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Abstract—Limited training data, high dimensionality, image
complexity, and similarity between classes are challenges con-
fronting hyperspectral image (HSI) classification often resulting in
suboptimal classification performance. The capsule network (Cap-
sNet) preserves the hierarchy between different parts of the entity in
an image by replacing scalar representations with vectors and can
address these aforementioned issues. Motivated by CapsNet, this
article presents a novel end-to-end deep learning (DL) architecture,
the hybrid capsule network (HCapsNet), for HSI classification.
HCapsNet employs 2-D and 3-D convolutional neural networks
(CNNs) to extract higher level spatial and spectral features. In
order to establish a route between capsules in the lower layers
to the most-related capsule in the higher layer, dynamic routing
(DR) is used to identify several overlapped objects during training
sessions. Hyperparameter optimization is performed using nested
cross-validation (nested-CV) to ensure thorough generalization
evaluation. The proposed HCapsNet significantly outperformed the
state-of-the-art methods in terms of overall classification accuracy
on three widely used hyperspectral datasets, Indian Pines dataset
achieving (> 3%, p < 1 × 1 × 10−11), the University of Pavia
dataset (> 4%, p < 1 × 1 × 10−9), the Salinas Valley dataset
(> 3%, p < 1 × 1 × 10−10) when using only 1% of the data
for training. The performance of all CNN-based approaches de-
graded significantly with smaller training sample sizes. HCapsNet,
therefore, is demonstrated to offer significant advantages in HSI
classification problems with low sample sizes.

Index Terms—Capsule neural network (CapsNet), deep learning
(DL), dynamic routing (DR), hyperspectral image (HSI).

I. INTRODUCTION

HYPERSPECTRAL data acquisition has considerably in-
creased with the continued advances in imaging tech-

nology [1]. Hyperspectral imaging has shown to be a power-
ful tool for various applications, such as agricultural manage-
ment [2], [3], environmental protection [4], [5], semiconductor
wafer defect detection [6], [7], and mineral exploration [8], [9].
A hyperspectral image (HSI), unlike images used in computer
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vision, is composed of hundreds of 2-D images correspond-
ing to various spectral bands [10]. This provides a nearly full
spectrum of reflected light for each pixel in the image of a
scene and thus allows capturing crucial spectral information
for materials identification and characterization. Particularly,
the remote exploration of the earth’s surface is possible with
the combination of the spectral and spatial information in these
images. In such a framework, HSI classification is undergoing
intense study in remotely sensed HSI data analysis [11]. The high
dimensionality and lack of sufficient labeled data, large spectrum
variability in the spatial domain, and the existence of mixed
pixels due to low spatial resolution can, however, decrease HSI
classification accuracy. In addition, despite the efforts of experts
in processing and evaluating HSI for various applications, due
to an ever-growing volume of data, it is critical to developing
more intelligent and autonomous approaches.

To date, algorithms applied to HSI classification can be cate-
gorized into two general categories: techniques based on manu-
ally engineered features and methods based on data-managed
features. In the early stage of HSI classification, techniques
based on engineered features focused on investigating the influ-
ence of spectral features in improving performance. As a result,
many pixel classification methods have been presented, includ-
ing support vector machine (SVM) [12] and multinomial logistic
regression [13]. Also, in the techniques based on engineered
features, the feature extraction and classifier section are designed
independently. For instance, Tang et al. [14] proposed a method
to reduce the dimension and feature extraction in HSIs using a
discrete 3-D scattering wavelet transform. This study examined
different benchmarks and showed high accuracies by using a
low number of labeled samples. Tatyana et al. [15] transformed
the HSI into a linear separated space with an active extractor
for spectral features, namely regularized linear discriminator.
Khodadadzadeh et al. [16] combined the classic multinomial
logistic regression (MLR) formulation with a class-dependent
subspace projection method to cope with highly mixed hyper-
spectral data using limited training samples. In the literature,
several techniques have been applied to perform supervised clas-
sification of hyperspectral data [17]. In [12], SVMs and nonpara-
metric classifiers are compared for a multiclass classification
task. It was concluded that radial basis function RBF-SVM is
more efficient compared with linear-SVM, k-nearest neighbors
(KNN), and other RBF kernel methods. Two classifiers based
on the random forest (RF) methods were investigated in [18] to
enhance generalisation in HSI classification. This study showed
that applying RF ensembles instead of a single tree, enhance
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classification accuracy. However, traditional machine learning
methods commonly face challenges due to the complexity in
HSI dataset characteristics, including the nonlinear relationship
between elements and their respective spectral information [19].
Moreover, while these machine learning methods have been
applied and evaluated, the interactions between the classifiers
and feature extraction approaches are rarely considered.

On the other hand, methods based on data-managed features
involve extracting features during the learning stage. These
methods use DL structures. DL-based structures have gradually
dominated remote sensing image scene classification as DL
theory, and parallel computing resources have improved [20].
Hinton et al. [21] designed a method for initialising the weights
of multilayer neural networks, laying the groundwork for the
later development of DL such as stacked autoencoder [22], au-
toencoder [23], and deep belief nets [24]. These aforementioned
methods commonly use convolutional neural networks (CNNs).
In CNNs with a series of matrix multiplications (kernels), the
mapping between the input data and the output label is per-
formed, e.g., in [25], a deep contextual CNN approach is pro-
posed. This study suggested a wide and deep CNN architecture
that employs a combination of state-of-the-art methods such as
GoogLeNet [26] and ResNet [27] and achieved higher classifica-
tion accuracy than a shallower network. To extract spectral and
spatial features from HSI effectively, Chen et al. [28] proposed
an end-to-end 3-D-CNN that provides significant accuracy when
the training samples are limited. Li et al. [29] presented a new
CNN-based DL structure for classification, which outperformed
commonly used algorithms. In this method, instead of end-to-
end convolution and deconvolution layers, an optimized extreme
learning machine (ELM) after-layers is employed. An overview
of the shallow and deep techniques with an advanced feature
extraction approach is detailed in [30]. As stated in [30], the
lack of sufficient training data in the remote sensing community
generally requires the use of feature extraction in both machine
learning and DL techniques to overcome this problem. Au-
toencoders (AEs) and recurrent neural networks (RNNs) must
vectorize the inputs during spatial feature extraction, despite
the fact that CNNs are genuinely good at spectral-spatial input
processing. Therefore, generally, the integration of these net-
works can deliver the full advantage of their various benefits.
This has been done in stacked convolutional AE (SCAE) [31]
and convolutional RNN (CRNN) [32], where spectral-spatial
joint features extraction was proposed. Also, studies showed
that employing only a 2-D-CNN may result in missing data
on channel relationships (spatial information), while using only
3-D-CNN may result in a highly complex model [33]. Therefore,
HSI applications may be thoroughly investigated with both
spectral features and spatial patterns (2-D-CNN and 3-D-CNN),
and classification performance can be substantially enhanced.
In [34], an architecture called hybrid spectral convolutional
neural network (HybridSN) was designed using a combination
of 2-D and 3-D CNNs, which has achieved higher accuracies
compared to the 3-D-CNN on benchmark datasets.

It is demonstrated in [35] that nonconvex modeling and opti-
mization is a powerful tool that can be applied to various areas.
This allows for the development of new techniques and the

implementation of interpretable artificial intelligence (AI) for
various hyperspectral remote sensing applications. Despite the
effectiveness of DL in single-modality-dominated classification
tasks, Hong et al. [36] introduced a multimodal DL structure
intending to provide a baseline solution for pixel-level remote
sensing image classification problems using multimodal input.
This study uses fully connected networks (FC-Nets) and CNNs,
which can apply to pixel-based and spatial-spectral classifica-
tion, respectively. Graph convolutional networks (GCNs) have
a high computational cost, especially noticeable in large-scale
remote sensing problems. To address this, a new supervised
version of GCNs called miniGCNs is proposed in [37] that can
properly characterize the underlying data structure of HS images
in high-dimensional space. Although it was hypothesized that
deeper CNNs might improve performance and produce bet-
ter hyperspectral feature representation, the vanishing gradient
problem can occur in the model, and consequently, failure in
parameter convergence and overfitting may result in the scenario
of limited training data [38]. In order to mitigate the disadvantage
of using a deeper network which may decrease the accuracy
due to vanishing gradient in the model, spectral-spatial residual
network (SSRN) [39] employs different residual blocks between
layers. These blocks collected abundant spectral and spatial
features in the model.

