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Graph-Based Horizon Line Detection
for UAV Navigation

Yong Xu, Hongtao Yan, Yue Ma, and Pengyu Guo

Abstract—Perceiving the horizon line is a critical alternative for
unmanned aerial vehicle (UAV) autonomous navigation, especially
in the presence of noise-induced drift, unavailability of satellite
navigation, and multipath errors. However, it’s quite tough to detect
the horizon line, due to the remotely sensed big data, the dynamic
changes in flight, and the serious consequences of failure. To address
these problems, we propose a graph-based horizon line detection
technique that is composed of graph-based image segmentation,
connected domain cascade filtering, horizon line extraction, and
UAV attitude estimation. We improve the graph-based image seg-
mentation algorithm so that the segmentation results are more
conducive to horizon line detection. We then determine the sky-
component by cascade filtering and extract the horizon line based
on the boundaries of the sky-component. Furthermore, we directly
compute the roll and pitch according to the extracted horizon line
and eliminate the ambiguity of the angles. To validate our approach
qualitatively and quantitatively, we designed a fixed-wing UAV
system. We then validated our algorithm through extensive flights
under various conditions and compared the estimated rolls and
pitches to the IMU ones. Statistical results show that the proposed
technique provides unbiased attitude angles with error variance of
about 2o, which verify the validity and robustness of our method.
For engineering, our program runs at approximately 60 fps on the
fly after optimizing.

Index Terms—Connected domain cascade filtering, graph-based
image segmentation, horizon line detection, unmanned aerial
vehicle (UAV) navigation.

I. INTRODUCTION

THE APPLICATIONS of unmanned aerial vehicle (UAV)
cover all walks of life, including agricultural plant

protection, power line inspection, forest fire monitoring,
security surveillance, transportation, and military competi-
tion [1]. Thus, researches about UAVs have attracted ex-
tensive attention in recent years, especially the task of
UAV navigation [2]. However, due to the big data cap-
tured by various sensors, the highly dynamic changes in
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flight, and the serious consequences of collision and failure,
it’s challenging to realize a fully autonomous UAV naviga-
tion system, particularly for vision-based UAV autonomous
navigation [3].

For UAV autonomous navigation, it is essential to measure,
stabilize, and maintain the attitude of the aircraft. Traditionally,
the attitudes of UAVs are measured by the IMUs which can
capture the angular rate and acceleration of the aircraft. The flight
controller then exploits the sensed values to stabilize attitudes
by correcting the unwanted rotations in roll, pitch, and yaw [4].
This is a standard stabilization scheme of many automatic crew-
less systems. However, it severely suffers from drift especially
for long-term flights or in the case of big maneuver [5]. The
primary reason for drifting is that the values sensed by gyro are
contaminated by noise and it only captures the angular rate about
IMU reference, not the orientation about absolute reference.
To obtain the attitude angles, the sensed angular velocities
must be integrated that may cause substantial noise-induced
drift, particularly for the low-cost MEMS. The weaknesses
mentioned above might be addressed by adopting different
sensors which can directly capture the information about ab-
solute orientation [5] or exploiting signals of the navigation
satellites to correct the attitude of UAV such as GPS, GNSS, and
BeiDou.

Compared to the traditional attitude stabilization methods,
horizon-based UAV stabilization techniques can avoid integra-
tion in the time domain, and do not depend on the signals of
the navigation satellites, which results in no drifts. In the flight
of aircraft, the horizon is approximately a straight line in the
captured images, which can directly provide the absolute roll and
pitch orientations. By detecting the horizon line on the fly, it can
assist the obstacle avoidance, attitude estimation, path planning,
and autonomous navigation tasks of the human-crewed and
crewless aircraft, which could improve the reliability of the
aircrafts. Besides, the horizon line separates the sky component
from the ground part, which allows the image algorithm to
process the sky and ground components separately and helps
to improve the performance of the algorithm. However, with
the rapid development of aerospace science and technology, the
resolution and acquisition frequency of remote sensing image
systems have significantly improved, accelerating the entry of
remote sensing into the era of big data. To effectively extract
and exploit the horizon line in the remotely sensed image
data, we develop a fast and robust graph-based horizon line
extraction technique to promote the fixed-wing UAV navigation
tasks.
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Fig. 1. Inputs, processing pipeline, and outputs of the GHLD method.

The main purpose of this article is to study the horizon line
detection method in the course of UAV flight. Meanwhile, the
roll and pitch angles of the UAV can be directly estimated based
on the detected horizon line. We then apply these two angles to
assist UAV autonomous navigation. However, due to the rapid
changes in the UAV’s position, attitude, terrain, and lighting
conditions during flight, this task is extremely difficult, which
requires the detection algorithm to adapt to this highly dynamic
environment. Besides, considering the high cost of collision or
failure, higher requirements are placed on the accuracy, real-
time, and reliability of detection results.

Traditional horizon line detection usually uses edge detec-
tion or cluster segmentation, which do not adapt to dynamic
flight, especially for fixed-wing UAV. While the deep neural
network (DNN) based methods achieve good performance but
significantly increase execution times. In view of the above
problems, we propose a graph-based horizon line detection
(GHLD) method and exploit the estimated roll and pitch for
UAV navigation. Fig. 1 shows the pipeline of the algorithm. By
analyzing the overall characteristics of the UAV aerial image,
we divide the horizon detection task into four subtasks: graph-
based Image segmentation; connected domain cascade filtering;
horizon line extraction; and UAV attitude estimation. Further-
more, we design a UAV system for verification. Qualitative and
quantitative results illustrate the effectiveness and robustness of
the proposed algorithm. The main contributions of our approach
are as follows.

1) We propose a robust and effective GHLD technique, which
produces unbiased attitude angles with an error variance
of about 2o and can operate at about 60 fps with limited
airborne resources. Results could be applied to assist the
task of fixed-wing UAV navigation.

