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Abstract—Hyperspectral unmixing (HU) has become an impor-
tant technique in exploiting hyperspectral data since it decom-
poses a mixed pixel into a collection of endmembers weighted by
fractional abundances. The endmembers of a hyperspectral image
(HSI) are more likely to be generated by independent sources and be
mixed in a macroscopic degree before arriving at the sensor element
of the imaging spectrometer as mixed spectra. Over the past few
decades, many attempts have focused on imposing auxiliary regu-
larizes on the conventional nonnegative matrix factorization (NMF)
framework in order to effectively unmix these mixed spectra. As a
promising step toward finding an optimum regularizer to extract
endmembers, this article presents a novel blind HU algorithm,
referred to as kurtosis-based smooth nonnegative matrix factoriza-
tion (KbSNMF) which incorporates a novel regularizer based on
the statistical independence of the probability density functions of
endmember spectra. Imposing this regularizer on the conventional
NMF framework promotes the extraction of independent endmem-
bers while further enhancing the parts-based representation of
data. Experiments conducted on diverse synthetic HSI datasets
(with numerous numbers of endmembers, spectral bands, pixels,
and noise levels) and three standard real HSI datasets demonstrate
the validity of the proposed KbSNMF algorithm compared to
several state-of-the-art NMF-based HU baselines. The proposed
algorithm exhibits superior performance especially in terms of
extracting endmember spectra from hyperspectral data; therefore,
it could uplift the performance of recent deep learning HU methods
which utilize the endmember spectra as supervisory input data for
abundance extraction.

Index Terms—Blind source separation, constrained, endmember
independence, Gaussianity, hyperspectral unmixing (HU),
kurtosis, nonnegative matrix factorization (NMF).
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1. INTRODUCTION

YPERSPECTRAL image (HSI) technology has become
H a leading imaging technology in many fields including
medical imaging, food quality assessment, forensic sciences,
surveillance, and remote sensing [1]. However, due to the
insufficient spatial resolution of spectrometers and homoge-
neous mixture of distinct macroscopic materials in imag-
ing scenes, the observed reflectance spectrum at each pixel
of an HSI could easily be a mixture of spectra belong-
ing to a set of constituent members (also called endmem-
bers). This mixing phenomenon constitutes a major con-
cern with regard to many applications. As a remedy to
this complication, various methods of hyperspectral unmix-
ing (HU) have been implemented to extract endmember
spectra along with their fractional composition (also called
abundances). HU is a study of three subproblems, i.e., deter-
mining the number of endmembers, extracting the endmember
spectra, and realizing their abundances [2].

In the past, many algorithms have been introduced in order
to solve the HU problem [3]-[15] and these algorithms can be
categorized under three main schemes according to the basic
computational approaches [16]: 1) statistical algorithms, 2)
geometric algorithms, and 3) sparse regression based unmix-
ing algorithms. Statistical algorithms interpret a mixed pixel
by utilizing statistical representations. These representations
are commonly analytical expressions based on the probability
density functions (pdf) of the underlying mixed pixel spectra.
Bayesian self-organizing maps [17], independent component
analysis (ICA) [18], [19], independent factor analysis (IFA) [20],
dependent component analysis [21], automated morphological
endmember extraction [22], nonnegative matrix factorization
(NMF) [23], and spatial-spectral endmember extraction algo-
rithm [24] are some of the popular statistical algorithms utilized
for HU. Geometric algorithms exploit the geometric orientation
of HSI data in an n-dimensional space, where n is the number
of spectral bands captured by the imaging spectrometer. Vertex
component analysis [25], minimum volume transform [26],
simplex identification via split augmented Lagrangian [27],
optical real-time adaptive spectral identification system [28], and
iterative error analysis [29] are some of the geometric algorithms
frequently utilized for HU. Sparse regression based approaches
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utilize known libraries. The unmixing problem is formulated
as a sparse linear regression problem which is based on the
assumption that every feature can be linearly created by few
elements extracted from known libraries [30]—[33].

