzy ARTMAP has no process of feature extraction and
data compression and no influence of the activation function.
Therefore, the two methods are also completely different in
spectral feature learning, allowing the advantages of the CNN in
feature extraction to be compared with those of fuzzy ARTMAP.
Table II shows the specific network structure of the four groups of
data. Referring to the literature[47], [48], the output units of the
hidden layer were set as multiples of the number of endmember
categories according to the different datasets, and the output
units of the hidden layer were reduced successively. In this
way, redundant information can be removed while extracting
spectral features so that the network dimension can be gradually
reduced and important features are retained. Finally, features
were mapped to abundance vectors through the full connection
layer and the softmax activation function. Different from the
linear methods, the NN model relies on the network structure
to extract the spectral features of the pixel to achieve the classi-
fication of the endmember, so it is more difficult to understand
in the physical sense. Compared with fuzzy ARTMAP, the
CNN’s convolutional layer, pooling layer, and full connection
layer construct the network’s low hidden layer and high hid-
den layer, which can extract the network features of higher
level.

V. CONCLUSION

Linear unmixing can be regarded as blind source signal sep-
aration or a nonnegative matrix decomposition problem, but it
often results in a large number of solutions inconsistent with the
actual situation. Therefore, the sparse constraint, some-to-one
constraint, and the nonnegative constraint of abundance are gen-
erally added to the linear model, but the nature of linear mixing
of the spectrum is not changed. Fuzzy ARTMAP and CNNs (as
well as many other deep learning networks) learn the mapping
between input and output and apply the learned mapping to the
test data. Compared with fuzzy ARTMAP, the feature extraction
ability of a CNN is more flexible. The CNN based on 1-D pixels
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presented in this article removes the redundant information in
spectral signatures and adds sparse constraints to the abundance
vector through a loss function combined with �1 regularization
in linear sparse unmixing, making the unmixing result more
consistent with the actual situation.
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