2) We improve the graph-based segmentation technology
so that the segmentation results are more conducive to
horizon line detection.

3) We exploit connected domain cascade filtering to acceler-
ate the algorithm, meanwhile employ LSD [29], cluster-
ing, and length-weighted average technology to enhance
the robustness of horizon line detection.

The article is organized as follows. Section II reviews the
related work about horizon line detection. Section III describes
the methodology of our approach. In Section IV, a fixed-wing
UAV system is designed, and extensive tests are performed;
meanwhile, several engineering tricks are discussed. Section V
analyzes the limitations of the proposed GHLD and suggests
some future works. In Section VI, brief concluding remarks are
presented.

II. RELATED WORK

Vision-based UAV navigation has attracted considerable
attention in recent years. Compared with the traditional UAV au-
tonomous navigation techniques, the role of vision-based UAV
navigation is highlighted in the case that traditional schemes col-
lapse due to the presence of noise-induced drift, unavailability of
satellite navigation, multipath errors, or man-made electromag-
netic interference [6]. In these situations, an autonomous and
robust estimation of vision-based six-dimensional (6-D) posi-
tions and attitudes could be adopted as a considerable alternative.
There are two topics related to vision-based navigation, one is si-
multaneous localization and mapping, and the another is horizon
line-based navigation. In the last two decades, intense researches
about SLAMs are conducted which produces different kinds of
SLAM systems, including mono-camera SLAM, stereo-cameras
SLAM, and visual-inertial SALM [7]. Meanwhile, the accuracy,
robustness, and survivability of these systems have also been
improved. Some remarkable works are presented in [7]–[10].
To the best of our knowledge, all the SLAM algorithms suffer
from drift during long-duration flights, due to the integration
of IMUs and the accumulation of position uncertainty by the
structure from motion. However, the horizon line can directly
provide the absolute roll and pitch orientations without any
drifts which not only helps to mitigate the cumulative errors
of SLAMs, but also promotes the stabilization of aircraft. Thus,
lots of approaches have been proposed to tackle the problem of
horizon line detection. According to the employed features and
methodology, the ways to accomplish horizon line detection are
divided into three categories: lower-level feature approaches;
segmentation approaches; and deep learning approaches.

A. Lower-Level Feature Approaches

The first category of methods attempts to directly extract
the horizon line basing on low-level features, such as edge,
color, pixel intensity, corner, and gradients, which results in
low computation, but less robustness. Making use of the image
edges, Stavros et al. [11] detected the horizon line basing on
color, texture, and SIFT features. They exploited a Canny edge
detector and a Hough line detector to detect the line followed by
a particle swarm optimization step. Ahmad et al. [12] proposed
to label the pixels of the horizon line and train an SVM classifier,
depending on the edges and local features. Then, they tried
to discriminate the horizon line in an edge image. Besides,
Ahmad et al. [13] detailly compared the existing edge-based and
edge-less methods and proposed a fusion method by taking both
the advantages of the two, which performed an edge detection
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on a query image and applied a boosting strategy if a pixel lies
on the edge.

To solve the horizon line detection problem under maritime
environment, Prasad et al. [14] applied a Hough transformation
on the edge map and the intensity gradient to a detect the
line. To improve the accuracy of horizon detection in marine
images, they proposed a new image feature named multiscale
cross-modal linear feature. In [15], Liang et al. proposed a
technique to extract the horizon semantic boundaries under the
maritime environment. They exploited the weighted textures
to computed the probabilities of each region and determined
the sea-sky region. Then, they extracted a number of candidate
line segments by utilizing a canny edge detector and Hough
line detector. Finally, they voted for each candidate and the
one with the maximum score was adopted as the final result
line. In [16], Zou et al. attempted to extract the horizon line
via computing the gradients at each column of the image. They
treated the pixel with max gradient value as potential points. To
eliminate the effects of clouds and sea waves, they adopted a
total variation algorithm to denoise the maritime images. For
actual application, they exploited the resulting horizon line to
calculate the roll of the tug.

B. Segmentation Approaches

The second category of methods focuses on segmenting the
image into different components and then extract the boundary
between the sky component and the ground part. Exploiting
the machine learning methods, Fefilatyev et al. [17] classified
the image into two components, sky and ground. They investi-
gated the horizon line detection problem by applying the Naive
Bayes classifier, support vector machine (SVM), and decision
tree; train the corresponding classifiers, and employed them to
discriminate each pixel. Timothy et al. [18] exploited the SVMs
technique to classify the sky region and nonsky areas. They
classified each pixel in the YCrCb color space after denoised
by the Gaussian filter. Then, they extracted the horizon line
basing on a Hough line detector nearby the border and detected
the target in the sky by taking the detected line as a prior. For
validation, they steered a small crewless drone to fly toward
one of the targets. Boroujeni et al. [19] introduced a technique
to detect the horizon line based on the presence of the unique
light field. They segmented the image by K-means clustering
based on pixel intensities. Sun and Fu [20] applied a coarse-
fine-stitched strategy to detect the horizon line. At the coarse
step, they detected a series of line segments by applying the
gradient features, which formed the candidate pool. At the fine
step, the candidate line segments were refined by combining
the morphology features such as length and direction with color
features to eliminate the effects of marine waves, illumination
change, and occlusion. At the stitching step, they stitched the
remained line segments by exploiting RANSAC to remove the
false positive ones.

Besides, Zhan et al. [21] aimed to dynamically recognize the
water regions in the image and detect the safe region with the
help of a lidar sensor. First, they applied a modified graph-based
segmentation technique to preprocess the input image. The

segmentation results were used to train a CNN online, which
was employed to classify the image. Then, a conditional random
field was adopted to refine the results. Zhan et al. [22] proposed
to classify the marine image by a VGG network followed by
CRF. To further improve the performance of the proposed ap-
proach, they clustered image pixels into a number of superpixels
and generated a superpixel-level label map which refined the
segmentation results. Results show that the presented method
adapted to new environment.

