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A Target-Based Self-Calibration Method for
Terrestrial Laser Scanners and its Robust Solution

Peng Lin, Xiaojun Cheng, Tengfei Zhou , Chao Liu, and Bin Wang

Abstract—Fundamental systematic errors in point cloud data
are inevitable due to a variety of factors, ranging from the external
environment during scanning or observation by a terrestrial laser
scanner (TLS) to the assembly of the instrument. For low-cost
scanners, error terms may be further accentuated and included,
in addition to systematic errors, random or even serious errors
that directly affect the coordinates of each point in the point
cloud, which are directly related to the quality of the point cloud
data and subsequent processing. To address the above issues, we
attempted to propose a robust target-based self-calibration method
for TLS at the algorithmic level without considering the network
design and measurement configuration, and derived its solution
by normalizing the residual vector and calculating an equivalent
covariance matrix based on the IGG III function. After validat-
ing the simulated and measured data, the experimental results
showed that the proposed self-calibration method could effectively
eliminate the random and gross errors associated with the ob-
servations; improved the accuracy of the points from centimeter
to millimeter level; and increased the accuracy of the corrected
checkpoints by 58%, 47%, and 33%, respectively, compared to the
three existing methods. However, the proposed method was unable
to take into account the attenuation of parameter correlations and
further refinement in terms of measurement configurations would
be subsequently required.

Index Terms—Calibration, laser measurements, measurement
errors, nonlinear estimation, robustness.

I. INTRODUCTION

A S AN up-and-coming measurement technology, terrestrial
laser scanner (TLS) has the benefits of being fast, noncon-

tact, and proactive; the point cloud data it obtains allows for
the inclusion of geometric and physical information about the
targets, and provides high density and accuracy [1]. Inevitably,
during the scanning or observation of an object, the quality of
the point cloud is susceptible to various factors, e.g., the target
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itself and the external environment, as well as the instrument
itself [2]–[5], which make the point cloud data often contains a
part of systematic errors or even gross errors in addition to the
random ones, resulting in the output results are challenging to
reflect the real properties of the targets, reducing the observation
accuracy and affecting the subsequent point cloud processing to
a certain extent.

Consequently, a method is basically required, if possible, to
correctly and effectively eliminate the various errors in obser-
vations, which is also called instrument calibration. Instrument
calibration in the general sense is only for systematic errors
and does not take into account random and gross errors. In
order to achieve this, traditional methods usually divide the
observations into two categories, namely distances and angles
[6], [7]. The overall objective is that the effect of the remaining
systematic errors (i.e., deviations) after calibration should be
sufficiently small or, in other words, insignificant. The specific
implementation process involves measuring a baseline or fixed
angle of defined length using the instrument to be calibrated
followed by an indirect adjustment or other algorithm to solve for
the relevant calibration parameters (CPs). This demonstrates that
conventional methods require a relatively rigorous experimental
environment and high accuracy baselines and angles, with all of
these having to be maintained on a regular basis. In contrast,
self-calibration methods avoid such necessities. After the ob-
servations are obtained, the CPs would be treated as unknown
parameters and briefly introduced into some functional model
to determine [8].

Generally, self-calibration methods can be divided into point-
based and surface-based according to different fundamentals.
For the first type, Lichti [9], [10] made a comprehensive analysis
of the CPs in the distance and angle of TLS observations,
proposed a point-based TLS self-calibration model based on the
rigid body transformation model, and realized the estimation
of CPs for FARO880. González et al. [11] investigated eight
systematic errors in the original observations, which belong to
laser rangefinder, beam deflection unit, and rotation platform,
then constructed a function model based on rigid body transfor-
mation model, with stochastic model applying nominal accuracy
and covariance propagation law, to complete the calibration of
Trimble GX200 and Riegl LMS–Z390i. Holst [12] introduced
the concept of calibration where only one object and one scan
were employed, using the deviation of each sampling point
from the scanned object to calibrate the instrument. Lerma
[13] suggested a method for determining the optimal set of
additional parameters, which provided the best mathematical
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solution on the basis of the dimensionless mass index. Reshetyuk
[14] implemented the Callidus 1.1, HDS3000, and HDS2500 in
an indoor three-dimensional (3-D) calibration field, referring
to [15], [16] for more details. Li et al. [17] achieved TLS
self-calibration through a background target-based approach
by extracting feature points via a key point quality algorithm
without the use of auxiliary targets and prior knowledge. Guan
et al. [4] implemented the self-calibration of the HDS3000
using rigid body transformation and nonlinear least squares, with
reference to the total station (TS) measurement system for the
selection of the system errors. Medić et al. [18] introduced 10
CPs into the observations and performed the in-situ calibration
during the measurements to study the stability of the CPs. Zhou
et al. [2] implemented the estimation of the systematic error of
Leica HDS3000 based on the adoption of CPs in [9], and solved
the problem of weighting different classes of observations using
the variance component estimation (VCE) theory. Li et al. [19]
estimated five types of angular errors for the Lab-built TLS by
the two-sided method and the network method.

In addition, the correlation among the estimated parameters
needs to be addressed in order to improve the estimation accu-
racy of the CPs [20]–[24]. Medić et al. [25] investigated point-
based self-calibrating empirical stochastic models that address
the problem of conventional stochastic models that do not match
the facts by studied the accuracy of target centroid detection. In
the self-calibration process, in addition to ensuring the stability
and effective distribution of the feature points, the configuration
and the number of stations are still related to the final results
[24], [26]–[28]. Besides, plane-based methods are also very
commonly used [17], [27], [29]–[31]. If there are problems with
the experimental design and implementation process, perhaps
the solution can be found in [32], [33].

A comprehensive analysis of self-calibration literature in
recent years shows that most of the methods are implemented via
the rigid coordinate transformation model, ignoring the random
errors of the original observations, and do not consider whether
these methods can be well resolved when there are gross errors
in coordinate sequences which could lead to the function model
to be incorrect, although it is possible to obtain adjusted results.

To address these considerations, we have developed an ap-
proach for TLS self-calibration on the basis of the Gauss–
Helmert model and the TLS observation principle, subject to
the introduction of random errors for all observations; on the
other hand, for the stochastic model, observations were weighted
with nominal accuracy deemed to be a priori information and
the gross values are posteriori weighted by applying the IGG
III function with standardized residuals. In addition, in order to
enable weighting of several categories of observations (distances
and angles), given that the a priori unit-weighted medium errors
of distance and angle should not be theoretically the same
[34]–[36], the VCE was introduced for the posterior estimation
of the observations. In this article, only the model itself and the
algorithm were studied, and aspects such as the configuration of
the measurement and the targets distribution were not analyzed
yet.