What is evident from the literature is that there exist a number
of constraints in CNNs, including the invariance generated by
pooling and their inability to determine the spatial relationship
between features due to several fully connected layers appended
to the final layers. In addition, most of those models require large
amounts of labeled data and many iterations to train. The high
cost of labeling severely limits their scalability to new categories.
Furthermore, this limits their applicability to a small number of
scene types (e.g., military zones), which are difficult to capture.
Humans, on the other hand, are capable of distinguishing scenes
with little or no supervision learning [40], [41]. In other words,
children can identify TV scene types based on a single image or
image description. To date, the most advanced scene classifica-
tion methods still fall far short of what humans are capable of
doing with only a handful of labeled samples [20].

In the capsule network (CapsNet), these limitations are ad-
dressed [42]. In recent years, CapsNet has been proposed as an
alternative and successful approach to DL. Instead of traditional
scalar points, in CapsNet, vectors facilitate the characterisation
of the relationships between the information available in the
features and identify more attributes to enable class discrim-
ination [43]. CapsNet has been employed in several research
areas such as electroencephalogram (EEG) classification [43],
MRI image classification [44], object detection [45], image
segmentation [46], and remote sensing [47], although it is still in
the early stages of development. For HSI classification, CapsNet
has been employed in [48] and compared against CNN methods.
The result demonstrated that the capsule-based architecture,
named CAP, can provide high overall accuracies on benchmark
datasets with higher complexity. Zhang et al. [49] proposed an
architecture by combining CNN and CapsNet to exploit the
benefits of both models. In their model, a DL-based feature
extractor is trained on the ImageNet dataset [50] after which
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the feature-map is fed into the new CapsNet model, which is
designed for HSI classification. The results demonstrated that
the pretrained model on Inception-v3 [51] gained an overall
classification accuracy higher than VGG-16 [52]. Several studies
have demonstrated that CapsNets are able to address the problem
of hyperspectral mixed pixels classification. When an object in
HSI is smaller than the spatial resolution, neighborhood mixing
occurs. While a large number of training samples are required in
DL networks to obtain reliable trained parameters and prevent
overfitting, CapsNets can be trained from a limited training data,
which is a common constraint in HSI [53].

There are some challenges for the existing capsule-based
networks for HSI classification. First, the feature extraction
section is poorly designed, and it is not considered that this
part should include both spectral and spatial data in a single
classification framework (for example, in [45] and [48]). As
a result, the extraction of features using spectral and spatial
patterns (2-D-CNN and 3-D-CNN) may be investigated entirely.
Since CapsNet is not designed for HSI classification, we cannot
adopt the original structure. For example, in [54], CAPSNET
operated the original architecture of the CapsNet on HSI datasets
with a shallow structure of two 2-D-CNN for organizing the
primary capsules. Second, some capsule-based networks for HSI
classification tried to show how their model can deal with a
limited number of parameters; however, deep learning studies
with small test and train sample sizes require a careful validation
process. Without nested cross-validation (nested CV), the same
data are used to tune model parameters and evaluate model
performance in a model selection. As a result, information
may leak into the model, causing the data to overfit [55]. For
example, in [49] and [54] simple cross-validation is performed
for CapsNet-base models. Here, we promote and demonstrate
the use of nested-CV for improved hyperparameter optimisation
and generalization.

The motivation of this study is to propose a novel end-to-end
DL architecture involving a hybrid of CNN and CapsNet (Hybrid
CapsNet - HCapsNet) with robust feature learning while using
a limited number of training samples. In addition, HCapsNet
addresses the issue of high dimensionality and class similarity
for HSI classification. Instead of the traditional max-pooling
process, HCapsNet employs dynamic routing (DR) as a novel
routing method in the CNN architecture and combines 2-D and
3-D CNNs to extract higher level spatial and spectral features.
These features are, unlike the traditional structure of the neurons,
vectors. This information vector transformation preserves the
entity’s precise posture feature information. Following that,
features are reshaped and employed as an input vector to the
next layer for DR. Finally, the decoder part, which acts as
a regularizer, is added. Since we dealt with limited training
samples, Nested-CV is applied for hyperparameter optimiza-
tion, and the best parameters for the proposed architecture are
reported. The proposed architecture is evaluated using three
widely used hyperspectral benchmark datasets collected by the
airborne visible infrared imaging spectrometer (AVIRIS) over
the Indian Pines (IP), Indiana (16 classes), and Salinas Valley
(SV), California (16 classes), and by the reflective optics spec-
trographic imaging system (ROSIS) over the city of Pavia (UP),

Italy (9 classes). The method is benchmarked against SVM [12],
2-D-CNN [56], 3-D-CNN [57], HybridSN [34], SSRN [39],
SCAEs [31], CRNNs [32], and CAPSNET [54]. The major
contributions of the article can be summarized as follows.

1) An efficient hybrid CapsNet is proposed, which can be
applied for the classification of HSIs with a low number
of training samples.

2) A DR technique inspired by CapsNet is incorporated in
our model, which significantly improves the extraction of
spatial-spectral features.

3) A nested-CV technique is applied to find the best model
parameters. To the best of our knowledge, this is the first
study exploring the nested-CV for this purpose and is
recommended approach for thorough evaluation of gen-
eralisation performance.

4) A thorough experimental comparison of the presented
approach with other recently proposed advanced DL tech-
niques using three available benchmark datasets.

The rest of this article is organized as follows. Section II
explains methods (i.e., CNNs, CapsNet approach, and a general
overview of DR in terms of structure, routing prediction, and
the procedure). Following that, the proposed HCapsNet and
analysis are described. The experimental results on different HSI
benchmarks, computational time, hyperparameter selection, and
ablation study are provided in Section III. The results are dis-
cussed in Section IV. Finally, Section V concludes this article.

II. METHODS

In this section, both 2-D and 3-D CNN approaches in terms of
the network structure, operations, kernels dimension, and blocks
arrangements which are later used in the proposed HCapsNet
architecture are explained. In addition, a comprehensive rep-
resentation of the CapsNet structure with the idea of neurons
vectorization is elaborated. More importantly, the DR algorithm,
which is applied to make the feature prediction between capsule
layers as the principal part of the CapsNet, is explained. Next, the
description of the proposed method and the datasets is described.
Additionally, statistical analysis is defined.

A. CNNs Approach

The objective of a CNN is to learn how the input data and
the output data are mapped [58]. As the HSI datasets are volu-
metric, when designing feature maps, employing 2-D-CNN and
3-D-CNN make it possible to achieve the highest accuracy in
the model. For a 2-D-CNN, a series of matrix multiplications
named kernel filters with a sample size (Pi, Qi) in the ith layer
are applied followed by a summation operation to the input
images. The objective is to detect parts of that image with the
most relevance [59]. To elaborate, V ab

ij , the output centered at
(a, b) for the jth feature map and the ith layer can be expressed
as

V ab
ij = tanh

(
bij +

∑
m

Pi−1∑
x=0

Qi−1∑
y=0

W xy
ijmV

(a+x)(b+y)
(i−1)m

)
(1)
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where the hyperbolic tangent (tanh) is the nonlinearity opera-
tion employed on the kernel output and biases (bij). W

xy
ijm and

m are the kernel output centered at (x, y) for the kth feature map
and the indexing parameter over a feature maps set connected
to the current feature map in the (i− 1)th layer, respectively.
In general, the output of the convolutional layer is a feature
map, which represents several features learned from the input
image. The convolutional block is concluded by a pooling or
subsampling operation. In the pooling operation, sections are
created for all pixel values, but only the maximum pixel value is
obtained from each section. Finally, the high-level reasoning is
carried out using layers that are fully connected, following sev-
eral layers performing convolution and max pooling. In a fully
connected layer, neurons are connected to every activation in
the previous layer. Basic features such as edges and bright spots
are learned in the convolutional network’s lowest layer. Once
these features are learned, more complex shapes and patterns
are learned across multiple layers to enable the convolutional
networks to classify images.