In the recent past, several approaches have been introduced
where deep learning (DL) is utilized for HU. In [34], a Hop-
field neural network machine learning approach is utilized to
solve the semi-NMF problem, which has illustrated promising
performance with regard to abundance extraction when reliable
endmember spectra are given as supervisory input data. In [35],
an artificial neural network (ANN) is utilized to inverse the pixel
spectral mixture in Landsat imagery. Here, to train the network,
a spectral library had been created, consisting of endmember
spectra collected from the image and simulated mixed spectra.
In [36], a two-staged ANN architecture has been introduced
in which the first stage reduces the dimension of the input
vector utilizing endmember spectra as input data. Thus, some
of the current DL-based methods for HU utilizes endmember
spectra as supervisory input data in order to extract the abun-
dances. In [37], a deep autoencoder network is utilized to extract
endmembers and abundances simultaneously from nonlinearly
mixed data. Unlike [34]-[36], no supervisory data is required
for the architecture, thus acting as an unsupervised network.
In [38], the autoencoder architecture is extended to a convolu-
tional autoencoder network to benefit from the feature detection
ability of convolutional layers. Here, weights of the output
layer and the activations from the layer before the output layer
provide abundances and endmembers simultaneously. In [39],
long short-term memory network structure is included to capture
the spectral correlation information and a spatial regulator is
used to improve the spatial continuity of the results. In [40],
a two-stream architecture termed TANet is introduced for HU.
Here, the first stream tries to learn a mapping from pseudo-pixels
to abundances, while the second stream tries to minimize the
reconstruction errors.

Originally introduced by Lee and Seung [23], NMF is a
mathematical tool which is utilized to decompose a nonneg-
ative data matrix into the product of two other nonnegative
matrices of lower rank based on the optimization of a particular
objective function. Since the non-negativity criterion does not
accommodate any negative elements in resultant matrices [41],
the non-negativity objective of HU is satisfied automatically.
Driven by this parts-based representation of the NMF frame-
work, NMF-based algorithms are often utilized to solve the
HU problem. However, NMF is an ill-posed geometric algo-
rithm; therefore, it does not possess a unique solution [8].
The nonconvex objective functions utilized for NMF compel
its solution space to be wide. Thus, many researchers have
introduced novel NMF algorithms by adding different auxiliary
regularizes to the conventional NMF framework in order to
improve the uniqueness of its solution with respect to the HU
setting. 1, /o-sparsity constrained NMF (I, /o-NMF) [8], spatial
group sparsity regularized NMF (SGSNMF) [42], minimum
volume rank deficient NMF (Min-vol NMF) [43], manifold
regularized sparse NMF [7], double constrained NMF [44], total
variation regularized reweighted sparse NMF [45], subspace
clustering constrained sparse NMF [46], nonsmooth NMF [47],
robust collaborative NMF (R-CoNMF) [48], subspace structure
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regularized NMF (SSRNMF) [49], graph regularized NMF [50],
and projection-based NMF [51] are some customary NMF-based
baselines utilized for HU. Furthermore, a new architecture has
recently emerged for blind unmixing under the premise non-
negative tensor factorization (NTF). The algorithm presented
in the article Matrix-Vector Nonnegative Tensor Factorization
for Blind Unmixing of Hyperspectral Imagery (MVNTF) [52]
preserves the spectral and spatial information in that the fac-
torization is performed on hyperspectral 3D cubes instead of
unwrapped image datasets.

In HU, the endmembers are typically macroscopic objects
in the HSI scene, such as soil, water, vegetation, etc. [2]. In a
broader sense, HU attempts to find these macroscopic objects by
utilizing the observations of signals that have already interacted
(or mixed) with other objects in the scene before arriving at the
sensing element of the imaging spectrometer. It is pragmatic to
assume that the endmembers are consequences of different phys-
ical processes; hence, they are statistically independent' [18].
If a particular methodology promotes maximizing the inde-
pendence of endmembers, each of the endmember spectra ex-
tracted utilizing that particular method will be more independent
than the mixed pixel spectra. Therefore, such a method would
be a progression toward the extraction of more realistic end-
member spectra belonging to independent macroscopic objects.
Even though the frequently associated abundance sum-to-one
constraint [53] in HU does not accommodate the concept of
independent endmembers, algorithms such as ICA [18], [19],
IFA [20], and independent innovation analysis [54] are popular
algorithms utilized in HU which consider this concept. Also,
several attempts have been taken previously in order to incor-
porate the independence of endmembers onto the conventional
NMF framework. The authors of [55] have proposed a novel
initialization method based on statistical independence between
NMF components. In [56], an attempt has been made to initialize
NMF with a modified ICA method. In [57], a novel effective
method has been introduced unifying independent vector anal-
ysis and NMF. Our previous work [58] discusses the suitability
of utilizing the fundamental notions of kurtosis-based ICA to
enhance the conventional NMF algorithm.