The rest of this article is organized as follows: Section II
mainly introduces the observation principle of TLS and theory

Fig. 1. Observations of TLS. X-axis represents the collimation axis; Y-axis is
the horizontal axis; and Z-axis is the vertical axis.

of self-calibration based on coordinate transformation model.
Section III describes our proposed model and derives its robust
solution. The experiments and discussions are presented in
Section IV. Finally, we conclude the article with a summary
of our work and future research considerations in Section V.

II. THEORY OF SELF-CALIBRATION

The TLS enables rapid scanning and measurement of target
objects through the organic combination of a laser rangefinder
and an angular measuring system. During this period, the 3-
D coordinates of the point cloud are defined in the left-hand
coordinate system determined by the TLS, with the XOY plane
as the transverse scanning plane and the Z-axis perpendicular to
the XOY plane [20], [37].

In Fig. 1, p denotes the target point; (x, y, z) are the Cartesian
coordinate of p. (s, θ, α) represents the original observations in
the spherical coordinate system, i.e., original observations, with
the means of oblique distance, vertical angle, and horizontal
angle sequentially.

For the geometric information described above, the TLS in
field of view (FOV), whether pulsed or phased, proceeds by
measuring the distance from the scanning point to the geometric
center of the instrument by means of the photoelectric distance
measuring principle, which, in combination with the angular
observations obtained with the angle encoder, records the polar
coordinates of the target object. Depending on the interrelation-
ships between the coordinate systems, the original observations
can be converted into spatial Cartesian coordinates via:⎧⎨

⎩
x = s · cosθ · cosα
y = s · cosθ · sinα
z = s · sinθ.

(1)

Here, (1) is considered to be the observation equation of
TLS. Similarly, original observation can also be derived from
Cartesian coordinates if needed:⎧⎪⎨

⎪⎩
s =

√
x2 + y2 + z2

θ = tan−1
(
z/

√
x2 + y2

)
α = tan−1 (y/x) .

(2)

As is well recognized, there must be a degree of deviation
in the relative spatial position of the elements between the
actual and ideal states during the machining and manufacture
of the instrument, although these differences may be small.
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Consequently, the initial observed values would not always
correspond to the optimum values, but contain both random and
systematic errors. In the case of systematic errors, introducing
the elements in [10], [27], distances are generally involved with
the addition constant m, multiplication constant λ; the angles
accommodate the collimation axis error c, vertical axis error i,
and horizontal axis error t. These five unknowns are treated as
CPs in a common sense, and it should be noted that the effect
of c and i on horizontal angle observations is related to that of
vertical angle observations:

c′ = c/ cos θ, i′ = i · tan θ. (3)

As a matter of practice, for target-based self-calibration
methods, simultaneous or sequential measurements of common
points by a TS with high accuracy and a scanner to be calibrated
are commonly undertaken. It is required that these points are
evenly distributed in space to ensure validity and also to avoid
possible pathologies in the calculation process. Afterwards, the
coordinates obtained by the two instruments can be manipulated
to calculate the CPs by means of a rigid body transformation
model based on the least squares method:⎡
⎣X
Y
Z

⎤
⎦ = R

⎡
⎣x
y
z

⎤
⎦+

⎡
⎣Δx
Δy
Δz

⎤
⎦

= R

⎡
⎣ [s · (1+λ)+m] · cos(θ+t) · cos(α+c′+i′)
[s · (1+λ)+m] · cos(θ+t) · sin(α+c′+i′)

[s · (1+λ)+m] · sin(θ+t)

⎤
⎦

+

⎡
⎣Δx
Δy
Δz

⎤
⎦ (4)

where [X,Y, Z]Tis the vector of Cartesian coordinate under
TS system; [Δx,Δy,Δz]T represents translation parameters;
and R is represented as a rotation matrix consisting of three
rotation parameters, which can be conducted by multiplying
three matrices as follows:

R = RϕRωRκ (5)

where

Rϕ =

⎡
⎣ cosϕ 0 − sinϕ

0 1 0
sinϕ 0 cosϕ

⎤
⎦ (6)

Rω =

⎡
⎣ 1 0 0
0 cosω − sinω
0 sinω cosω

⎤
⎦ (7)

Rκ =

⎡
⎣ cosκ − sinκ 0
sinκ cosκ 0
0 0 1

⎤
⎦ . (8)

Here, (ϕ, ω, κ) represents the Euler angles between the cor-
responding axis of the two coordinate systems. Although R
has multiple manifestations, but the results are the same, only
the order of rotation differs. For greater clarity, we referred to
(Δx,Δy,Δz, ϕ, ω, κ) as EOPs in our proposed algorithm.

III. SELF-CALIBRATION METHOD FOR LOW-COST SCANNERS

The self-calibration function model described above, i.e., (4),
reveals that only CPs and EOPs are treated as unknowns to be
estimated in the calculation of the parameters. In response to the
above analysis and discussion, and to effectively accommodate
random and gross errors along with different types of observa-
tions, a novel self-calibrating function model was developed
for TLS based on the Gauss–Helmert model. This article is
dedicated to achieve the following objectives:

1) Using the weighted total least squares (WTLS) algorithm
to realize the derivation and linearization of the proposed
model.

2) Constructing a stochastic model with a similar form to
[21] to address the deterioration of the random errors on
parameters’ solution.

3) Reweighting the observations containing gross errors via
normalized residuals with IGG III weight factor function
to achieve robust performance of the method.

4) Employing VCE method and further weighting the obser-
vations according to the residuals, which is due to the fact
that distance and angle are of different classes.

A. Self-Calibration Model

Since the observations obtained by TS and TLS are 3-D spatial
right-angle coordinates, in order to rationalize the introduction of
VCE reasonably, the TS observations need to be replaced by the
original observations either, i.e., distances and angles, apart from
the observations of TLS. Furthermore, accounting for random
errors in all original values, the self-calibration function model
can be written as follows:⎡
⎣ (ρ−eρ) cos(γ−eγ) cos(β−eβ)
(ρ−eρ) cos(γ−eγ) sin(β−eβ)
(ρ−eρ) sin(γ−eγ)

⎤
⎦
TS

=

R

⎡
⎣[(s−es)(1+λ)+m] cos(θ−eθ+t) cos(α−eα+i′+c′)
[(s−es)(1+λ)+m] cos(θ−eθ+t) sin(α−eα+i′+c′)
[(s−es)(1+λ)+m] sin(θ−eθ+t)

⎤
⎦
TLS

+

⎡
⎣ΔX
ΔY
ΔZ

⎤
⎦ (9)

where the subscripts on the outside of the matrices indicate their
coordinate system. (ρ, γ, β) and (s, θ, α) denote the original
observations under the coordinate systems of TS and TLS,
respectively. The variables with e are the random errors cor-
responding to the various types of observations, and can be
substituted as {

eTS = [ eρ eγ eβ ]
T

eTLS = [ es eθ eα ]T
(10)

where (es, eθ, eα) and (eρ, eγ , eβ) are the random errors of the
distance and angle observations in the TS and TLS systems,
respectively; and eTS and eTLS are their overall representations.