Similarly, considering that Ri is the third dimension of the
kernels in 3-D-CNN, the output centered at (a, b, c) for the jth
feature map and the ith layer is formulated in (2), where W xyz

ijm

is the kernel output centered at (x, y z) for the kth feature map
and m indicates feature maps indexes

V abc
ij = tanh

×
(
bij +

∑
m

Pi−1∑
x=0

Qi−1∑
y=0

Ri−1∑
z=0

W xyz
ijm V

(a+x)(b+y)(c+z)

(i−1)m

)

(2)

B. CapsNet Approach

In terms of the structure of the neurons, the architecture of
the network, propagation, and interlayer distribution methods,
there is a significant difference between CapsNet and traditional
CNN models [42]. The capsule neuron is a critical formation in
CapsNet. The parameters used as input and output in CapsNet
are, in contrast with the traditional structure of the neuron,
vectors. Hence, the inside parameters correspond to vectors, with
differences in the employed activation functions. To elaborate,
the neuron input and output vectors in the capsule indicate the
parameters employed for the instantiation of a particular type of
entity i.e., the vector length represents the probability for entity
existence, and the vector direction indicates the presence of the
entity attribute.

In a general description, capsule networks are networks de-
signed to obtain inverse graphics. Capsules receive an image and
identity of its containing objects as well as their instantiation
parameters [42]. Therefore, capsules are defined as functions
capable of predicting instantiation parameters for any designated
object at a specific location. The estimated probability of an
object is represented via the length of an activation vector.
Also, the activation vector’s orientation reveals the instantiation
parameters of the object. Since the CapsNet is robust to affine
transformations and can interpret them, the instantiation param-
eters can be rotation, skewed, stretched, thickness, etc. Since

the length of the vectors represent a probability that should be
less than or equal to 1, a squashing function can be utilized. In
each layer, the capsule’s objective is to anticipate the output of
the subsequent layers according to the previous layer. In order
to perform such a prediction, the dot product is employed. The
hierarchy is obtained easily through monitoring the activation
pathways and comprehend the parts that belong together with
high precision.

The structure proposed for CapsNet is straightforward. The
model for the original CapsNet, as demonstrated in Fig. 1,
includes various layers, namely convolution layers, primary
capsule, DigitCaps (second capsule), and fully connected layers.
A handwritten digit image is fed into the model and each layer
comprises a convolution (Conv1 and Conv2 with the same
kernels and different strides). The rectified linear unit (ReLU) is
used to activate the classic convolution layers in the convolution
layers. As a consequence, Conv1 and Conv2 produce different
feature maps. The primary capsule layer is formed by reshaping
the feature maps and is responsible for constructing the corre-
sponding vector structure and acts as the capsule input layer.
Moreover, this layer is responsible for reshaping, which is then
applied as an input vector to the following layer.

Similarly, the DigitCaps layer represents the output layer for
the capsule. The loss function for the classification objective
(encoder part) is determined after the DigitCaps, while the fully
connected layers are to reconstruct the images (decoder part)
to act as network regularizations that prevent overfitting. The
DR algorithm is employed between the primary capsules and
the DigitCaps to update the calculations and the parameters
necessary between the full connections. As for updating the pa-
rameters, in CapsNets, DR is employed along with the traditional
back-propagating method [42].

C. Dynamic Routing Algorithm

As in (3), the primary capsule ui (i = 1, . . . , 1152) in the DR
algorithm is multiplied by a weighted matrices Wij to predict
the next level capsule output ûj

i in the next ten (since the network
is going to classify 10 digit numbers 0 to 9) different DigitCaps
(j = 1, . . . , 10). The 16-D capsules output ûj

i (4) is determined
by multiplying the weighted matrix multiplication Wij and
8-D primary capsules ui. Therefore, the dimension of Wij is
[16× 8]. In other words, the transformation matrix in the same
capsule level speculates the instantiation parameters of the cap-
sules at higher levels

ûj
i =wi,j . ui (3)⎡

⎢⎢⎢⎢⎣
ûj
i (1)
...
...

ûj
i (16)

⎤
⎥⎥⎥⎥⎦
16×1

=

⎡
⎢⎢⎢⎢⎣

wi,j(1) · · · wi,j(8)
...
...

. . .
...
...

wi,j(120) · · · wi,j(128)

⎤
⎥⎥⎥⎥⎦
16×8

.

⎡
⎢⎣
ui(1)

...
ui(8)

⎤
⎥⎦
8×1

.

(4)

To elaborate, calculations for the first capsule (i = 1) and the
last (i = 1152) are shown in the following:

û1
1 = w1,1. u1 . . . û10

1,152 = w1152,10 . u1152. (5)



11828 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 1. Structure of the CapsNet (encoder). The model receives as an input image a handwritten digit (MNIST database of handwritten digit [60]) with size
28×28×1 and learns to encode it into a 16D vector of instantiation parameters (DigitCaps) for 10 different classes. The Convolution layers are classic convolution
layers with a rectified linear unit (ReLU) activation function to implement the extraction of local features. There are two convolutional layers (Conv1 has 9x9
convolutional kernel with a stride of 1 and ReLU and Conv2 has 9×9 convolutional kernel with a stride of 2). Conv1 results in 256 20×20 features maps and the
second results in 256 6×6 (32×8× 6×6) feature maps which contain scalars. This output is reshaped to get 32 6×6 maps, including 8-D vectors. In total, we have
1152 capsules resulting in a list of 11 520 predictions: 1152 prediction × 10 classes = 11520 weighted matrices Wij .

These calculations are performed with element-wise matrix
multiplications, where all matrices hold the same dimensions
[1152× 10].

The process for the algorithm in CapsNets, with the presence
of a routing agreement, can be seen in Algorithm 1. In the
training session, one batch of the input image at each iteration
is fed to the input layer. Next, following two convolutional
layers and reshaping, ûj

i is performed. Then, at the first iteration
(r = 1), the log probability bij (i.e., the primary capsule i should
be transmitted to DigitCaps j) is set to 0 (raw routing weight)
for each predicted output ûj

i . After that, the softmax function as
follows is implemented on these raw weights for each primary
capsule:

cij =
exp (bik)∑
k exp (bik)

. (6)

Next, a weighted sum of the predictions is measured (7), for
each capsule in the subsequent layer, along with applying the
squashing function (8). The squashing function, which com-
presses and non-linearizes the vectors, performs the capsule
neuron’s activation function. In other words, this activation
function includes two-parts: the unit length (right part) that is
responsible for preserving the length of the vectors between 0
and 1, and the additional scaling (left part) that is responsible
for preserving the direction of the vectors

sj =
∑
i

cij ûj|i (7)

vj =
||sj ||2

1 + ||sj ||2
sj
||sj || . (8)

Next, by applying the dot product (9), the prediction (strong
agreement) between the lower and upper capsule is performed.
After mostly two or three iterations, the routing weight demon-
strated in (10) is updated

ûj|i. vj (9)

Algorithm 1: Training and Backpropagation.
for numbers of epochs do

for iterations (batches) do
for numbers of routing(r) do

bi,j (initialized)
(r=1) = 0

bi,j → ci,j� Coupling coefficient (Softmax)
Sj

(r) =
∑

i ci,j .ûij
(r) � Weighted sum

Vj
(r) = Squash(Sj

(r)) � Product vector
= Squash(

∑
i ci,j .ûij

(r))

Dot Product: ûj
i . Vj

(r)

bi,j
Updated ← bi,j + ûj

i . Vj
(r)

← bi,j + ûij
T . Vj

(r)

← bi,j + ûij
T . Squash(

∑
i ci,j .ûij

(r))
return Vj (end for routings)
The loss function for the correct category:
LJ = k. max(0, 0.9− ||Vj ||)
Backpropagation starts:
Weighted matrices: wi,j

updated ← wi,j

Convolution layers: filtersupdated ← filters
end for (iterations)

end for (epochs)

bij = bij + ûj|i vj (10)

Hence, in the top layer, an image classifier can be designed
with one capsule per class. Then, it is necessary to append a
measuring layer to calculate the length of the top layer activa-
tion vectors, which obtains the estimated class probabilities. In
standard classification neural networks, training is carried out
via minimising the cross-entropy loss. However, Hinton [42]
applied margin loss Lk (11) to enable detecting multiple classes
in the image. According to this equation, if an object, within class
k, can be detected in the image, the output for the corresponding
capsule length in the top-level should be more than or equal to
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Fig. 2. Reconstruction in CapsNet (Decoder). The decoder contains three fully
connected layers with the number of neurons 784, 1024, 512.

Fig. 3. Proposed HCapsNet block diagram.