Inspired by the interpretable parts-based representations and
simplicity of imposing auxiliary regularizes of the conventional
NMF framework and motivated by our previous work [58]-[64],
this study proposes a novel regularizer to the conventional NMF
framework named average kurtosis regularizer. Incorporating
this regularizer along with an abundance smoothing mechanism,
we present a novel blind HU algorithm named kurtosis-based
smooth nonnegative matrix factorization (KbSNMF) along with
its two variants KbSNMF-fnorm and KbSNMF-div. The moti-
vation of the proposed work is to promote the independence
of endmembers while extracting them in accordance with the
parts-based representations of the conventional NMF frame-
work, thereby attempting to extract the most realistic endmem-
ber spectra from a given HSI. The contributions of this article
are summarized as follows:

!'Throughout the rest of this article, we refer to the “statistical independence”
of endmembers as the “independence” of endmembers.
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1) introduction of a novel regularizer for HU, based on kur-
tosis, which promotes the independence of endmembers
of an HSI;

2) computation of the gradient of the aforesaid regularizer
w.r.t. the factors of the conventional NMF framework,
and the establishment of a blind HU algorithm named
KbSNMF, which effectively promotes the independence
of endmembers while maintaining the smoothness of
abundance maps.

We also implement and evaluate the performance of the
proposed algorithm in comparison with several selected state-
of-the-art NMF-based HU baselines. Experiments are conducted
on diverse synthetic HSI datasets (with numerous numbers of
endmembers, spectral bands, pixels, and noise levels) as well
as on three standard real HSI datasets. These experiments sub-
stantiate that the proposed algorithm outperforms other state-
of-the-art NMF-based blind HU algorithms in many instances,
especially in extracting endmember spectra. This observation is
understandable since the proposed algorithm tries to improve
upon the pragmatic characteristics of the endmember spectra,
rather than trying to improve upon the pragmatic characteristics
of the abundance maps. Thus, in an unsupervised setting where
there is the luxury of utilizing a DL-based method for abundance
extraction, the proposed algorithm would provide a viable coun-
terpart to generate endmember spectra as supervisory input data
to the DL-based method.

The rest of this article is arranged as follows. Section II
provides the background related to the proposed algorithm. In
Section III, the novel kurtosis-based regularizer is developed
along with its derivatives. In Section IV, the novel KbSNMF
algorithm is introduced. Section V discusses some key issues
related to the implementation of the proposed algorithm. Sec-
tion VI is devoted for experimental results and the article is
concluded in Section VII.

II. BACKGROUND
A. Linear Mixture Model

Linear mixture model (LMM) is the most frequently utilized
model for HU, and its implications had been widely discussed
in many previous works [4], [6], [8], [25], [65]. This model
highly depends on the assumption that the incident light waves
reflect only once from the underlying macroscopic objects and
are captured by the sensing element of the imaging spectrometer
without being subjected to scattering. In the LMM, the spectrum
at each pixel is represented as a linear combination of the
endmember spectra as follows:

X :ZSijai—i—ej (1)
=1

where x; € R’}fl is the jth pixel spectrum, S;; is the fractional
composition occupied by the ¢th endmember in the jth pixel,
a; € RZ‘_Xl is the spectrum of the ith endmember of the HSI,
e; € R™*! is an additive Gaussian noise associated with mod-
eling errors, and 7 is the number of endmembers in the HSI. All
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spectra are measured in reflectance values; hence, there is non-
negativity in x;’s and a;’s. The nonnegativity constraint S;; > 0
and the sum-to-one constrainty .;_, S;; = 1 areimplied in order
to guarantee that the fractional compositions representing the
endmembers are nonnegative and the abundance summation
equals 1 at each pixel. The LMM can be reformulated in matrix
notations as follows:

X=AxS+E @)

where X € R’ is the HSI data matrix, n being the num-
ber of spectral bands and m being the number of pixels of
the HSI, A € R’fr” is the endmember matrix whose columns
represent the spectra of each of the » endmembers, S € R7*™
is the abundance matrix whose columns represent the fractional
compositions at each of the m pixels, and E € R"*™ is the
noise matrix. This formulation casts the HU problem as a BSS
problem, i.e., simultaneous extraction of the endmember spectra
and their abundances at each pixel while utilizing the HSI as the
nput.