According to the above function model, namely (9), it is not
difficult to find that, unlike the TLS observations, the coordinates
in TS do not include the systematic parameters, which is because
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in the scanner self-calibration process, in order to obtain high
precision systematic errors or the so-called self–CPs, higher
precision TS is typically adopted to observe the same series
of targets as the scanner. On the other hand, random errors in
the observations are unavoidable, so the random errors in the
original observations of both systems are not neglected, and
they are considered as variables obeying normal distribution
[38], [39]. With a reference to nominal accuracyσ, the stochastic
models under TS and TLS system can be expressed with the
following notations:

eTLS =

⎡
⎣ es
eθ
eα

⎤
⎦ ∼

⎛
⎝

⎡
⎣ 0
0
0

⎤
⎦ ,

⎡
⎣σ2

s 0 0
0 σ2

θ 0
0 0 σ2

α

⎤
⎦
⎞
⎠ (11)

eTS =

⎡
⎣ eρ
eγ
eβ

⎤
⎦ ∼

⎛
⎝

⎡
⎣ 0
0
0

⎤
⎦ ,

⎡
⎣σ2

ρ 0 0
0 σ2

γ 0
0 0 σ2

β

⎤
⎦
⎞
⎠ . (12)

B. Derivation of the Proposed Method

In the function model, (9), the independent and dependent
variables are linked by a nonlinear mathematical expression, and
therefore the proposed method is not a linear model, essentially
a variant of the Gauss–Helmert model [40]. A regularly prac-
ticed approach is to convert a nonlinear regression into a linear
regression by means of variable transformation [40], [41]. The
specific process is to linearize the function model employing the
Gauss–Newton method, then construct the Lagrange objective
function for the expanded function model and derive solutions
for the parameters based on their necessary conditions, i.e., the
function has zero partial derivatives with respect to each variable.

We assumed that the initial values of the random errors in the
TS and TLS coordinate systems are as follows:

e0TLS = [ e0s e0θ e0α ]T, e0TS = [ e0ρ e0γ e0β ]
T. (13)

For better distinguishing, only the superscripts of 0 repre-
sent the initial values, while the superscript j in the following
indicates the index of iterations. The corresponding unknown
parameters in the function model, including EOPs and CPs, are
set to

ξ0 =
[
Δx0 Δy0 Δz0 ϕ0 ω0 κ0 m0 λ0 c0 i0 t0

]T
. (14)

Since the initial values do not need to be very precise, for
the EOPs in the unknown parameters, the conventional linear
Gauss–Markov model, or even the Bursa–Wolf model (which
needs to ignore the effect of scale scaling), was validated to
be available [40]–[42]. It was hypothesized that all instruments
were in ideal condition when assembled and measured in the
field, and therefore the initial values of CPs in the parameter
vector and the random error vector corresponding to the original
observation could be approximated as zero.

For ease of reading and understanding, some alphabetic vari-
ables were appointed to represent the matrices in the derivation
to achieve simplification of the function model. We substituted
the symbol H for the observation equation with random errors
in the two datum, the symbol T for the translation parameters
vector. The subscripts 1 and 2 in following equations stand for

TS and TLS, respectively. The right end of (9) is expanded at
the set approximation ξ0according to the binary Taylor series.
After retaining the terms of first order, the linearized function
model can be conducted as

Hj
1 +Aj

1

(
e1 − ej1

)
= RjHj

2 +Tj + dT

+
∂Rj

∂ϕ
Hj

2dϕ+
∂Rj

∂ω
Hj

2dω +
∂Rj

∂κ
Hj

2dκ

+Rj ∂H
j
2

∂m
dm+Rj ∂H

j
2

∂λ
dλ +Rj ∂H

j
2

∂c
dc+Rj ∂H

j
2

∂i
di

+Rj ∂H
j
2

∂t
dt+Rj ∂H

j
2

∂e2

(
e2 − ej2

)
. (15)

The model after linearization based on Gauss–Newton
method must be iterated continuously when calculating the un-
knowns until termination conditions are met [41], which means
that when j = 1, i.e., the first iteration, the variables involved
in function model need to be populated with the initial values,
and during the subsequent iterations of the calculation, these
variables need to be replaced with the results computed last
time; ∂ is the partial derivation symbol.

As the course of performing partial derivatives involves a
large number of variables, and even some of them recur from
time to time. The arithmetic operations of some variables can
be represented by the new notation, primarily corrections of
original observations, for sake of obtaining a concise form of
the linear expression. We substituted⎧⎪⎪⎨

⎪⎪⎩
sj =

(
s− ejs

) (
1+λj

)
+m, θj = θ − ejθ + tj

αj = α− ejα + (c′)j + (i′)j

χj = c sec θj tanαj + isec2θj

ρj = ρ− ejρ, γ
j = γ − ejγ , β

j = β − ejβ .

(16)

Correspondingly, the partial derivatives of the observation
equation concerning the random errors, i.e., Aj

1and Aj
2, as

well as the coefficient matrix of each CPs can be conducted
as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Hj
2

∂m =

⎡
⎣ cos θj cosαj

cos θj sinαj

sin θj

⎤
⎦

∂Hj
2

∂λ
= (s− ejs)

⎡
⎣ cos θj cosαj

cos θj sinαj

sin θj

⎤
⎦

∂Hj
2

∂c = 1
cos θj

⎡
⎣−sj cos θj sinαj

sj cos θj cosαj

0

⎤
⎦

∂Hj
2

∂i = tan θj

⎡
⎣−sj cos θj sinαj

sj cos θj cosαj

0

⎤
⎦

∂Hj
2

∂t =

⎡
⎣ sj(− sin θj cosαj − χj cos θj sinαj)
sj(− sin θj sinαj + χj cos θj cosαj)

sj cos θj

⎤
⎦

(17)
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Combining (15)–(19), (18) and (19) shown at the bottom of
this page, and merging the similar terms results in the simplified
functional model as follows:

Hj
1 +Aj

1

(
e1 − ej1

)
= RjHj

2 +Tj +Bjdξj+1

+Aj
2

(
e2 − ej2

)
. (20)

Here, B represents the coefficient matrix of the new param-
eters vector dξ̂, due to the unknown parameters to be solved
will be changed into the corrected values of the original param-
eters at this point. B and dξ̂ are characterized by the following
expressions:

dξ̂ =
[
dΔx dΔy dΔz dϕ dω dκ dm dλ dc di dt

]T
(21)

Bj =

[
E3×3

∂Rj

∂ϕ Hj
2

∂Rj

∂ω Hj
2

∂Rj

∂κ Hj
2 Rj ∂Hj

2

∂m Rj ∂Hj
2

∂λ

Rj ∂Hj
2

∂c Rj ∂Hj
2

∂i Rj ∂Hj
2

∂t

]
.