0.9. On the other hand, if such an object cannot be detected, then
the output of the capsule should be a short vector with a length
of less than 0.1

Lk = Tk max(0,m+ − ||vk||)2

+ λ(1− Tk)max(0, ||vk|| −m−)2. (11)

To allow multiple classes, the margin loss Tk = 1 is mini-
mized if and only if classk is present. In this equation,m− = 0.1,
m+ = 0.9 and λ = 0.5. Once the routing weights bi,j

Updated

are updated, the backpropagation will initiate. Using the Adam
optimizer [61] in TensorFlow, by agreement in this stage, the
gradient of loss in the network is generated, and weighted
matrices and filters in convolution layers are updated without
route checking. After this step is concluded, we can proceed to
the next batch of image sets.

In the original CapsNet after three fully connected layers are
derived, they are combined as a decoder network to the top of
the CapsNet (see Fig. 2).

To learn the input image reconstruction, the squared differ-
ence between the reconstructed image, and the input image
should be minimized. The overall loss (12) is the summation
of the margin loss and the reconstruction loss. To ensure that
the dominating loss in the training stage is the margin loss, the
reconstruction loss is scaled down with a significantly small
coefficient (α = 0.0005)

Loss = margin loss+ (α.reconstruction loss). (12)

D. Proposed Hybrid Capsule Neural Network

Here, we explained the formation of our proposed architec-
ture. Although architectures in computer vision with deeper
layers can yield better feature extraction, this is not the case
in HSI and, often model performance will be decreased with
deeper layers [39]. In the original CapsNet, since the model is
designed for conventional computer vision images, it cannot be
applied directly to HSI. Hence, to obtain a suitable model for HSI
classification, the leading workflow of the proposed HCapsNet
is divided into the following three sections (see Fig. 3).These
three sections are explained below.

1) Dimension Reduction: First, principal components anal-
ysis (PCA) is applied on labeled dataset to decrease spectrum
redundancy. It compresses the HSI that reduces the number of
spectral bands. Then, without feature engineering, the corre-
sponding image is divided into patches labeled with respect to
the central pixel. Finally, 2-D–3-D CNNs are implemented to
extract the spectral-spatial feature map (see Fig. 4).

2) Capsule Network: In this step, the output is first reshaped
into nD vectors ui(i = 1, . . . , I) as a vector length n for a
single capsule in the CapsNet structure. Then, it is multiplied
by weighted matrices Wij to predict the capsules for the next
level (called ClassCapsule ûj

i (j = 1, . . . , J)), where I andJ are
the number of primary capsules and classes, respectively. Here,
m is the vector length for one ClassCapsule. Then, as explained
in Section II, the weighted sumSj will be calculated, followed by
the squash function. After that, the DR process will be performed
to send the most related capsule in PrimaryCaps to the Class-
Capsule. Finally, a classifier can be designed in the top layer
with one capsule per class. It means that the characteristics and
feature spatial relationships are encoded correctly (see Fig. 5).

3) Decoder: In the decoder, an additional reconstruction loss
is applied to drive the next level capsule called ClassCapsule to
encode the instantiation parameters from input data. Although
the decoder functions similarly to a regulariser, adding the mar-
gin loss to prevent overfitting during training, it is not dominant
in the margin loss because of the scaling factor applied (0.0005).

Tables I and II show the final selected architecture for the
datasets used. In this case, to show the structure of different
layers with different input and output shapes, 25 principal
components (PCs) are selected for the IP dataset and 15 for
the SA and UP datasets. The 3-D-CNN and 2-D-CNN are
employed to form the output. After that, the output is reshaped
into capsules (PrimaryCaps) which is then sent to the most
relevant ClassCapsule in the next layer by the DR algorithm for
the classification. The decoder is also added to the final stage
of the model. Dataset and analysis description are described in
subsections below. Also, the effect of different number of PCs
is analyzed in the following section.

E. Data Description

To evaluate and compare the performance of the proposed
method, three widely-used HSI datasets, (i.e., Indian Pines (IP),
Salinas Valley (SV), and University of Pavia (UP) [62]) were
employed in this research. The dataset statistics and information
regarding different environmental frameworks are described in
Table III.

All the datasets are obtained using aerial sensors. HSI is
very well known to be prone to atmospheric conditions, which
can cause difficulty in processing. Therefore, applying band
selection and normalization is necessary. Particularly, spectrum
dynamics transform due to sensors conditions. Therefore, to
enhance classifier robustness, water absorption band and low
signal to noise ratio bands are excluded. Moreover, PCA and
mutual information can remove uninformative bands and re-
duce spectrum redundancy [63], [64]. There are 16 classes in
IP and SV with the total number of the samples 10 249 and
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Fig. 4. Feature extraction in the proposed architecture. As demonstrated here, a hyperspectral cube dimension is reduced following PCA, patch windowing,
and CNNs. All the parameters used for dimension reduction is completely explained in the hyperparameters settings.

Fig. 5. Capsule network in the proposed HCapsNet architecture. The different arrows demonstrated a vector with different length and orientation, which means
different parts of the feature are identified in that specific part of the data. The number of the Primary Caps (I) depends on the dimension of the feature map in the
last convolution layer-the number of the ClassCapsule (J) is equal to the number of the classes in the specific dataset.

TABLE I
SUMMARY OF DIFFERENT LAYERS EMPLOYED IN THE PROPOSED HCAPSNET FOR 25× 25 WINDOW SIZE WITH PCS = 25 FOR IP DATA PATCHES

TABLE II
SUMMARY OF DIFFERENT LAYERS EMPLOYED IN THE PROPOSED HCAPSNET FOR 25× 25 WINDOW SIZE WITH PCS = 15 FOR UP & SV DATA PATCHES
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TABLE III
DATASET STATISTICS AND DESCRIPTION

Fig. 6. Natural composite images and labels for Indian Pines (IP).

54 129, respectively. The total number of the samples in the UP
dataset is 50 232 with 9 different classes. The natural composite
images and labels for each dataset are illustrated in Figs. 6–8.

Although DL networks require a large number of training
samples to achieve valid trained parameters and avoid overfit-
ting, CapsNet-based models can be trained with limited training
data. Therefore, to determine the performance of the approaches,
we adjusted training samples to evaluate performance when
30%, 10%, 5%, and 1% are used for each dataset. In the training
phase of HCapsNet, the transformation matrix, neuron weights,
and biases are optimized.

F. Analysis Description

The representation of a data cube in HSI can be denoted by
C ∈ RW×H×B where W is the width, H is the height, and B is
the depth so that, each pixel inC represents a vector with a length
of B (the number of bands) from a set of different elements of
the matrix W ×H . To elaborate, each of these vectors forms a
particular element in the captured scene with individual spectral

Fig. 7. Natural composite images and labels for Salinas.

Fig. 8. Natural composite images and labels for University of Pavia.

specifications and can be considered a high dimensional datas-
pace. We first split the input data into 3-D-patches (w × h × b),
with the label centered pixel at [w2 + 1, h

2 + 1].
In HSI processing, we are generally dealing with limited

training samples. Therefore, to set up the hyperparameters to
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Fig. 9. Inner and outer loops operation in nested-CV. To begin, the data are divided into k parts (k-1 train datasets and 1 test dataset). The test dataset is kept in
the outer-loop for testing. The remaining k-1 parts are then used to create an inner-loop. A validation accuracy is collected for each hyperparameter combination
once the inner-loop data have been separated again into k parts. As a result of this, k values for the model validation accuracy are obtained for each parameter
specified in the hyperparameter space. The ideal set of hyperparameters is determined by calculating the mean validation accuracy for each HP combination across
all inner parts. Then based on the summation of all inner-loop validation accuracy, a single set of hyperparameters is chosen. The optimized hyperparameters are
then applied to the final model, which is trained on outer-loop train parts and tested on outer-loop test parts, with the resulting classification accuracy employed to
indicate model performance.

obtain higher accuracy and estimate the correct error unbias-
edly, we utilized nested-CV. Although nested-CV is applied to
models in case of a limited dataset, we cannot overlook the
fact that it is computationally expensive in larger datasets [65].
However, it can be applied to model training where optimisation
is required on hyperparameters. If nested-CV is not employed to
choose the model, the related data will be used to fit the model
parameters and evaluate the performance of the model, which
may cause overfitting due to data leakage into the model [66].
The model stability and the size of the dataset are two factors
that influence overfitting. Therefore, Nested-CVs involving a
set of train, validation, and tests is applied to eliminate such an
occurrence [67]. There are two loops in this algorithm. In outer
and inner loops, data is split into five parts. Fig. 9 illustrates how
the inner and outer loops operate for optimizing parameters set
a and b. As can be seen, in the inner loop, by fitting the model
to each training dataset, it attempts to maximise the accuracy.
Then the hyperparameters are maximized by fitting the data to
the validation set. Finally, the generalisation error estimation
in the outer loop is obtained using the average outer loop test
set scores which are reported in the results section and use to
compare approaches.