C. Deep Learning Approaches

Deep learning approaches try to take the advantage of DNNs
to discriminate the horizon line. Basing on the DNN technology,
Workman et al. [23] investigated methods for directly detecting
the horizon line using convolutional neural networks, including
both classification and regression formulations, and achieved
good performance, but time-consuming. Porzi et al. [24] pro-
posed a deconvolutional architecture to detect the horizon line,
which was composed of convolutional blocks, deconvolutional
blocks, and predictors blocks. The approach was based on
two-steps, computing the boundary by learning-based contour
detection algorithm and finding the most likely horizon line via
dynamic programming. Besides, Zhai et al. [25] innovatively
utilized a deep CNN to extract the global image context; they
then detected the vanishing points and the zenith vanishing
point based on the extracted context information. The proposed
method could detect the horizon line in challenging nonlinear
scene, such as man-made environment. Jeong et al. [26] pro-
posed a scene paring network based on deep CNN, which was ca-
pable of classifying the image into semantic categories, and then
the horizon line could be iteratively retrieved by least-squares
accompanying with a median filter.

Moreover, to eliminate the effects of atmospheric and illumi-
nation, Carrio et al. [27] attempted to detect the horizon line in
thermal images and achieved favorable results. They proposed
two methods for this task. For the first method, they estimated
the potential points in subimages and then fitted the horizon line
based on these points. Besides, they tried to estimate the attitude
angles by solving a regression learning problem based on raw
image pixels.

Our work falls into the second category and is closely related
to the work in [21]. However, our method aims to detect the
horizon line in the sky-ground scenes and executes fast enough
to fulfill the dynamic requirements of the fixed-wing UAV nav-
igation. In this article, we propose an effective GHLD method.
We modify the graph-based image segmentation algorithm [28]
so that the segmentation results are more conducive to horizon
line detection. We then determine the sky-component by cascade
filtering and extract the horizon line based on the boundary
between the sky and ground image areas. The methodology is
detailly presented in the succeeding section.

III. METHODOLOGY

In this section, we first analyze the overall properties of UAV
aerial images and then discuss the four modules of the proposed
method in detail.
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Fig. 2. Analysis of UAV aerial image properties. (a) Gray image. (b) Enlarged view nearby the sky-ground boundary. (c) Intensities of the gray image.

A. Properties of UAV Aerial Images

As mentioned earlier, UAVs are employed in a diversity of
applications, such as agricultural protection, traffic surveillance,
power line inspection, forest fire monitoring, dangerous area
observation, transportation, 3-D mapping, and military recon-
naissance. For these applications, the altitude of the UAV ranges
from several meters to hundreds of meters. As shown in Fig. 2,
the horizon line in the aerial image is a critical feature, which is
beneficial for vision-based autonomous navigation, especially
for stabilizing the attitude of the UAV.

Fig. 2(a) shows the grayscale image captured on the fly,
Fig. 2(b) illustrates the enlarged view nearby the sky-ground
boundary in Fig 2(a), and Fig. 2(c) presents the intensity of
each pixel in three dimensions. Through analysis, we obtain the
following four properties of the aerial images.

1) The boundary between the sky component and the ground
part in an aerial image appears as a straight line, that is the
horizon line.

2) Normally, the mean intensity of the sky component is
greater than that of the ground part.

3) The pixel intensities nearby the boundary between the sky
and ground image areas change slowly, not stepwise.

4) The sky-component occupies a relatively large part of the
entire image and is at least connected to one of the image
boundaries.

Based on the above properties, we first adopt the graph-based
segmentation approach to segment the image into multiple con-
nected domains. Then, we calculate the characteristics of each
connected domain and determine the sky-component through
cascade filtering. Finally, we extract the horizon line basing on
the binary image nearby the sky-ground boundary and estimate
the UAV roll and pitch angles.

B. Graph-Based Image Segmentation

The segmentation algorithm in [28] is a graph-based greedy
clustering algorithm, which is simple to implement and runs
fast. The main purpose of [28] is to segment the similar areas
into connected components. The segmentation results are neither
too fine nor too rough, which are often used as a preprocessing
technology for many image processing algorithms. In this arti-
cle, we utilize this method for the horizon line detection task.
Unlike [28], our goal is to distinguish the sky area from the
ground one, without caring about the details in the image. To

make the segmentation results more conducive to horizon line
detection, we modify the algorithm as follows.

1) We remove the preprocessing part that smooths the image,
to fully retain the gradient information around the edges.

2) We add the distance of elements that is used to calculate the
edge-weight, to alleviate the effects of the slow changes
of the image intensities nearby the sky-ground boundary.

3) We modify the segmentation criterion by utilizing the
local dissimilarity and global dissimilarity between the
minimum spanning trees (MSTs) of the graph.

4) To remove the details in the segmentation results, we
design the size threshold of post-processing to merge the
small component with the large connected one.

In the proposed GHLD approach, the undirected graph is
composed of vertices, edges, and weights, where each vertex
corresponds to an image pixel, each edge connects the pair of
adjacent vertices. Non-negative weights are applied to measure
the dissimilarities of connected vertices. The principal goal then
is to segment the vertices into different components. However,
the value of the corresponding weight is not computed by the
connected elements, but ones with a distance of dn, which
is equivalent to [28] when dn equals to 1. This may seem
problematic, but it effectively alleviates the effects of the slow
changes of image intensities around the sky-ground boundary.
In similar areas, the dissimilarities of image intensities are small,
so that the increase of dn does not affect the value of weight.
However, the image intensities gradually change nearby the
boundary line, and the increase of dn leads to the accumulation
of the gradient along distance dn, thereby increasing the dis-
similarities. Through modifying weights, the GHLD approach
will preferentially process the similar regions and then the areas
around the edges.