(22)

Here, E3×3 is a unit matrix of dimension three.
Under the condition of considering the stochastic information

of the observations, the stochastic model inaccessibly needs to
be constructed to reflect the effect of each observation on the
parameters’ estimation:

e =

[
e1
e2

]
∼

([
0
0

]
, σ2

0

[
Q1

Q2

])
. (23)

σ0 is the a priori medium error; Q1 and Q2 are the observed
value cofactor matrices of TS and TLS systems, respectively.

By using the estimation criterion of least squares as compli-
ance, the objective of the proposed method can be written as

VTPV = min (24)

where ⎧⎨
⎩

V =
[
e1 e2

]T
P =

[
P1

P2

]
=

[
Q−1

1

Q−1
2

]
= Q−1.

(25)

Here, P is the weight matrix of observations; and Q represents
the covariance matrix and is reciprocal to the P matrix.

Through the above linearized functional model, (20), based on
the Gauss–Newton iterative method and taking into account the
premise of the new estimation criterion, the solution of param-
eters can be natively deduced by Lagrange objective function:

Φ = eT1 P1e1 + eT2 P2e2

+ 2KT
(
Lj −Bjdξ̂j +Aj

1e1 −Aj
2e2

)
(26)

where

Lj = Hj
1 −Aj

1e
j
1 −RjHj

2 −Tj +Aj
2e

j
2. (27)

K is the Lagrange multiplier; the weight matrices P1 and P2

of the two coordinate systems are block diagonal matrices whose
elements need to be arranged in the same order as the ranking
of the residual vector e:

⎧⎨
⎩P1 = blkdiag

(
σ2
0

σ2
ρ

σ2
0

σ2
γ

σ2
0

σ2
β

)
P2 = blkdiag

(
σ2
0

σ2
s

σ2
0

σ2
θ

σ2
0

σ2
α

) (28)

where “blkdiag” denotes the block diagonal matrix; the a priori
unit weight medium error is located in the numerator position,
and the symbols in the denominator position indicate the a priori
information of the original observation, which can be generally
obtained through the nominal accuracy given by the instrument
manufacturer.

The corrections to the unknown parameters and the estimates
of the residuals of the observations can be readily obtained,
according to the Lagrange necessary condition that the partial
derivatives of the objective function with respect to each variable

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Rj

∂ϕ =
∂Rj

ϕ

∂ϕ Rj
ωR

j
κ =

⎡
⎣−Rj (3, 1) −Rj (3, 2) −Rj (3, 3)

0 0 0
Rj (1, 1) Rj (1, 2) Rj (1, 3)

⎤
⎦

∂Rj

∂ω = Rj
ϕ
∂Rj

ω

∂ω Rj
κ =

⎡
⎣− sinϕjRj (2, 1) − sinϕjRj (2, 2) − sinϕjRj (2, 3)

− sinωj sinκj − sinωj cosκj − cosωj

cosϕjRj (2, 1) cosϕjRj (2, 2) cosϕjRj (2, 3)

⎤
⎦

∂Rj

∂κ = Rj
ϕR

j
ω
∂Rj

κ

∂κ =

⎡
⎣Rj (1, 2) −Rj (1, 1) 0
Rj (2, 2) −Rj (2, 1) 0
Rj (3, 2) −Rj (3, 1) 0

⎤
⎦

(18)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Aj
1 = ∂H1

∂e1
=

⎡
⎣− cos γj cosβj ρj sin γj cosβj ρj cos γj sinβj

− cos γj sinβj ρj sin γj sinβj −ρj cos γj cosβj

− sin γj −ρ0 cos γ0 0

⎤
⎦

Aj
2 = Rj ∂H2

∂e2
= Rj

⎡
⎣−(1 + λj) cos θj cosαj sj(sin θj cosαj + χj cos θj sinαj) sj cos θj sinαj

−(1 + λj) cos θj sinαj sj(sin θj sinαj − χj cos θj cosαj) −sj cos θj cosαj

−(1 + λj) sin θj −sj cos θj 0

⎤
⎦

(19)
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Fig. 2. Results of centroid extraction. (a) Rational result. (b) Result with gross
errors.

are zero:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2

∂Φ
∂e1

= P1ẽ1 +
(
Aj

1

)
K̂ = 0

1
2

∂Φ
∂e2

= P2ẽ2 −
(
Aj

2

)
K̂ = 0

1
2

∂Φ
∂dξ̂

= −(
Bj

)T
K̂ = 0

1
2

∂Φ
∂K̂

= Lj −Bjdξ̂j +Aj
1ẽ1 −Aj

2ẽ2 = 0

(29)

where
“^” represents the estimated values; and “∼” denotes the

predicted values.
After processing (29), the following results can be readily

derived:

dξ̂j =
((

Bj
)T(

Qj
c

)−1
Bj

)−1(
Bj

)T(
Qj

c

)−1
Lj (30)

[
ẽ1
ẽ2

]
=

⎡
⎢⎣−Q1

(
Aj

1

)T(
Qj

c

)−1

Q2

(
Aj

2

)T(
Qj

c

)−1

⎤
⎥⎦(

Lj −Bjdξ̂j
)

(31)

where

Qj
c = Aj

1Q1

(
Aj

1

)T

+Aj
2Q2

(
Aj

2

)T

. (32)

Although following the above process, it is possible to derive
the scanner self-CPs in the case of considering random errors;
however, the method has no resistance to gross errors when
they are present in the observed data because of the lack of
a posteriori estimation of the weight matrix [43].

C. Robust Estimation

In the procedures such as scanning and feature point extrac-
tion, it is often difficult to capture the center point of a target with
high accuracy, especially when a low-cost scanner is deployed.
In some cases, the extracted coordinates also deviate from the
centroid to a large extent, resulting in coordinates containing
gross errors, which are critical for instrument calibration, since
least squares-based methods are not resistant to gross deviations,
which can have a significant impact on the final parameters even
in small quantities. Fig. 2 shows the results of an example of
automatic detection of central feature points using commercial
software.

The random sample consensus (RANSAC) method can effec-
tively remove the outliers in the point cloud and has more appli-
cations in point cloud processing [44]. However, the RANSAC
method is basically implemented based on a functional model,
which could be overwhelming when faced with a stochastic
model. Therefore, we draw on the general principle of robust
estimation, which is more commonly used in geodesy, to deal
with this problem. The basic idea is to use the equivalence weight
principle to reduce the weight of gross errors, so as to reduce
their deteriorations in the parameters solution process.