The classification results for our HCapsNet method are com-
pared with other classic classification methods available in lit-
erature, including spectral-based classifiers: SVM [12], spatial-
based classifier: 2-D-CNN [56], spatial-spectral classifier: 3-D-
CNN [57], HybridSN [34], SSRN [39], SCAE [31], CRNN [32],
and CAPSNET [54] as the state-of-the-art methods. For all
networks, we selected architectures derived from their origi-
nal structure. For each method we optimized hyperparameters
within the nested-CV as shown in Table IV. For HCapsNet

TABLE IV
HYPERPARAMETERS SETTINGS USING NESTED-CV

to determine the best parameters, vector lengths n and m are
selected between (n : 6, 8, 10) and (m : 14, 16, 18). The number
of filters implemented in the 2-D-CNN and 3-D-CNN classifiers
is chosen between 16, 32, 64. The same number of filters are ex-
amined for spatial and spectral-spatial filters in HybridSN. In our
experiment, kernel filters for the SVM are searched for a range
of gamma (1,5,15,20), C (0.0001, 0.001, . . ., 1000). SCAE em-
ploys three convolutional layers and three deconvolutional layers
with kernels sizes selected between (3, 4, 5). The number of the
kernels in the first, second, and third convolutional layers are set
between (32, 64, and 128). In CRNN, two recurrent layers with
convolutional LSTM units are used. For both recurrent layers,
convolutional kernels are selected between (3, 4, 5). The first and
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TABLE V
CLASSIFICATION RESULTS FOR IP DATASET

TABLE VI
CLASSIFICATION RESULTS FOR UP DATASET

second recurrent layers’ kernel numbers are set between (16, 32,
64). For all DL approaches the number of training epochs and
the mini-batch sizes were fixed to 100 and 64, respectively. To
enable a fair comparison for all methods the number of HSI
cubes in the train and test datasets are consistent.

Also, PCA is used for dimensionality reduction and the opti-
mal number of PCs are selected from the validation data ranging
from 15–30 PCs. A network structure’s performance can also be
measured by the computation time, which directly measures its
computational efficiency. The computational complexity of deep
learning models is heavily influenced by network parameters.
Therefore, we compared computational time of HCapsNet with
other methods. Furthermore, an ablation study is performed
to demonstrate the effectiveness of each part of HCapsNet.
Since the reconstruction part drives the network to push all
the necessary information to the top layer of the HCapsNet,
it is important to compare HCapsNet with and without the
reconstruction section (Decoder). Also, to show the efficacy of
other components, HCapsNet with and without Conv2-D and
Conv3-D is analyzed.

G. Statistics

To evaluate the performance of the model, we employ overall
accuracy (OA) and average accuracy (AA) quantitative metrics.
Specifically, OA represents the average correct classification

item across all classes, while AA specified the number of correct
classification samples per class for all test samples. Also, the
Kappa statistic, the estimation for the agreement between labels
of classified instances in the machine and ground truth labels,
are reported.

Analysis of variance (ANOVA) is used to determine the
significance of differences between the results of each method
(p < 0.05). In addition, the Tukey method as an ANOVA post
hoc analysis is used to compare the pairwise combinations of
the methods.

III. RESULTS

This section presents the accuracy of methods, computational
time, hyperparameter selection, and ablation study.

A. Accuracy of Methods

The classification results of all methods are presented in
Table V–VII. Although there are no significant differences
(p < 0.05) between the proposed method and state-of-the-art
DL methods with larger training set sizes (> 1%), the HCapsNet
provided higher accuracies using the least training data.

For example, for the SV dataset and 1% training samples sizes,
ANOVA revealed significant differences in performance across
all methods (F8,26 = 32.4,p < 1× 1× 10−10). A post hoc
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TABLE VII
CLASSIFICATION RESULTS FOR SV DATASET

TABLE VIII
NUMBER OF THE NETWORK PARAMETERS AND TIME CONSUMPTION

analysis indicated that HCapsNet performed significantly better
than all other approaches. Also, with 85.54% overall accuracy,
SSRN outperformed all other CNN-based approaches, including
CRNN, SCAE, HybridSN, 2-D-CNN, and 3-D-CNN but not
HCapsNet.

Similarly, for IP and UP datasets, HCapsNet achieved 90.67%
and 95.57% in comparison to the second-best method (CAP-
SNET) with 87.56% and 90.55% overall accuracies, respec-
tively. The ANOVA test indicated significant differences for
IP (F 8,26 = 39.5, p < 1× 1× 10−11) and UP (F 8,26 =

23.8, p < 1× 1× 10−9)with smaller (1%) sample sizes. For IP,
CRNN and SCAE outperformed all other CNN-based methods
with 85.25% and 87.11% (for UP 90.42% and 90.25%) overall
accuracy. Although HCapsNet overall accuracy is significantly
higher than SSRN and CRNN (p < 0.05), the Tukey post hoc
tests did not indicate a significant difference between HCapsNet,
CAPSNET, and SCAE (p > 0.05) for the IP dataset. Also,
because CNN-based models may fail to generalise with fewer
training samples, both 2-D and 3-D CNNs achieved 80.33% and
74.41%, respectively, whereas the SVM model performed better
with 83.19% overall accuracy.

B. Computational Time

The computational efficiency of HCapsNet compared to other
models are shown in Table VIII. HCapsNet’s training times are
approximately 40(s) longer than its counterpart (CAPSNET),
owing to the fact that both 2-D and 3-D CNNs are used in
HCapsNet. CAPSNET, on the other hand, employs only 2-D
CNNs. Furthermore, when comparing HCapsNet to HybridSN,
which used similar 2-D and 3-D CNNs, HCapsnet acquired more
trainable parameters because of the use of dynamic routing in

TABLE IX
HYPERPARAMETERS SELECTED USING NESTED-CV

HCapsNet. In other words, the dynamic routing method in the
HCapsNet demands a significantly greater amount of computa-
tional resources than its CNN counterparts.

C. Hyperparameter Selection

The hyperparameters selected for methods are reported in
Table IX. In the case of the HCapsNet, optimal vector lengths
were selected as n = 8 and m = 16 using nested-CV. These
are the optimal length for one single primary capsule and one
ClassCapsule.

In addition, the impact of employing a different number of
PCA on datasets was analyzed. The classification results for
HCapsNet for 15, 20, 25, and 30 PCs reported in such a way that
all the framework settings were retained as before. It can be seen
in Fig. 10 that the classification results on the SV dataset did not
increase significantly (p > 0.05) due to using more information
from the data. Therefore, the DR is not sensitive to the number
of PCs, and the computational cost in DR will be relatively



KHODADADZADEH et al.: HYBRID CAPSULE NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION 11835

Fig. 10. Effect of different principal components (PCs) on different datasets.

TABLE X
IMPACT OF DIFFERENT PATCHING WINDOW SIZES AND CNN KERNEL SIZES

increased by using a higher number of PCs without additional
accuracy gains.

Since the patches’ windows sizes and convolution filter sizes
play a pivotal role in the HCapsNetarchitecture, as they deter-
mine the number of the capsules in the primary capsule layer,
these parameters are also examined in the presented structure.
For this, we fixed the number of PCs to 25 for the IP dataset
and 15 for SA and UP datasets, respectively. In order to analyze
the window sizes, the size of 3-D-Conv filters is set to (9, 9, 7)
and (9, 9, 5), and (3, 3) for the 2-D-Conv. The classification
results are reported in Table X, while only 1% data are used
for training. As can be seen in Table X, for the best performance
of the network 25 is the best window size for IP and SA, and 19
for UP.

The quality of the classification results shows the effectiveness
of the different classification methods. The classification maps
for the different trained models after optimizing parameters
are shown in Figs. 11–13. The ground truth and classifica-
tion maps comparison show that the HCapsNet architecture
with dynamic routing has better performance than the other
spectral-spatial methods. Results also indicated that HybridSN
performed significantly better than 2-D and 3-D CNNs due to
use of spatial-spectral feature extraction in their structure. Also,
in the boundaries of the classes in the 2-D-CNN, some artefacts
can be observed which suggest the spatial information is not
sufficient for classification in boundaries. Since only spectral
information is employed in classical methods such as SVM,
a number of noise issues are obvious. Therefore, a reasonable
approach can be found in models using both spatial-spectral
information with more consistency of the classes. HCapsNet
achieved higher overall accuracy as it missed fewer pixels than
other methods in the entire image, including boundaries.