As for the initial state of segmentation, each vertex corre-
sponds to a component. To measure the local difference between
two connected components, we calculate the internal dissim-
ilarity of each component and local dissimilarity between the
two connected components. For simplicity, Int(Cn) denotes the
internal dissimilarity of component Cn, which equals to the
largest weight in the MST of Cn; Dif(Cm, Cn) denotes the
local dissimilarity between the two connected components Cm

and Cn, which equals to the minimum weight edge connecting
the two components. Besides, to measure the global saliency,
we compute the mean weight and mean intensity of each com-
ponent, denote as MnW(Cn) and MnI(Cn) respectively. We
then define the merger criteria to evaluates whether to merge the
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Fig. 3. Segmentation results. (a) Original image. (b) Segmentation results by [28] with postprocessing, k = 50, ThrS = 100. (c) Segmentation results by
our algorithm. (d) Postprocessing results of (c).

connected two components into one. That is⎧⎨
⎩

Dif (Cm, Cn) < MInt (Cm, Cn)
|MnI (Cn)−MnI (Cm)| < ThrI
|MnW(Cn)−MnW(Cm)| < ThrW

(1)

where ThrW and ThrI denote the thresholds of edge
weight difference and image intensity difference, respectively.
MInt(Cm, Cn) is the threshold of local dissimilarity of the
connected two components, defined as

MInt (Cm, Cn) = min (Int (Cm) + τ (Cm) , Int (Cn)

+τ (Cn)) (2)

where τ (C) = k/|C|+ b , |C| denotes the size of C, k, and
b are positive constant parameters. Let ThrS be the threshold
of component size. A small component whose size is less than
the threshold should be merged to the connected large one by
post-processing.

In this article, we set parameters d_n = 3, k = 5, b = 3.5,
ThrW = 6, ThrI = 50, ThrS = 100. Fig. 3(d) shows
the results produced by our improved segmentation algorithm,
where details in the image are removed, semantic components
such as the sky, forest, farmland, and the motor road are retained.
Comparing to the results produced by [28], which are shown
in Fig. 3(b), our results are more conducive to the subsequent
horizon line detection task.

C. Connected Domain Cascade Filtering

Given the segmentation results, we have to determine whether
the image contains the horizon line. To determine the horizon

line, we first try to find the sky-component instead. As dis-
cussed in Section III-A, the sky-component has three important
characteristics comparing to other connected domains, listed as
following.

1) First, the sky-component occupies a relatively large part
of the entire image.

2) Second, the mean intensity of the sky-component is
greater than that of the ground part.

3) Third, the sky-component is at least connected to one of
the image boundaries.

Based on the above characteristics, we propose a connected
domain cascade filtering technique to evaluate whether or not
there is a component corresponding to the sky area, mean-
while accelerating the filtering process. To determine the sky-
component from the segmentation results, we first calculate the
attributes of each connected domain, including size, centroid,
average intensity, circumscribed rectangle, and the number of
points that coincide with the image boundaries. Then, we calcu-
late the score of each connected domain, which measures the
likelihood of the corresponding connected domain to be the
sky-component. That is

Scor en = (Sizen/max_S + Intensityn/max_I

+B_numn/max_B) /3 (3)

whereSize indicates the size of the connected domain, Intensity
indicates the average intensity, andB_num indicates the number
of points at the image boundaries. max_S, max_I , and max_B
denote the maximum of the above three parameters respectively.
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Fig. 4. Scores of the connected domains.

Fig. 5. Processing pipeline and results of connected domain cascade filtering. (a) Pipeline of the cascade filtering. (b) Filtering results.

From (3), the score of each component ranges from 0 to 1,
which indicates the probability of the corresponding component
to be the sky part. Fig. 4 shows the calculated scores of the col-
lected domains obtained in Section III-B. As shown in Fig. 4, the
score of the sky-component equals 1, while scores of the non-sky
ones are less than 0.3. In this case, we can directly determine
the sky-component by finding the one with the maximum score.
However, sometimes the segmentation results may be contam-
inated by occludes or suffer from severe weather conditions,
it’s difficult to decide the sky-component only depending on the
calculated scores. To ensure the correctness of the results and
speed up the algorithm, we filter the segmentation results in a
cascaded manner. Fig. 5 illustrates the pipeline of the cascade
filtering and the results of this module.

As shown in Fig. 5(a), the components that are not connected
to the image boundary are first removed by the boundary filter.
Second, the size filter removes components whose sizes are

less than threshold Thr_size. Then, the intensity filter removes
components, the average intensities of which are less than
the average intensity of the image. Finally, the scores filter
removes components whose scores are less than the threshold
Thr_score and choose the connected domain with the highest
score as the desired sky-component. In this module, we use
Thr_score = 0.6,Thr_size equals one-tenth of the image size,
and the filtering results are shown in Fig. 5(b).

D. Horizon Line Extraction

Once the sky-component is determined, we apply LSD [29],
clustering, and length-weighted average to further extract the
horizon line. First of all, we extract the boundary between
the sky-component and the ground-component and remove the
spurious edges caused by undesirable segmentation. Second,
we employ the LSD method to detect line segments in the
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Algorithm 1: Horizon Line Extraction Algorithm.
Inputs: The sky-component determined by cascade
filtering.

1: Extract the contours of the sky-component and remove
the parts that coincide with the image boundary.

2: Label the contours, exclude spurious ones, and choose
the one with max size as the sky-ground boundary.

3: Employ the LSD method to detect line segments in the
binary mask where the sky-ground boundary is located.

4: Calculate the angle A, length L, and the middle point
(mx,my) of each line segment.

5: For p = 1, . . . ,m :
Take Ap as the clustering center, let the cluster
threshold Athr = 10o , and clustering score
Scor ep = 0.