The weight matrix in the estimation criterion at this point
will be replaced by the general equivalence weight matrix P̄ as
follows:

VTP̄V = min (33)

where

P̄ =

[
P̄1

P̄2

]
=

[
Q̄−1

1

Q̄−1
2

]
= Q̄−1. (34)

P̄1 and P̄2 are equivalent weight matrices of the original
observations of TS and TLS, respectively; and Q̄1 and Q̄2 are
the corresponding equivalent cofactor matrices. The method of
gross errors’ rejection using robust estimation is essentially the
same as the derivation process described above, except that the
weight matrix (or cofactor matrix) need be replaced with an
equivalent weight matrix (or equivalent cofactor matrix).

The equivalent weight matrix can be calculated by the weight
factor function, and here we used the IGG III weight factor func-
tion, whose inverse is the factor function of the corresponding
cofactor matrix. The IGG III cofactor function realized via a
three-stage approach [43], [45], that is, the normal part retains
the original weights, the available part reduces the weights of
the observations, and the rejection part eliminates the gross error
by assigning zero value to the weights of the observations:

Fn =

⎧⎪⎨
⎪⎩

1.0 |ẽn| ≤ k0
|ẽn|
k0

(
k1−k0

k1−|ẽn|
)2

k0 < |ẽn| ≤ k1

1010 k1 < |ẽn|
(35)

where n denotes the index number of matrix elements; k0 and
k1 are the thresholds, and according to [46]–[48], the ranges of
k0 and k1 are 2.0–3.0 and 4.5–8.5, respectively. In the third part,
k1 < |ẽn|, the observations are considered to incorporate gross
errors, and its equivalent weight factor is 0 in theory, i.e., the
cofactor should be infinite. For the purpose of computational
convenience and to meet practical requirements, we replaced it
with an extreme value (1010) instead. ẽn denotes the normalized
residuals, and

ẽn =
en

σ0

√
Qen

, Qen �= 0. (36)

Here, en is a single element in the residual vector; Qen is
the nth element on the main diagonal of the residual covariance
matrix; and σ0 denotes the unit weight medium error, which can
be calculated by the median function [46]:

σ0 = median (|en/Qen |)× 1.4826, Qen �= 0. (37)



11960 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

The standardized residual vector can better reflect the ab-
normal information in the observation vector, and when there
are gross errors in the observations, the abnormal information
will be reflected in the residual vector in time to avoid the
contamination of the results, ensuring the reliability of the
results [49]. In addition, the IGG III function is constructed
using normalized residuals, which can effectively consider the
influence of observation space and design space on parameter
valuation [48].

Since the observations used in this article are distances and
angles rather than 3-D Cartesian coordinates, the observations
are considered to be independent of each other, so the equivalent
covariance matrix can be obtained by

Q̄n = QnFn. (38)

It is worth stating that if there is correlation between obser-
vations, the equivalence cofactor matrix can be computed in the
form of a two-factor model to maintain the original correlation
between the observed values, which can be found in [43], [46],
[47]. It should be noted that in order to achieve the aim of
resistance, the equivalent cofactor matrix needs to be updated
continuously during the iterative calculation [40], [41], [47],
[50].

D. Derivation of Residual Covariance Matrix

The key to robust estimation of parameters based on the
principle of equivalent weight matrix is the derivation of the
covariance matrix of the residual vector. According to (31),
the estimated residual errors after the jth iteration can then be
expressed as

ẽ =

[
ẽ1
ẽ2

]
=

[
Mj

Nj

]
Gj (39)

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Mj = −Qj
1

(
Aj

1

)T(
Qj

c

)−1

Nj = Qj
2

(
Aj

2

)T(
Qj

c

)−1

Gj = Lj −Bjdξ̂j+1.

(40)

Since all observations in the matrices Mj , Nj , and Gj are
approximations, the traditional application of the covariance
propagation method cannot achieve the derivation of the residual
covariance matrix directly. Whereas, by analyzing (20), (26), and
(27), it can be found that

Lj −Bjdξ = −Aj
1e1 +Aj

2e2 =
[−Aj

1 Aj
2

] [e1
e2

]
= JV.

(41)
Here, Jj = [−Aj

1 Aj
2 ]. Hence, the covariance matrix of

Ṽ could be calculated using a priori information. Integrating
(39)–(41) and associating with (25), the covariance matrix of
residuals according to the covariance propagation algorithm can

be expressed as

Qe =

[
Mj

Nj

]
JjQ

(
Jj

)T︸ ︷︷ ︸
QG

[ (
Mj

)T (
Nj

)T ]
. (42)

Furthermore, since the 3-D coordinates need to be converted
to the original observations in the self-calibration model, which
invariably increases the types of observations from one to two, it
is theoretically uncritical to use the same a priori medium error.
For this problem, the correct treatment should be based on the
idea of VCE to unify the medium errors of different classes of
observations, determining a reasonable weight ratio of different
classes of observations, and then adopt the proposed method to
resist the effect of gross errors.

While the elements of the coefficient matrix and the obser-
vation vector do not belong to the same class of observations,
they often do not belong to the same order of magnitude in
terms of accuracy, and the definition of the stochastic model is
biased. In practice, the initial covariance matrices (or weight
matrices) are often not accurately given, or the unit weight
variances corresponding to the various types of observations are
not consistent. It is therefore particularly significant to improve
the leveling results by reweighting the various observations
using a posteriori information (e.g., residual vectors, etc.). In this
case, it is obviously unreasonable to determine the weights of
the observations uniformly by a single medium error [34]–[36],
[51]. The VCE algorithm can better achieve the problem of
weighting when multiple classes or multiple accuracy observa-
tions are adjusted together, but if the observations contain gross
errors, the effects would be transferred to the stochastic model
and the results are thus often inaccurate and could not conduct
the optimal parameter valuations, in other words, the valuation
of variance components could be distorted.

In case of outliers, its influences on the valuation of the
variance components can be attenuated by means of robust
estimation. Besides, the ranges of available values of residuals
are different for different observation distributions, and it is also
necessary to normalize each type of residuals separately for
different types of observations in order to maintain the equilib-
rium under the mixed turntable [52]. Specifically, in the process
of calculating the median for robust estimation, the respective
medians can be calculated according to the classification of the
observations to ensure the applicability of the results, taking
into account the different a priori information for each type of
observation.