D. Ablation Study

To better demonstrate the effectiveness of each part of HCap-
sNet, the performance of the model without the reconstruc-
tion part (Decoder), Conv2-D, and Conv3-D are analyzed. The
experimental results on datasets are summarized in Table XI.
When compared to other methods, HCapsNet using a De-
coder yield higher classification accuracies (F 3,11 = 7.9, p <

1× 1× 10−3). As a result, the number of trainable parameters
and the time consumption is increased. Since there was no
decoder used in without-decoder, the margin loss has been
used instead of total loss. To determine the significance of
CNNs in our proposed architecture, we compared the effects
of each 2-D and 3-D CNN. HCapsNet (With-decoder) achieved
a significantly higher overall accuracy than Without 2-D-CNN
and 3-D-CNNs (p < 0.02, p < 0.01). These results indicate that
efficient spectral-spatial feature extraction is critical for enhanc-
ing HCapsNet classification performance. There are insignif-
icant differences in performance when comparing HCapsNet
Without 2-D-CNN to HCapsNet without 3-D-CNNs (p > 0.05)
indicating that advantages of the hybrid approach is realized
with combined 2-D and 3-D CNN decoders.

IV. DISCUSSION

Here, we presented the HCapsNet and thoroughly evaluated
its performance on three commonly used HSI benchmarks. The
results supported the assertion that DL methods as a data-
managed features technique and, particularly, HCapsNet, are
incredibly performant in the situation of small training sample
sizes. In terms of encoding the characteristics and feature spatial
relationships, the proposed architecture is a novel and unique
method in HSI processing. HCapsNet dealt with the challenging
issue of natural complexity in HSI, which is caused by the
high spectral resolution. To elaborate, in the proposed model,
management of the spatial-spectral features is possible with the
extraction of more relevant information in the hierarchy of part
of the image.

In addition, as can be seen in the results for all three datasets,
CapsNet-based and CNN-based models performed better than
SVM—a manually engineered features technique. Although the
result for SVM showed that the accuracy diminished consider-
ably when smaller training samples were used, the HCapsNet
maintained stable accuracy. Results for HCapsNet and CAP-
SNET also indicated less uncertainty arising from performance
variability in comparison to the other approaches compared as
evident from lower and less variable standard deviation. Further-
more, the classification maps displayed more misclassification
for SVM, 2-D-CNN, and 3-D-CNN, especially in the boundary
regions, which is not the case for HCapsNet. This weakness is
more evident for the UP dataset because this dataset has more
complicated class borders than the others.

Since we deal with limited datasets in remote sensing [68],
the most suitable parameters are achieved by using nested-
CV which helps to prevent the leakage of the data into the
model, but it does require much more computational effort.
Therefore, in order to overcome the computational overhead
and represent the input patches properly, we chose the fixed
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Fig. 11. Classification maps for IP dataset: Ground truth (a), the predicted output for HCapsNet, CAPSNET, CRNN, SCAE, SSRN, HybridSN, 3-D-CNN,
2-D-CNN, and SVM (b)–(j).

Fig. 12. Classification maps for UP dataset: Ground truth (a), the predicted output for HCapsNet, CAPSNET, CRNN, SCAE, SSRN, HybridSN, 3-D-CNN,
2-D-CNN, and SVM (b)–(j).

Fig. 13. Classification maps for SV dataset: Ground truth (a), the predicted output for HCapsNet, CAPSNET, CRNN, SCAE, SSRN, HybridSN, 3-D-CNN,
2-D-CNN, and SVM (b)–(j).

TABLE XI
ABLATION STUDY ON COMPONENTS OF HCAPSNET: THE PERFORMANCE OF THE DIFFERENT DESIGNS, LOSS, THE NUMBER OF TRAINABLE PARAMETERS,

AND COMPUTATIONAL TIME

patch sizes of 25. This also helped us to have a fair com-
parison with other methods. In addition, the learning process
is stabilized by BN as a regularization method in the model
and can result in higher accuracy [69]. As suggested in the
literature the higher number of labeled input cubes will improve

the performance of the models, in order to compare different
models, the same size of the training samples should be con-
sidered [70]. Regarding this, we believe that with an equal
standard of comparison, the HCapsNet can outperform other
models.
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In terms of computation time, CapsNet-based architectures
are more time consuming than other approaches. The CapsNet-
based models require approximately double the time to train
compared to the CNN-based models, indicating that the Cap-
sNet is more computationally expensive. This is because their
architecture incorporates an iterative dynamic routing. When we
are dealing with limited training samples, the parameter number
in CapsNet-based architectures is much higher than CNN-based
models; however, adopting a deeper CNN-based model with
more trainable parameters may cause overfitting, which is not
the case the CapNet approaches.

Also, as shown in the ablation study, HCapsNet with a decoder
achieves higher classification accuracy; as a result, the number
of trainable parameters and the amount of time required to train
the network increases. Comparing the results for different parts
of the HCapsNet confirmed that efficient spectral-spatial feature
extraction is crucial for improving the classification performance
of the HCapsNet.

The architecture currently used in HCapsNet is relatively
strict. In this structure, a vector representation of the instantiation
parameters is applied and there is only one capsule layer (pri-
mary caps) before the final ClassCapsule layer. Therefore, for
generalisation and applying the raw HSI format in case of limited
training sample sizes, the latest version of the CapsNet referred
to as matrix capsule, which transforms the vector formation to
matrix formation of the capsules, may be considered [71].

In addition, there are some restraints in the design of neural
networks or learning frameworks. For example, unlimited design
choices and constrained receptive fields to particular contexts
due to geometric restrictions with CNN kernels. Although nu-
merous studies have examined practical limits in the remote
sensing community for regularizing HSI datasets in diverse
applications such as spectral unmixing, sampling strategy [72],
[73], constraints on architecture spaces to avoid prohibitively
expensive neural architecture search has not been addressed.
Recently transformer neural networks [74] which use the at-
tention mechanism have sparked interest across a wide variety
of problems, including HSI. For example, Zhong et al. [75]
presented a framework for architecture search that combines
neural architecture search and experts’ knowledge to alleviate
the computational cost of architecture search. Therefore, to gen-
eralize spectral-spatial features and reduce the computational
cost, which was the main drawback in our method, an architec-
ture search framework in HCapsNet, should be developed and
evaluated in future research.

V. CONCLUSION

In this article, a review of the fundamental CapsNet with
the DR algorithm was presented. In addition, an end-to-end
DL architecture (HCapsNet) for HSI classification in situations
with limited training data was proposed so that the combination
of 2-D and 3-D CNNs was employed in the feature extractor.
Generally, DL methods in HSI rely on CNNs to extract spatial
and spectral features. However, since CNNs are often used
in conjunction with pooling, they cause the loss of valuable

information in the image. In addition to mistreating information,
pooling also eliminates the hierarchy of parts. In HCapsNet, the
instantiation parameters which form a vector are determined by
estimating the probability of the presence of the spatial-spectral
features in the HSI data cube. These features are preserved
efficiently in DR. Furthermore since the hyperparameter tuning
is a challenging issue with respect to limited training data,
nested-CV was applied to prevent data leakage into the models
and ensure generalization capability is thoroughly evaluated.
The significantly better performance of HCapsNet using limited
training data (e.g., 1% of entire data) is demonstrated on three
widely used hyperspectral image datasets. Smaller training sam-
ple size impacted the classification results and raised the risk
of overfitting in the non-CapsNet models such as 2-D-CNN,
3-D-CNN, and HybridSN; however, the consistency in the clas-
sification results provided by HCapsNet architecture regardless
of the amount of training data is evidence of the potential for the
proposed HCapsNet architecture.

REFERENCES

[1] L. Fasnacht, M.-L. Vogt, P. Renard, and P. Brunner, “A 2D hyperspectral
library of mineral reflectance, from 900 to 2500 nm,” Sci. Data, vol. 6,
no. 1, pp. 1–7, 2019.

[2] C. Chion, J.-A. Landry, and L. Da Costa, “A genetic-programming-based
method for hyperspectral data information extraction: Agricultural appli-
cations,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2446–2457,
Aug. 2008.