For q = 1, . . . ,m :
If abs(Ap −Aq) < Athr :

Calculate the contribution of line segment q to
cluster center Ap, based on the length and angle of
q,
Scorep + = (1− abs(Ap −Aq)/(2∗Athr)) ∗Lq .

Add the index q to the cluster Linesp.
6: Choose the cluster with the highest score as the
candidate set, and then apply RANSAC to further
eliminate the outliers in the candidate set.

7: Calculate the slope angle of the horizon line and
estimate the point which lies on the line, adopting the
lengths of the candidates as weights.

Outputs: The slope angle of the horizon line and the point
through which the horizon line passes.

image area where the sky-ground boundary is located. To handle
the nonlinear horizon Line scene, we cluster the angles of the
detected line segments, calculate the score of each cluster, and
choose the cluster with the highest score as candidates, the
specific processes are shown by Algorithm 1 Steps 5 and 6
in pseudocode. Finally, we adopt the lengths of the candidates
as weights to calculate the slope angle of the horizon line and
the point through which the horizon line passes. As shown in
Algorithm 1, the complete horizon line extraction procedure is
detailly presented in pseudocode.

To exclude the pseudoboundaries, we first extract the contours
of sky-component and remove the pseudocontours that have a
father contour. Then, we remove the parts that coincide with the
image boundary and label the remain boundaries by an eight-
neighborhood connected domain labeling algorithm. Finally, we
choose the one with max size as the sky-ground boundary.

To further reduce the execution time and ensure the correct-
ness of horizon line extraction, all steps are performed utilizing
the binary image nearby the sky-ground boundary, as shown
in Fig. 6. The results shown in this figure correspond to the
horizon line extraction module in Fig. 1. Fig. 6(a) illustrates
the sky-ground boundary by culling the spurious edges and the
points that coincide with the image boundary. Fig. 6(b) shows
the extracted line segments by LSD, and about 20 segments are

found. Through applying clustering and RANSAC techniques,
the remained candidates are shown in Fig. 6(c), it illustrates that
all the extracted segments are preserved. Fig. 6(d) demonstrates
the output horizon line and points of Algorithm 1.

E. UAV Attitude Estimation

1) Attitude Estimation: For simplicity, we assume that the
axes of the camera coordinate system are parallel to the axes of
the UAV coordinate system (see Fig. 7). Then, the roll and pitch
angles of the UAV can be directly determined from the extracted
horizon line. We define that the roll angle is positive when the
UAV rolls right and the pitch angle is positive when the UAV
raises head, as shown in Fig. 7.

The origin of the image reference is defined as the upper left
corner of the image. Let θ be the slope angle of the horizon line
in the image coordinate, S1 be the size of the sky-component
segmented by the horizon line, (x1, y1) be the centroid of the
sky-component, S0 be the size of the image, and F_A be the
field angle of the camera at the vertical orientation. Since the
horizon line is orthogonal to the camera’s rotation axis, the roll
angle of the UAV is invariant to all other motions. We employ
the positional relationship between the sky-component and the
horizon line to eliminate the ambiguity of the roll angle through
(4) and (5). If the horizon line is orthogonal to the x-axis, denoted
by x = d , then the roll angle is determined by

roll =

⎧⎨
⎩

+90 if x1 < d
±90 if x1 = d
−90 if x1 > d

(4)

Otherwise, the equation of the horizon line can be denoted as
y = k ∗ x+ b, and then the roll angle is determined by

roll =

⎧⎨
⎩

−θ if y1 − k ∗ x1 − b < 0
−θ or − θ + sgn (θ) ∗ 180 if y1 − k ∗ x1 − b = 0

−θ + sgn (θ) ∗ 180 if y1 − k ∗ x1 − b > 0
(5)

where θ = tan−1(k) and sgn(θ) is the sign function. Besides,
the uncertainty of the roll angle in formulas (4) and (5) can be
eliminated according to the continuity of the aircraft attitude in
the time domain. Besides, the pitch angle is proportional to the
size of the sky-component in case of no rolls. Based on the sizes
of sky-component and ground-component, the pitch angle of the
UAV is approximated by

pitch ≈ F_A∗ (S1 − S0/2) /S0. (6)

Due to the limitation of the camera’s field of view, the measur-
able range of pitch angle is (−F_A/2,+F_A/2). Fig. 8 shows
that when the pitch angle is fixed, the changes in the roll angle
lead to the changes of the sky-component area.

The red parts indicate the equivalent increment of the sky-
component size caused by the rolls and the black parts denote
the equivalent reduction of the sky-component with respect to
the corresponding rolls. Thus, the size of the red part subtracts
the size of the black part equal to the increment of the sky-
component caused by the rolls. Generally, the width of the image
is greater than the height of the image. As shown in the second
row of Fig. 8, the greater the roll angle, the greater the error.
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Fig. 6. Results of the horizon line extraction module. (a) Extracted sky-ground boundary. (b) Candidates by LSD. (c) Results of clustering and RANSAC.
(d) Length-weighted horizon line.

Fig. 7. Body coordinate system and triplet of Euler angels for UAV.

A large roll angle will increase the size of the sky-component,
resulting in a smaller calculated pitch angle compared to the
actual one. The quantitative results in Fig. 13 also illustrate this
point. In addition, using a square image area to calculate the
pitch angle will further reduce errors.

2) Attitude Rectification: For actual application, the axes of
the UAV reference system are not exactly parallel to the ones
of the camera coordinate system. Consequently, the attitude
angles estimated above cannot be straightly applied for the UAV
navigation task. To eliminate the installation error between the
camera and the

UAV, we have to calibrate the transformation from the UAV
reference system to the camera coordinate system. The calibra-
tion consists of the following three subtasks.