The index of the matrix elements in the functional and
stochastic models needs to be reordered according to the clas-
sification of observations to satisfy the requirements of VCE
theory before the calculation. The reordering of matrix elements
can have various forms, and depending on the ordering, one of
them can be found in Appendix A of [2]. However, it should
be clarified that the left-hand side of the functional model, i.e.,
(6), does not need to be converted from Cartesian coordinates
to the original observations if VCE is not employed, and the
error propagation law can then be introduced for determining
the weights.
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TABLE I
TRUE VALUES OF PARAMETERS

TABLE II
STANDARD DEVIATION OF ORIGINAL OBSERVATIONS

TABLE III
SIMILARITIES AND DIFFERENCES OF THE SCHEMES

It is certainly feasible to use the 3-D Cartesian coordinates
for the left-hand side of the functional model, while the cor-
responding covariance or weight matrix of the left-hand side
will need to be changed accordingly, which can be achieved by
means of the variance covariance propagation law; similarly,
the residual vector and its associated coefficient matrix will be
adjusted during the above iterations, taking into account the
update of the observed values and the unknown parameters.

E. Iterative Calculation Process

In accordance with the above theoretical and derivative pro-
cedure, the unknown parameters and the random errors of the
two coordinate systems can be decomposed. For the reader’s
convenience and understanding, the specific iterative calculation
process can be represented as follows:

1. Calculate the Original Observations of the Common
Points: Since the proposed method uses distances and angles,
it is necessary, according to (1), to convert the 3-D Cartesian
coordinates acquired by the scanner to the original observations.
To ensure the correctness of the conversion result, (2) can be
employed for collation and validation.

2. Obtain the Initial Values of the Unknown Parameters
and Random Errors: As the initial values do not need to be
perfectly accurate, assuming that the instruments are in an ideal
state during the observation and scanning sweeps, therefore the
systematic error terms and random errors can be deemed to be 0.
The remaining EOPs can be obtained according to the linear
Bulsa–Wolf model, or solved according to [4]. Of course, more

precise initial values can reduce the iterations to some extent
and improve the efficiency of the operations, which can then be
carried out by the nonlinear equation (4).

3. Iterative Process:
1) Deciding the observation residuals of the jth iteration

(where the results of the first iteration are calculated using
the initial values) according to the WTLS principle, using
a linearized functional model, and a stochastic model
defined by nominal accuracy, i.e., (15) and (23), until the
parameter offsets are less than a set threshold.

2) Substituting the predicted values of the residual vector
ẽand its corresponding cofactor matrix Qe into (35)–
(37) and calculating the standardized residuals for the
jth iteration by classifying the residuals according to the
observations, respectively.

3) Implementing an equivalent cofactor matrix for the ob-
servations based on the cofactor factors and the initial
cofactor matrix, using (38).

4) Calculating the parameter estimates for the (j+1)th it-
eration and updating the residuals of the observations
according to the principle of equivalent weights.

5) Reestimating the residual cofactor matrix together with
(39)–(42) and the a priori information on the observations.

6) Return to step (2) until the iteration stop condition is
reached.

7) Reweighting the observations following the estimation of
the residuals, using the method in [51] for the estimation
of the variance components.

8) Return to step (1) until the variance components of each
class of observations are less than the given threshold and
stop iterating.

4. Accuracy Evaluation.

IV. EXPERIMENTS AND ANALYSIS

In a bid to verify the effectiveness and robustness of the
method, it was investigated at both algorithm and model lev-
els without considering the network design and measurement
configuration. Experiments were conducted using simulated and
measured data, and the overall experimental idea was to observe
concrete target points at specified locations using a TS with
high accuracy and a TLS to be calibrated. After two sets of
Cartesian observations located in two coordinate systems were
obtained, the data series were meant to be converted into original
observations according to the scanner observation principle,
after which the CPs and EOPs would be computed by means
of different self-calibration methods or models, and the respec-
tive experimental results attained were logically compared and
analyzed.

A. Data Simulation

By assuming that a random distribution of 40 target points is
spread over a scanning volume, a distribution of target points is
generated in accordance with the true FOV of the instrument,
whereby the distances from the target points to the center of
the scanning geometry are set from 10 to 30 m; the vertical
perspectives are pitched from −45° to 90°; and the horizontal
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TABLE IV
RMSE FOR UNKNOWN PARAMETERS WHEN THE NUMBER OF GROSS ERROR IS 0

TABLE V
RMSE FOR UNKNOWN PARAMETERS WHEN THE NUMBER OF GROSS ERROR IS 1

TABLE VI
RMSE FOR UNKNOWN PARAMETERS WHEN THE NUMBER OF GROSS ERROR IS 3

TABLE VII
RMSE FOR UNKNOWN PARAMETERS WHEN THE NUMBER OF GROSS ERROR IS 5

perspectives range from 0° to 360°. Beginning with the given
true values (TV) for the TLS and parameters, one first derives the
corresponding TV of TS according to the proposed functional
model, and then adds random errors to the TV by simulating
the respective a priori information. The TV, that is, ξtrue of
EOPs and CPs were generated according to the actual instrument
parameters, as shown in Table I.

Thirty points were randomly selected as common points, and
the remaining ones were naturally regarded as check points.
Under the standard zero assumption condition, the standard
deviations of all the original TS and TLS observations are given
in Table II, referring to the true nominal information of Leica
HDS3000 and SOKKIA NET1200.

Throughout the simulation of random errors, we assumed
that as they obey a normal distribution, all the original observa-
tions should be uncorrelated. Gross errors emerged at arbitrary

locations (any one observation is possible, even in all three
components of a point at the same time) and were 5–20 times the
size of the standard deviation [46]. A total of 2000 simulations
were then carried out with the number of gross errors at 0, 1, 3,
and 5, respectively.

B. Simulated Data Calculation Results

Based on the simulated experimental data, the schemes were
envisaged as as follows:

Scheme 1: Method considering only systematic errors but ignor-
ing all random errors [4], [10], [20], [31], i.e., the lower part
of (4).

Scheme 2: Calibration method in view of random errors in
TLS observations and VCE without taking gross errors into
account, for instance [2], [21].



LIN et al.: TARGET-BASED SELF-CALIBRATION METHOD FOR TERRESTRIAL LASER SCANNERS AND ITS ROBUST SOLUTION 11963

Fig. 3. Medium errors of homonymous and check points when the number of gross errors is 0. (a) Medium errors of homonymous points in x direction.
(b) Medium errors of homonymous points in y direction. (c) Medium errors of homonymous points in z direction. (d) Medium errors of homonymous points.
(e) Medium errors of checkpoints in x direction. (f) Medium errors of check points in y direction. (g) Medium errors of check points in z direction. (h) Positional
medium errors of check points.

Scheme 3: Method proposed in this article.

Combining the above experimental methods, the various cat-
egories of parameters and errors considered in all the schemes
were distinguished and classified in order to facilitate the iden-
tification of similarities and differences across the schemes, as
shown in Table III.

In the calculation process, the initial values of the parameters
of Scheme 1 are calculated using a linear coordinate transfor-
mation model that has a similar form with the upper part of (4).
To ensure the efficiency of the operation and the correctness
of the initial values of the iterations, the calculation results of
Scheme 1 are then treated as the initial values of the unknown
parameters of the remaining schemes.