[3] U. Amato et al., “Statistical classification for assessing PRISMA hyper-
spectral potential for agricultural land use,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 6, no. 2, pp. 615–625, Apr. 2013.

[4] S. K. Meerdink, D. A. Roberts, K. L. Roth, J. Y. King, P. D. Gader,
and A. Koltunov, “Classifying California plant species temporally using
airborne hyperspectral imagery,” Remote Sens. Environ., vol. 232, 2019,
Art. no. 111308.

[5] H. van Deventer, M. A. Cho, O. Mutanga, L. Naidoo, and N. Dudeni-
Tlhone, “Reducing leaf-level hyperspectral data to 22 components of
biochemical and biophysical bands optimizes tree species discrimination,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6,
pp. 3161–3171, Jun. 2015.

[6] P. Levin et al., “A wafer level packaged fully integrated tunable Fabry-
Pérot filter with extended optical range for multispectral and hyperspectral
imaging,” J. Microelectromech. Syst., vol. 29, no. 3, pp. 357–369, 2020.

[7] G. M. Wyller et al., “Correlation of defect luminescence and recombination
in multicrystalline silicon,” IEEE J. Photovolt., vol. 9, no. 1, pp. 55–63,
Jan. 2019.

[8] I. C. C. Acosta, M. Khodadadzadeh, L. Tusa, P. Ghamisi, and R. Gloaguen,
“A machine learning framework for drill-core mineral mapping using
hyperspectral and high-resolution mineralogical data fusion,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 12, pp. 4829–4842,
Dec. 2019.

[9] D. Krupnik and S. Khan, “Close-range, ground-based hyperspectral imag-
ing for mining applications at various scales: Review and case studies,”
Earth- Sci. Rev., vol. 198, 2019, Art. no. 102952.

[10] A. Wang, J. Lu, J. Cai, G. Wang, and T.-J. Cham, “Unsupervised joint
feature learning and encoding for RGB-D scene labeling,” IEEE Trans.
Image Process., vol. 24, no. 11, pp. 4459–4473, Nov. 2015.

[11] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders,
N. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data
analysis and future challenges,” IEEE Geosci. Remote Sens. Mag., vol. 1,
no. 2, pp. 6–36, Jun. 2013.

[12] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sens-
ing images with support vector machines,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[13] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Semisupervised hyperspectral im-
age segmentation using multinomial logistic regression with active learn-
ing,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085–4098,
Nov. 2010.



11838 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

[14] Y. Y. Tang, Y. Lu, and H. Yuan, “Hyperspectral image classification based
on three-dimensional scattering wavelet transform,” IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 5, pp. 2467–2480, May 2015.

[15] T. V. Bandos, L. Bruzzone, and G. Camps-Valls, “Classification of
hyperspectral images with regularized linear discriminant analysis,”
IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862–873,
Mar. 2009.

[16] M. Khodadadzadeh, J. Li, A. Plaza, H. Ghassemian, J. M. Bioucas-Dias,
and X. Li, “Spectral-spatial classification of hyperspectral data using local
and global probabilities for mixed pixel characterization,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 10, pp. 6298–6314, Oct. 2014.

[17] B. Liu, X. Yu, P. Zhang, A. Yu, Q. Fu, and X. Wei, “Supervised deep feature
extraction for hyperspectral image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 56, no. 4, pp. 1909–1921, Apr. 2018.

[18] J. Xia, P. Ghamisi, N. Yokoya, and A. Iwasaki, “Random forest ensembles
and extended multiextinction profiles for hyperspectral image classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 1, pp. 202–216,
Jan. 2018.

[19] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Deep
learning for hyperspectral image classification: An overview,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 9, pp. 6690–6709, Sep. 2019.

[20] G. Cheng, X. Xie, J. Han, L. Guo, and G.-S. Xia, “Remote sensing
image scene classification meets deep learning: Challenges, methods,
benchmarks, and opportunities,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 13, pp. 3735–3756, Jun. 2020.

[21] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[22] A. R. Kosiorek, S. Sabour, Y. W. Teh, and G. E. Hinton, “Stacked capsule
autoencoders,” Adv. Neural Inf. Process. Syst., vol. 32, pp. 15512–15522,
2019.

[23] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and
L. Bottou, “Stacked denoising autoencoders: Learning useful representa-
tions in a deep network with a local denoising criterion,” J. Mach. Learn.
Res., vol. 11, no. 12, pp. 3371–3408 2010.

[24] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, 2006.

[25] H. Lee and H. Kwon, “Going deeper with contextual CNN for hyperspec-
tral image classification,” IEEE Trans. Image Process., vol. 26, no. 10,
pp. 4843–4855, Oct. 2017.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[27] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[28] G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[29] J. Li, X. Zhao, Y. Li, Q. Du, B. Xi, and J. Hu, “Classification of hyper-
spectral imagery using a new fully convolutional neural network,” IEEE
Geosci. Remote Sens. Lett., vol. 15, no. 2, pp. 292–296, Feb. 2018.

[30] B. Rasti et al., “Feature extraction for hyperspectral imagery: The evolution
from shallow to deep: Overview and toolbox,” IEEE Geosci. Remote Sens.
Mag., vol. 8, no. 4, pp. 60–88, Dec. 2020.

[31] R. Kemker and C. Kanan, “Self-taught feature learning for hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5,
pp. 2693–2705, May 2017.

[32] Q. Liu, F. Zhou, R. Hang, and X. Yuan, “Bidirectional-convolutional
LSTM based spectral-spatial feature learning for hyperspectral image
classification,” Remote Sens., vol. 9, no. 12, 2017, Art. no. 1330.

[33] H. Guo, J. Liu, J. Yang, Z. Xiao, and Z. Wu, “Deep collaborative attention
network for hyperspectral image classification by combining 2-D CNN
and 3-D CNN,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 13, pp. 4789–4802, Aug. 2020.

[34] S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, “Hybridsn:
Exploring 3-D-2-D CNN feature hierarchy for hyperspectral image clas-
sification,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 2, pp. 277–281,
Feb. 2020.

[35] D. Hong et al., “Interpretable hyperspectral artificial intelligence: When
nonconvex modeling meets hyperspectral remote sensing,” IEEE Geosci.
Remote Sens. Mag., vol. 9, no. 2, pp. 52–87, Jun. 2021.

[36] D. Hong et al., “More diverse means better: Multimodal deep learning
meets remote-sensing imagery classification,” IEEE Trans. Geosci. Re-
mote Sens., vol. 59, no. 5, pp. 4340–4354, May 2021.

[37] D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph con-
volutional networks for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 7, pp. 5966–5978, Jul. 2021.

[38] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[39] Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral-spatial residual
network for hyperspectral image classification: A 3-D deep learning frame-
work,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 847–858,
Feb. 2018.

[40] M. Ye and Y. Guo, “Zero-shot classification with discriminative semantic
representation learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2017, pp. 7140–7148.

[41] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to compare: Relation network for few-shot learning,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 1199–1208.

[42] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between cap-
sules,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 3856–3866.

[43] H. Chao, L. Dong, Y. Liu, and B. Lu, “Emotion recognition from multiband
EEG signals using capsnet,” Sensors, vol. 19, no. 9, 2019, Art. no. 2212.

[44] P. Afshar, A. Mohammadi, and K. N. Plataniotis, “Brain tumor type
classification via capsule networks,” in Proc. 25th IEEE Int. Conf. Image
Process., 2018, pp. 3129–3133.

[45] M. L. Mekhalfi, M. B. Bejiga, D. Soresina, F. Melgani, and B. Demir,
“Capsule networks for object detection in UAV imagery,” Remote Sens.,
vol. 11, no. 14, 2019, Art. no. 1694.

[46] K. Suri and R. Gupta, “Continuous sign language recognition from wear-
able IMUs using deep capsule networks and game theory,” Comput. Elect.
Eng., vol. 78, pp. 493–503, 2019.

[47] S. K. Roy, S. Manna, T. Song, and L. Bruzzone, “Attention-based adaptive
spectral-spatial kernel resnet for hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 9, pp. 7831–7843, Sep. 2021.

[48] F. Deng, S. Pu, X. Chen, Y. Shi, T. Yuan, and S. Pu, “Hyperspectral
image classification with capsule network using limited training samples,”
Sensors, vol. 18, no. 9, 2018, Art. no. 3153.

[49] W. Zhang, P. Tang, and L. Zhao, “Remote sensing image scene classifica-
tion using CNN-capsNet,” Remote Sens., vol. 11, no. 5, 2019, Art. no. 494.