1) Calibrate the internal parameters of the camera, including
principal point, focal length, and the distortion coeffi-
cients.

2) Calibrate the noise values of the IMU, including the noise
density and random walk coefficients of the accelerometer
and gyroscope, respectively.

3) Calibrate the joint transformation between the camera and
the body, including rotation and translation.

In this article, we employ the open-source software imu_utils
[30] to calibrate the IMU parameters and utilize the open-source
visual-inertial calibration toolbox Kalibr [31] to calibrate the
camera internal parameters and the camera-body joint transfor-
mation. For the specific details, see [30] and [31]. Assuming
that the calibrated rotation matrix denotes R and the translation
vector denotes T . R and T indicate the transformation from
the UAV reference system to the camera reference system. An
alternative parametrization to the rotation matrix R is a triplet
of roll, pitch, and yaw. We decompose the rotation matrix R in
the order of x-y-z, that is

R = Rx (γ) ∗Ry (α) ∗Rz (δ) (7)

where γ, α, δ denote the roll, pitch, and yaw angles respectively.
Rx(γ), Ry(α), Rz(δ) are the basic rotation matrixes along
x-axis, y-axis, and z-axis respectively. Therefore, we can exploit
the calibration results to rectify the estimated roll and pitch
angles by

{
rollr = rolle − γ
ptichr ≈ pitche − α

(8)

where rolle and pitche denote the above estimated results, rollr
and ptichr denote the rectified ones.

To ensure the reliability of the detection results, we perform
consistent filtering on the detection results based on the continu-
ity of the physical events in the temporal and spatial dimensions
to eliminate the outliers. If the detection results of the succeeding
frame change a lot, the detection results are considered to be
unreliable. In the time domain, we use the second-order Kalman
filter and Gaussian weighted filter to process the detection
results and remove the high-frequency part of the results. In
addition, we exploit the detection results to eliminate outliers
and supervise the selection of cluster centers and candidate sets,
in the subsequent horizon line extraction task.
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Fig. 8. Changes of the sky-component concerning the roll angles. (a)–(h) Roll angle increases from 0° to 90°.

Fig. 9. Fixed wing UAV testbed.

IV. EXPERIMENTS

A. UAV System

To validate the feasibility of the proposed algorithm, a UAV
system as shown in Fig. 9 was designed. This fixed-wing
UAV has a wingspan of 2.2 m, an empty weight of 5.6 kg,
and a gross weight of 7.5 kg. Images were captured by a
forward looking OSG230-150UC industrial camera at 60 fps,
a focal length of 6 mm, 1920 ∗ 1200 resolution, and 73.3o ∗
57.5o ∗ 86.6o(H ∗ V ∗D)field of view, shown in Fig. 10(a). We
mounted the camera on the nose of the UAV and made the axes

of the camera coordinate system parallel to the ones of the UAV
coordinate system as much as possible through high-precision
alignment. The UAV using an INTEL NUC8i7BEH with 16 GB
of RAM and a CPU with a speed of 3.0 GHz, and vision
processing is performed onboard. In order to reduce the weight,
we disassembled the shell of the NUC, as shown in Fig. 10(b).
We employed a Pixhawk 4 as the flight controller, which in-
tegrates IMU, magnetometer, barometer, and other sensing de-
vices, shown in Fig. 10(c). To facilitate communication between
different programs, we have established this system based on
the robot operating system. The NUC8i7BEH communicates
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Fig. 10. Devices integerated in the UAV system. (a) OSG230-150UC industrial camera. (b) NUC8i7BEH vision processor. (c) Pixhawk4 flight controller.

Fig. 11. Qualitative horizon line detection results with different flight conditions. The First row: low illumination. The second row: Cloudy. The third row: Sunny.
The fourth row: Backlighting. The last row: Landing.

with the Pixhawk 4 through a serial port. The current settings
support the NUC8i7BEH to transmit computed roll and pitch
angles to the Pixhawk 4 and receive aircraft telemetry, including
differential GPS coordinates, barometric altitudes, airspeed, and
the reference roll, pitch, and yaw estimated by Pixhawk 4.

During actual flight tests, extensive automatic flights with
different conditions were conducted and comparisons were also
made to the IMU estimation. To test the influence of flight
altitudes on the presented method, the flights are performed

under various designed altitudes, including 50, 20, and 10 m.
To verify the adaptability with respect to illumination, flights
are performed in the presence of dim illumination, cloudy, and
backlighting. To test the robustness of our algorithm correspond-
ing to terrains and obstacles, we implemented the test in the hilly
areas with rich scenes. Besides, the designed speed of the UAV
was 20 m/s, and the images were downsampled to 480 ∗ 300
to ensure real-time performance. Moreover, because the field of
view might be occluded by houses and trees during takeoff and
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Fig. 12. Horizon line detection results in nonlinear scenes. The first group: simple nonlinear scenes. The second group: difficult nonlinear scenes. The third
group: difficult nonlinear scenes when the UAV flew close to the high mountains. The fourth group: challenging nonlinear scenes.
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Fig. 13. Quantitative results of three flight tests. Left column: Flying on a sunny day. Middle column: Flying on a dark and windy day. Right column: Flying in
the evening with backlighting. (a∗) UAV trajectories in x-y plane. (b∗) Flying altitude of the UAV. (c∗) Sky-component scores. (d∗) Comparison of the pitch angles.
(e∗) Comparison of the roll angles.
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landing, to ensure the reliability of detection, we set the altitude
threshold equal to 8 meters, that was, the horizon line detection
was performed only when the flying altitude of the UAV was
greater than the threshold. Qualitative results are illustrated in
Fig. 11, and quantitative comparison results are shown in Fig. 13.