Due to the small values of standard deviation of the two
instruments, the a priori unit power medium error was set to
σ0 = 10−8 to ensure the efficiency and the number of valid bits
of the elements of the weight matrices and also cofactor matrices,
allowing for too large a gap between the a priori information on
distance and angle observations. Once the iterative calculation
has been accomplished, the original observations of the TLS
would be corrected against the estimated CPs and converted to

the coordinate system of the TS via EOPs. Based on the TVs of
the target points of the TS and the corrected TLS coordinates,
the coordinate component errors (σx, σy, σz) and point median
error σp of the homonymous points are calculated to evaluate
the results and accuracy of the self-calibration:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx =
√∑30

l=1 (xc − xts)
2/30

σy =
√∑30

l=1 (yc − yts)
2/30

σz =
√∑30

l=1 (zc − zts)
2/30

σp =
√

σ2
x + σ2

y + σ2
z

(43)

where (xc, yc, zc) denote the corrected Cartesian coordinates of
TLS via the solved parameters in TS frame; and l represents the
index of the coordinate value within the sequence.

The accuracy of the check points could be evaluated in the
same way, but the denominator needs to be changed to the
quantity of check points. In addition, given the presence of the
TVs of the parameters in the simulation data, the offset ∇ξ and
root mean square error (RMSE) of the parameter estimates apart
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Fig. 4. Medium errors of homonymous and check points when the number of gross errors is 1. (a) Medium errors of homonymous points in x direction.
(b) Medium errors of homonymous points in y direction. (c) Medium errors of homonymous points in z direction. (d) Medium errors of homonymous points.
(e) Medium errors of checkpoints in x direction. (f) Medium errors of check points in y direction. (g) Medium errors of check points in z direction. (h) Positional
medium errors of check points.

TABLE VIII
STANDARD DEVIATION OF ORIGINAL OBSERVATIONS

from the TVs were then employed to verify the quality as well:{∇ξ = ξ̃ − ξtrue

RMSE =
√∑2000

j=1 (∇ξ)2/2000
(44)

where ξ̃ and ξtrue are the predicted values and TVs of the pa-
rameter vector, respectively; and j is the index of the simulation.

Statistics on the computed outcomes of 2000 simulations in
conjunction with (30) and (44) yield the following RMSE of
each parameter for the case of different amounts of gross errors,
as shown in Tables IV–VII. On the other hand, the coordinate
components and point accuracy of the homonymous and check
points obtained according to (43) are shown in Figs. 3–6.

To save spaces, we used “S” instead of “Scheme” in the legends
in the following figures.

In view of facilitating the reader’s reading and understanding,
as well as for a more intuitive display, we also plotted the offset
and RMSE for each parameter, and the relevant results can be
found in the Appendix A.

Alternatively, to validate the stability and robustness of the
proposed method, cross-sectional statistics and comparisons of
the RMSEs of the parameters calculated under different condi-
tions of the number of gross errors are as well demanded. Thus,
we adapted the coordinates of the check points together with the
TS truth values, as shown in Table I, taking into account the given
parameters of TV and calculating their coordinate component
errors and pointwise errors at different numbers of gross errors
(NG), and presenting the corresponding results in Fig. 7, in
contrast to Scheme 3 and Scheme 4. For the simulation data,
it is straightforward to find out the following conditions from
Tables IV to VII, Figs. 3 to 7, as well as Figures in Appendix A:

1) When the number of coarse deviations is 0, i.e., all coor-
dinates contain only random errors as well as systematic
errors (in the case of TLS), the results of Scheme 1 (black
lines) compare least favorably, mainly because the random
errors of observations and the effect of the stochastic
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Fig. 5. Medium errors of homonymous and check points when the number of gross errors is 3. (a) Medium errors of homonymous points in x direction.
(b) Medium errors of homonymous points in y direction. (c) Medium errors of homonymous points in z direction. (d) Medium errors of homonymous points.
(e) Medium errors of checkpoints in x direction. (f) Medium errors of check points in y direction. (g) Medium errors of check points in z direction. (h) Positional
medium errors of check points.

TABLE IX
ACCURACY OF CHECKPOINTS

model on parameter estimation are neglected; in contrast
to Scheme 2 (green lines), which introduced the TLS
random errors, Scheme 3 (red lines) also incorporated
the random errors of TS, which, despite its small values,
gives slightly better results than Scheme 2 in parameter
estimation and point accuracy evaluation.

2) While the coarse deviations are present, the RMSE of
the parameters solved by Scheme 3 are closer to zero
compared to schemes 1 and 2, namely, the accuracies of
all parameters are improved and the corrections of the
coordinates using the settlement values are closer to the
TVs of the reference coordinates.

3) As the number of gross errors increases, the parameter
RMSE of Scheme 1 and Scheme 2 continuously increased,
indicating that these two methods are more sensitive to
coarse deviations. Scheme 3, on the other hand, can
maintain stable RMSE of the parameters, suggesting the
robustness and effectiveness of the proposed method, with
the addition constant m being particularly evident. Taking
the case when the quantity of coarse observations is 5,
the accuracies of CPs are, respectively, improved by 68%,
68%, 51%, 49%, and 65% in Scheme 3 compared with
Scheme 2, according to the index of CPs in the parameter
vector; the accuracies of EOPs are as well augmented,
hovering at 60%.

4) However, it is undeniable that there are some points in
the check points where Scheme 3 has slightly inferior
component and position errors than Scheme 2, which is
not unusual and is mainly dominated by the TLS random
errors.

5) In addition, we also corrected and transformed the check-
point coordinates using the TVs of the given parameters,
and compared them with Scheme 2 and Scheme 3, as
shown in Fig. 6. When the volume of coarse observations
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Fig. 6. Medium errors of homonymous and check points when the number of gross errors is 5. (a) Medium errors of homonymous points in x direction.
(b) Medium errors of homonymous points in y direction. (c) Medium errors of homonymous points in z direction. (d) Medium errors of homonymous points.
(e) Medium errors of checkpoints in x direction. (f) Medium errors of check points in y direction. (g) Medium errors of check points in z direction. (h) Positional
medium errors of check points.

Fig. 7. Medium errors of check points in position at various quantities of gross errors. (a) NG = 0. (b) NG = 1. (c) NG = 3. (d) NG = 5.

is 0, the variations in are generally not significant; how-
ever, as the number of gross errors proceeds, an identical
trajectory to the TV results can only be maintained for
scenario 3.