[50] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 248–255.

[51] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[52] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. 3rd Int. Conf. Learn. Represent,
Sep. 2014.

[53] K. Zhu, Y. Chen, P. Ghamisi, X. Jia, and J. A. Benediktsson, “Deep con-
volutional capsule network for hyperspectral image spectral and spectral-
spatial classification,” Remote Sens., vol. 11, no. 3, 2019, Art. no. 223.

[54] M. E. Paoletti et al., “Capsule networks for hyperspectral image classifi-
cation,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 4, pp. 2145–2160,
Apr. 2019.

[55] G. C. Cawley and N. L. Talbot, “On over-fitting in model selection and
subsequent selection bias in performance evaluation,” J. Mach. Learn.
Res., vol. 11, pp. 2079–2107, 2010.

[56] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, “Deep
supervised learning for hyperspectral data classification through convolu-
tional neural networks,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
2015, pp. 4959–4962.

[57] A. B. Hamida et al., “Deep learning for semantic segmentation of remote
sensing images with rich spectral content,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp., 2017, pp. 2569–2572.

[58] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE Proc. IRE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[59] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221–231, Jan. 2013.

[60] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit database,”
2010. [Online]. Available: http://yann.lecun.com/exdb/mnist/.

[61] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[62] G. de Inteligencia Computacional (GIC), “Hyperspectral remote sensing
scenes,” 2020. [Online]. Available: http://www.ehu.eus/ccwintco/index.
php/Hyperspectral-Remote-Sensing-Scen%es

http://yann.lecun.com/exdb/mnist/
http://www.ehu.eus/ccwintco/index.php/Hyperspectral-Remote-Sensing-Scen%es
http://www.ehu.eus/ccwintco/index.php/Hyperspectral-Remote-Sensing-Scen%es


KHODADADZADEH et al.: HYBRID CAPSULE NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION 11839

[63] M. D. Farrell and R. M. Mersereau, “On the impact of PCA dimension
reduction for hyperspectral detection of difficult targets,” IEEE Geosci.
Remote Sens. Lett., vol. 2, no. 2, pp. 192–195, Apr. 2005.

[64] B. Guo, S. R. Gunn, R. I. Damper, and J. D. Nelson, “Band selection
for hyperspectral image classification using mutual information,” IEEE
Geosci. Remote Sens. Lett., vol. 3, no. 4, pp. 522–526, Oct. 2006.

[65] H. Van Hasselt, “Estimating the maximum expected value: An analysis
of (nested) cross validation and the maximum sample average,” 2013,
arXiv:1302.7175.

[66] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in Proc. Int. Joint Conf. Artif. Intell.,
1995, pp. 1137–1145.

[67] J. Wainer and G. Cawley, “Nested cross-validation when selecting clas-
sifiers is overzealous for most practical applications,” Expert Syst. Appl.,
vol. 182, p. 115222, Nov. 2018.

[68] K. Li, G. Wan, G. Cheng, L. Meng, and J. Han, “Object detection in
optical remote sensing images: A survey and a new benchmark,” ISPRS
J. Photogrammetry Remote Sens., vol. 159, pp. 296–307, 2020.

[69] Z. Zhong, J. Li, L. Ma, H. Jiang, and H. Zhao, “Deep residual networks
for hyperspectral image classification,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp., 2017, pp. 1824–1827.

[70] W. Li, G. Wu, F. Zhang, and Q. Du, “Hyperspectral image classification
using deep pixel-pair features,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 2, pp. 844–853, Feb. 2017.

[71] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM routing,”
in Proc. Int. Conf. Learn. Representations, 2018.

[72] Z. Zhong, J. Li, D. A. Clausi, and A. Wong, “Generative adversarial
networks and conditional random fields for hyperspectral image classi-
fication,” IEEE Trans. Cybern., vol. 50, no. 7, pp. 3318–3329, Jul. 2020.

[73] D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “An augmented linear
mixing model to address spectral variability for hyperspectral unmixing,”
IEEE Trans. Image Process., vol. 28, no. 4, pp. 1923–1938, Apr. 2019.

[74] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[75] Z. Zhong, Y. Li, L. Ma, J. Li, and W.-S. Zheng, “Spectral-spatial trans-
former network for hyperspectral image classification: A factorized ar-
chitecture search framework,” IEEE Trans. Geosci. Remote Sens., to be
published, doi: 10.1109/TGRS.2021.3115699.

Massoud Khodadadzadeh received the B.S. degree
in electrical engineering from the Sadjad University
of Technology, Mashhad, Iran, in 2010 and the M.Sc.
degree in electrical engineering from the Shahrood
University of Technology, Shahrood, Iran, in 2014.
He is currently working toward the Ph.D. degree
in computer science with Intelligent Systems Re-
search Centre (ISRC), School of Computing, Engi-
neering and Intelligent Systems, Ulster University,
Derry/Londonderry, U.K.

His research interests include advanced deep learn-
ing techniques, especially capsule neural network (CapsNet) method and its
application on hyperspectral imaging, EEG, and coordination dynamics.

Xuemei Ding received the Ph.D. degree in computer
science from Ulster University, Coleraine, U.K., in
2013.

She is currently a Lecturer in computer science
with Cognitive Analytics Research Lab, Intelligent
Systems Research Centre, School of Computing, En-
gineering and Intelligent Systems, Ulster University,
Coleraine, U.K. Her research interests include ma-
chine learning, pattern recognition, artificial intelli-
gence, novelty detection, and data science especially
in relation to data analytics and predictive modeling

on health care data such as Alzheimer’s disease and breast cancer.
Dr. Ding is a Fellow of The Higher Education Academy U.K. and a reviewer

of some top journals and conferences.

Priyanka Chaurasia (Member, IEEE) received the
B.Tech. degree in information technology from Har-
court Butler Technical University, Kanpur, India, in
2006 and the Ph.D. degree in computing and informa-
tion engineering from Ulster University, Coleraine,
U.K., in 2013.

Currently, she is a Lecturer in data analytics with
the School of Computing & Intelligent Systems, Ul-
ster University, Londonderry, U.K. Before her Ph.D.,
she was with IBM India Software Labs, Bangalore,
India, for three years as a Software Engineer. She has

patents granted by the U.S. Patent and Trademark Office in the area of signature
verification. Her research interests include assistive technology, health care,
activity recognition, biometric security, and data analytics.

Dr. Chaurasia was the recipient of the IBM Invention Achievement Award in
2008.

Damien Coyle (Senior Member, IEEE) received a
first class degree in computing and electronic engi-
neering and the Ph.D. degree in intelligent systems
engineering from the University of Ulster, Derry,
U.K., in 2002 and 2006, respectively. He is a Professor
of Neurotechnology and the Director of the Intelligent
Systems Research Centre and Research Director with
the School of Computing, Engineering and Intelligent
Systems, Ulster University, Coleraine, U.K. He has
authored or coauthored over 160 research papers in ar-
eas such as computational intelligence/AI, bio-signal

processing, computational neuroscience, neuroimaging, neurotechnology, and
brain-computer interface (BCI) applications.

Dr. Coyle has won a number of prestigious international awards for his
research including the 2008 IEEE Computational Intelligence Society (CIS)
Outstanding Doctoral Dissertation Award and the 2011 International Neural
Network Society (INNS) Young Investigator of the Year Award. He was an
Ulster University Distinguished Research Fellow in 2011, a Royal Academy of
Engineering/The Leverhulme Trust Senior Research Fellow in 2013, and a Royal
Academy of Engineering Enterprise Fellow during 2016–2017. He is a UKRI
Turing AI Fellow 2021–2025. He is a founding member of the International
Brain-Computer Interface Society, chairs the IEEE Computational Intelligence
Society (CIS) UK Ireland chapter, is the IEEE CIS representative and member
on the steering committee of the IEEE Brain Technical Community and U.K.
KTN Neurotechnology Innovation Network advisory board member. He is the
Ulster lead of the Spatial Computing and Neurotechnology Innovation Hub
(SCANi-hub) and the Northern Ireland High Performance Computing Facility
(NIHPC) and co-investigator in Northern Ireland Functional Brain Mapping
Facility (NIFBM), and leads a number of industry led data analytics projects via
Ulster’s Cognitive Analytics Research Laboratory (CARL).

https://dx.doi.org/10.1109/TGRS.2021.3115699


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