B. Qualitative Results

Fig. 11 exhibits the results of the proposed algorithm per-
formed on five groups of images. Each row of images corre-
sponds to one flight test, the illumination of which increases
from the first row to the fourth row, and the last row shows the
detection results during landing. As shown in the first row, the
proposed GHLD can deal with the distant mountains and irreg-
ular sky-ground boundaries, in spite of low illumination. For the
second row, the tests were performed on a cloudy day, it shows
that our algorithm achieves favorable results in the presence of a
high-voltage line. The tests in the third row were performed
on a sunny day, in this case, the sky part was overexposed,
which is beneficial to the graph-based image segmentation and
results in satisfactory results. The images shown in the fourth
row were captured when the UAV flew over the ground station at
an altitude of about 10 m and meanwhile, the sunshine came in
face of the camera. The results show that the presented GHLD
found the correct horizon line despite backlighting. The last row
in Fig. 11 illustrates the results when the UAV was landing.
In this case, the results of image segmentation may severely
suffer from the ground clutter, such as buildings and trees,
which leads to performance degradation of the horizon line
detection algorithm. Results shows that the estimated roll angles
are favorable. However, the estimated pitch angles obviously
depart from the actual ones, which are almost 0° during landing.
Thus, for safety considerations, we did not apply the detected
angles for navigation.

To further demonstrate the feasibility and reliability of the pro-
posed fixed-wing UAV system and horizon line detection tech-
nology, we participated in the 2021 UAV Challenge Competition
in a formation of 4 UAVs for the simulation docking race and in
a formation of 7 UAVs for the speed crossing race. The racing
field is a complex scene with mountains and buildings, resulting
in nonlinear scenes. The nonlinear here mainly refers to that the
sky-ground boundaries are nonlinear and it is mainly caused by
the ups and downs of the terrain. In most cases, the flight scenes
are nonlinear, especially when there are mountains or buildings
in the field of view, as shown in Fig. 12. Corresponding horizon
line detection results are shown in Fig. 12 and the results are
divided into four groups by bold orange lines. For each group,
the upper row exhibits the segmentation results with scores and
the bottom row shows the corresponding detection results. The
images in the first group were captured when the UAV flew at an
altitude of about 20 m and the mountains were far away from the
UAV. The results illustrate that the proposed GHLD can handle
these simple nonlinear scenes. The second group shows the more
difficult nonlinear scenes. The test images were captured when
the UAV was crossing the gate, flying nearby the buildings,
flying toward the mountains, and chasing after the simulation
refueling aircraft. The results show that our algorithm can deal

with these scenarios despite the highly nonlinear sky-ground
boundaries. For the third group, the test images were captured
when the UAV flew close to the high mountains. As shown in
the images, the mountains occupy most part of the images and
the sky-ground boundaries are also nonlinear. Results show that
the presented GHLD detects the satisfactory lines which can
be applied to compute the rolls and pitches. However, in this
case, the estimated pitch angles obviously depart from the actual
ones, because of the serious occlude of the mountains, same with
the landing case shown in Fig. 11. The fourth group shows the
challenging nonlinear scenes that the proposed GHLD fails to
detect the horizon lines. In this case, the UAV was too close to the
ground or the mountains, causing that most of the images were
occupied by the ground part. In addition, the local boundaries
of high mountains will also affect the detection of the horizon.
The processing method to these challenging nonlinear horizon
line scenes fall into the third category discussed in Section II,
which utilizes the deep learning approaches to infer the horizon
lines.

To sum up, the proposed GHLD is robust to both linear and
most nonlinear scenes and adapts to dynamic changes in flight
conditions such as topography, lighting conditions, and altitude.

C. Quantitative Analysis

To further analyze the performance of GHLD, we adopt the
UAV attitude values output by IMU as the reference values,
which are estimated inside the Pixhawk 4 by integrating GPS
and magnetometer. We test the performance of the proposed
algorithm by comparing the difference between the detected
values and the reference ones. Fig. 13 shows the results of our
approach applied on three different flights.

The left column illustrates the results with strong light condi-
tions. The middle column illustrates the results corresponding to
low illuminance and windy conditions. The right column shows
the results in the evening with the presence of backlighting.
Fig. 13(a1)–(a3) illustrate the projection of the UAV trajectories
on the X–Y plane, Fig. 13(b1)–(b3) show the altitude of the
flights, and Fig. 13(c1)–(c3) illustrate the scores of the sky-
components calculated using (3). Fig. 13(d1)–(d3) and (e1)–(e3)
illustrate the estimated pitch and roll angles, respectively. In
both cases, the estimated angles are presented for IMU, GHLD,
Kalman filter, and Gaussian filter.

The Kalman filter adopts a second-order motion model to
predict the corresponding angle, angular rate, and angular ac-
celeration. The initial values of these state variables are com-
puted by differentiating the recent measurements. Besides, the
measurement noise of our GHLD is modeled by an additive
white Gaussian noise and the variance of the measurements
noise is obtained by offline statistics. As for the Gaussian filter,
we employ a set of Gaussian coefficients to weight the recent K
measurements and the coefficients are precomputed by function
Coef = exp(−0.5 ∗ (k/sigma)2) followed by normalization.
In this article, we set K = 10 and sigma = 3.0, thus the
coefficients are [0.0026, 0.0067, 0.0154, 0.0318, 0.0586, 0.0966,
0.1426, 0.1882, 0.2223, 0.2350].
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TABLE I
STATISTICS OF EXPERIMENTAL RESULTS

The results in Fig. 13(b∗) and (c∗) demonstrate that the
scores of the sky-components are disturbed by the flight altitude.
The higher the altitude is, the higher the score is, and vice
versa. Because the higher the flight altitude is, the boundary
between the sky and ground is closer to a straight line in
the image, and the detection algorithm is less disturbed by
the ground clutter. Comparison with Fig. 13(c1)–(c3), we also
obtain that the scores of sky-components are affected by flight
conditions. As shown in Fig. 13(c2), (d2), and (e2), the windy
weather resulted in fluctuating results, because the attitude of
the UAV is fluctuated by the wind. Fig. 13(d∗) and (e∗) illustrate
that the pitch and roll angles produced by GHLD, Kalman
filter, and Gaussian filter are almost consistent with the mea-
sured values of IMU. The specific statistical results are given
in Table I.