C. Measured Data

With a view to validating the effectiveness and robustness
of the proposed method in practice, a quantitative evaluation
was carried out. To attenuate the possible correlations among
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Fig. 8. Distribution of a part of the points.

unknown parameters, 33 flat paper targets were placed nonuni-
formly on the wall and roof in a selected laboratory, and each
flat target (a square with a dimension of 2 × 2) consisted of
four adjacent squares in black and white separately with the
center point considered as a target. The 3-D coordinates of the
target centroids were recorded by the Leica TS02 Plus TS (while
recording the original observations for verification) as reference
coordinates and the extraction of the point cloud obtained from
the HS650i TLS, individually. The distance between every set-
tled target and the geometric center of TLS were about 6.5 m;
the scope of horizontal angles belongs to 0°–360°; the range of
vertical angles is –40°–60°. A partial distribution of the points
is displayed in Fig. 8 .

Prior to the calculation, we performed a coarse alignment
of the two sets of coordinates, on the one hand to determine
the index of the coarse observations, excluding the coarse
coordinates from appearing in the check points affecting the
subsequent accuracy assessment, and also to make a preliminary
estimate of the magnitude of the coarse deviations. Taking the
TS coordinates as a benchmark, we found that three points in the
TLS data had a deviation of 1–3 cm in the x-direction (No. 5, 14,
and 20); No. 20 had a deviation of 5 cm in the y-direction, and 2
cm in the z-direction at No. 16. In addition, we had proactively
added a 10 cm deviation in the x-coordinates of No. 6 and 12 to
describe how it behaves when the gross errors are very large.

Except for the points containing coarse errors, eight points
were randomly selected as check points among the remaining
available, while the rest points were considered as homonymous.
The nominal accuracy of the instrument was regarded as a priori
information (see Table VIII for details) to weight the original
observations.

After conversion to international units, the value of the error
in the a priori unit weight σ0 was determined to 10–8 here
as well. On the other hand, compared with the simulation ex-
perimental schemes, we additionally introduced a coordinate
transformation method based on Gauss–Markov model, i.e.,
only EOPs without CPs in the unknown parameter vector, to
analyze the effectiveness of CPs for coordinate corrections. The
corresponding experimental schemes are designed as follows:

Scheme 1: Traditional coordinate transformation method based
on Gauss–Markov model without considering systematic er-
rors, the upper part of (4).

Scheme 2: Method considering only systematic errors but ignor-
ing all random errors.

Scheme 3: Method in view of Gauss–Helmert model and VCE
without considering gross errors.

Scheme 4: Method proposed in this article.

On the basis of (43), the coordinate component error and the
error in point position can be calculated for each check point,
which is however modified here by the quantity of check points
in the denominator, and the results are shown in Table IX.

From the computation of the measured data, we can conclude
the following:

1) Scheme 1 has the absolute lamest results, which demon-
strates that a reasonable and correct instrument calibration
can effectively weaken the effect of CPs on the coordinate
sequence and improve the accuracy of the coordinate data,
as has been described in numerous publications.

2) The proposed method can improve the point accuracy from
centimeter to millimeter level; compared to the other three
methods, the accuracy of check points could be enhanced
by 58%, 47%, and 33%, respectively.

3) In fact, we have also calculated the component and point
accuracy of the homonymous points and the proposed
method is still optimal compared to the first three methods,
so the proposed method can still achieve the best fit to the
model in the presence of gross errors.

V. CONCLUSION

Theoretically, the function model cannot achieve a perfect
fitting when there are coarse deviations in the observations,
which means that the model may be erroneous at this point. In
this article, a robust target-based TLS self-calibration method
has been proposed on the basis of the Gauss–Helmert model,
which took into account the random errors present in both TS
and TLS observations in the functional model. In terms of the
stochastic model, we introduced VCE posterior estimates for the
discrepancy between angular and ranging accuracy and reweight
the coarse observations by constructing an equivalent covariance
matrix from the standardized residuals.

Through the validation of the simulated and measured data,
it can be found that the coordinate components and position
accuracy can be effectively improved after manipulating using
the proposed method; on the other hand, the estimated values
of the parameters are closer to the TVs in the simulation data,
and it could maintain satisfactory parameter vector stability
and robustness as the quantity of coarse observations increases.
Although the accuracy of a very small number of checkpoints is
marginally inferior to that of the traditional methods, mainly due
to the random errors of the check points, this neither determined
the effectiveness of the proposed method qualitatively. There-
fore, irrespective of the presence or absence of coarse differences
(within reasonable limits), the proposed method was not only
effective in estimating the unknown parameters, but in addition
the random errors in the observations can be evaluated reason-
ably well. In theory, it is more rigorous and reasonable than
the ordinary self-calibration methods. In addition, apart from
systematic error self-calibration, the algorithm in this article can
also be applied to solve some other problems, for instance, point
cloud registration, coordinate transformation, image processing,
etc.

Admittedly, there would be some loss of efficiency in the
new method due to the employment of a posteriori estimation,
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Fig. 9. Deviations of the parameters and their RMSE when the number of gross errors is 0: (a)∇x; (b)∇y; (c)∇z; (d)∇ϕ; (e)∇ω; (f)∇k; (g) RMSE of parameters;
(h)∇m; (i)∇λ; (j)∇c; (k)∇i; and (l)∇t.
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Fig. 10. Deviations of the parameters and their RMSE when the number of gross errors is 1: (a)∇x; (b)∇y; (c)∇z; (d)∇ϕ; (e)∇ω; (f)∇k; (g) RMSE of
parameters; (h)∇m; (i)∇λ; (j)∇c; (k)∇i; and (l)∇t.
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Fig. 11. Deviations of the parameters and their RMSE when the number of gross errors is 3: (a)∇x; (b)∇y; (c)∇z; (d)∇ϕ; (e)∇ω; (f)∇k; (g) RMSE of
parameters; (h)∇m; (i)∇λ; (j)∇c; (k)∇i; and (l)∇t.
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Fig. 12. Deviations of the parameters and their RMSE when the number of gross errors is 5: (a)∇x; (b)∇y; (c)∇z; (d)∇ϕ; (e)∇ω; (f)∇k; (g) RMSE of
parameters; (h)∇m; (i)∇λ; (j)∇c; (k)∇i; and (l)∇t.
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but the robust method was indeed more valid than the nonrobust
method as it could reduce the bias in the estimates to some extent
after the data has been contaminated. In addition, the proposed
method failed to allow for the weakening of correlations among
parameters and further refinement in terms of measurement
configurations would be required subsequently.

APPENDIX A

For the purpose of visualizing the deviations of the parameters
and the trend of the respective RMSE of the proposed method at
various NGs, the results of the calculation of 2000 simulations
have been carried out compared to other three conventional
methods. It ought to be clarified here that since the functional
model of Scheme 1 does not incorporate CPs, so that its results
are not available in (h)–(l) of Figs. 9–12. As shown in the
following:
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