Table I gives the error statistics of the roll and pitch an-
gles estimated by GHLD, Kalman, and Gaussian relative to
the IMU reference values. The error means and error vari-
ances of the estimated values relative to the reference ones
are counted. It is manifest from the table that the mean
value of the error is about 0, which shows the unbiased-
ness of the detection results; the variance of the error is
about 2 degrees, which shows the accuracy of the proposed
algorithm.

In engineering practice, for high-frequency requirements and
limited airborne resources, we can downsample the image to
a size of 240 × 150. Image downsampling may have some
slight impact on the sky-ground boundaries, but this process
will not degrade the accuracy of the horizon line extraction, since
the horizon line represents the global semantic information and
we extract the horizon line in a clustering and length-weighted
average way. By the means of engineering optimization, our
algorithm can run at approximately 60 fps. Meanwhile, by
decreasing the exposure time of the camera, we find that the
intensity difference between the sky-component and ground-
component changes to indistinct, which results in performance
degradation of the graph-based segmentation algorithm. Thus,
slightly increasing the camera’s exposure time is conducive
to image segmentation. However, to avoid blurring of images
caused by high-speed motion, the exposure time should be set
to no more than 40 ms. To reduce the influence of the backlight,
we install a hood and filter on the lens. Besides, to ensure the
reliability of navigation tasks, the horizon detection algorithm
runs after the UAV reaches a certain altitude to avoid ground
objects blocking the camera’s view.

V. DISCUSSION

A. Result Analysis

Herein, we propose a GHLD method to promote the task of
UAV navigation. The results reveal that the angles produced
by our method are almost consistent with the reference values
by the IMU and our method adapts to the dynamic changes of
illumination, terrain, and altitude. Besides, the optimized algo-
rithm executes at the speed of 60 fps, which fulfills the dynamic
requirements of the fixed-wing UAV navigation. Although the
study of this article achieves satisfactory results in the actual
flight tests, some limitations are also noteworthy.

1) Only the roll and pith are estimated by the detected horizon
line, the yaw and absolute positions of the UAV are not
determined. Thus, the proposed method can only measure
part of attitude angles and exploit them to stabilize the
aircraft.

2) The measurable range of pitch angle is limited by the
camera’s field of view, which means that the pitch is
unmeasurable when the drone severely pulls up or dives.
Besides, the pitch angle calculated by formula (6) is an
approximation and affected by the roll, which decreases
the accuracy of estimated pitch angle.

3) Our vision system is composed of a visible light image
sensor, which may hinder by the atmospheric and illumi-
nation conditions. For example, on foggy days or at night,
due to low visibility, our system cannot work.

4) Although results in Fig. 11 show that the proposed method
achieves acceptable rolls during landing. For reliability
concerns, we apply the detected angles for navigation only
when the UAV reached a certain altitude, to reduce the
influence of the ground clutter.

B. Future Works

Our future work will strive to address the above limitations
of the proposed horizon detection method, particularly in the
case of dark and obstacles. Meanwhile, we will apply the pro-
posed method on infrared images to alleviate the hamper of
atmospheric and illumination conditions. For some difficult sit-
uations, we intend to study a fast and robust artificial intelligence
method to recognize the horizon line or even infer the unseen
horizon line.

Furthermore, to accomplish fully autonomous navigation in
the absence of the navigation satellites, we will study the hybrid
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between the SALM algorithms and horizon line-based naviga-
tion methods, which supplement and promote each other. As
presented in [7], [9], and [10], the SALM algorithms can esti-
mate the accumulated positions and attitudes of the UAV, which
are required by UAV navigation. However, the horizon-based
navigation methods can directly provide the absolute roll and
pitch orientations, which can assist to mitigate the drifts in the
SLAMs.

VI. CONCLUSION

The horizon line has various applications for UAVs, such as
obstacle detection, attitude stabilization, path planning, and au-
tonomous navigation. However, it’s pretty difficult to detect the
horizon line, especially for fixed-wing UAV applications, due to
the remotely sensed big data, the dynamic changes in flight, and
the serious consequences of failure. To fulfill the requirement
of horizon line detection for fixed-wing UAV navigation, an
effective horizon line detection method, GHLD, was proposed
in this article. We divide the horizon line detection task into four
subtasks. First, we improve the graph-based image segmentation
algorithm by modifying the weight calculation of the edges
and the merging criteria of connected domains. Second, we
determine the sky-component by cascading the boundary filter,
size filter, intensity filter, and scores filter. Then, we extract
the horizon line by employing LSD, clustering, RANSAC, and
length-weighted average on the sky-ground boundary. More-
over, we eliminate the ambiguity of the roll and pitch angles by
using the positional relationship between the sky-component
and the horizon line. Through engineering optimization, our
proposed method runs at approximately 60 fps on the fly.

To verify our algorithm, we designed a fixed-wing UAV sys-
tem and flew with various lighting conditions, terrains, speeds,
attitudes, and altitudes. Extensive experimental results illustrate
the robustness of the presented algorithm. The comparison re-
sults show that the angles produced by our method are almost
consistent with the reference values by the IMU, which demon-
strates the effectiveness of the proposed algorithm.

Although we have demonstrated the validity of the proposed
approach, however, we did not tackle some difficult situations,
such as in the case of dark, obstacles, and challenging nonlin-
ear scenes. Thus, in future work, we will further improve the
adaptivity and precision of the developed method. Moreover,
we will integrate the horizon detection method with the SLAMs
to accomplish a more reliable autonomous navigation system.
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