B. Nonnegative Matrix Factorization

NMF is a low-rank approximation of nonnegative matrices
widely utilized in the fields of computer vision, clustering, data
compression, etc. [55], [66]-[69]. NMF was first introduced by
Lee and Seung [23] as a parts-based representation technique
which permits the data in a nonnegative matrix to be decomposed
into two other nonnegative matrices. Givenamatrix V. € R'}*™,
NMF tries to find nonnegative matrices W € R’.*" (known as
the source matrix) and H € R’*"" (known as the mixing matrix)
which satisfy the following approximation:

V ~ WH. 3)

However, there are infinite number of W, H solution pairs which
satisfy the above approximation. For instance, it is possible to
writt WH = (W'~ !)(T'H) for any invertible I' € R'*". The
conventional procedure to achieve (3) is by defining an objective
function which quantifies the quality of the approximation be-
tween V and WH and implementing an optimization algorithm
to minimize the defined objective function w.r.t. W and H. One
of the most commonly utilized objective function is the square
of the Frobenius norm between V and WH as in the following
equation:

IV —WHI[% =) (Vij — (WH);;)* . “
ij
The above expression is lower bounded by zero and distinctly
vanishes if and only if V. = WH. Another popular objective
function is the divergence? of V from WH as in the following
equation:

DVIWH) =3 (wj log —ViI__ _

(WH)ij Vij + (WH)ZJ> .

)

(&)

2Unlike the Frobenius norm, the divergence cannot be designated as a “dis-
tance” since it is not symmetric in V- and WH. Thus, it is common practice to
refer to it as the “divergence of V from WH.”
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Similar to the Frobenius norm, the divergence is also lower
bounded by zero and vanishes if and only if V = WH. Even
though (4) and (5) functions are convex in W and H alone,
they are not convex in W and H together [23]. Hence, it is not
possible to analytically find global minima of these functions
w.r.t. W and H. However, it is possible to find local minima
utilizing numerical optimization methods. Lee and Seung [23]
have proposed the below (6) and (7) multiplicative update rules
to find local minima of the above (4) and (5) functions, respec-
tively.

VH" w7’V

e '
W—Wo ——— H—Ho_——"—. (7
F ° 17LX77LHT7 % ° WT17L><7IL ( )

Lee and Seung have further proven the convergence of both
the above update rules utilizing an auxiliary function analogous
to the proof of convergence of the expectation—maximization
algorithm [23].

The LMM model transforms the HU problem into the form
of a conventional NMF problem. If V is the HSI data matrix X,
then source matrix W is the endmember matrix A and mixing
matrix H is the abundance matrix S. Thus, given X, solving the
blind HU problem for A and S utilizing the conventional NMF
problem can be formulated as in (8) and (9) for Frobenius norm
and divergence-based objective functions, respectively:

arg miny g||X — AS|%, st A S>=0 (8)

argminy g D(X||AS), s.t.A,S=0. 9

In order to solve the above problems while improving the
uniqueness, many previous works have incorporated additional
auxiliary regularizes on A and S [8], [10], [42], [43], [48], [50].

III. AVERAGE KURTOSIS REGULARIZER

A. Kurtosis of a Signal

Central moments are often utilized in signal processing in
order to characterize the spread of the pdf of a signal [18]. A
normalized version of the fourth central moment, given by (10),
is called the Kurtosis of a signal. Here, y denotes the signal, y
denotes the mean of the signal, and [E is the expectation operator.
Intuitively, Kurtosis provides a measure of the “peaky’ness of
the shape of the pdf of a signal. Excess kurtosis is a measure
that compares the kurtosis of a given pdf with the kurtosis
of a Gaussian distribution. Since the kurtosis of a Gaussian
distribution equals 3, the excess kurtosis can be defined as in

)

. Elly—7)"]
kurtosis = —————— (10)
(El(y —9)%])?
excess kurtosis = kurtosis — 3. (11)

Based on the value of excess kurtosis, distributions are catego-
rized under three main types. Mesokurtic distribution is close
to a Gaussian distribution; has an excess kurtosis closer to
zero. Leptokurtic (also known as super-Gaussian) distribution
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has a higher and sharper central peak; tails are longer and
flatter; has positive excess kurtosis. Platykurtic (also known as
sub-Gaussian) distribution has a lower and broader central peak,
tails are shorter and thinner, and has negative excess kurtosis.

Central limit theorem (CLT) ensures that a mixture of signals
is approximately Gaussian irrespective of the distributions of the
underlying source signals. Even though the converse of CLT is
not assured, i.e., it is not certain that any Gaussian signal is a
mixture of non-Gaussian signals, in practical scenarios, Gaus-
sian signals do consist of a mixture of non-Gaussian signals [18].
Thus, to extract the underlying source signals from a signal
mixture, it is common practice in BSS to define a measure of
non-Gaussianity and implement an algorithm which maximizes
the defined measure as Fig. 1 illustrates. Subsequently, excess
kurtosis seems to be a suitable candidate for this purpose as it is
a measure of non-Gaussianity. If the excess kurtosis value of a
signal is close to zero, it tempts to be Gaussian and if the excess
kurtosis value of a signal is away from zero, it tempts to be non-
Gaussian (super- or sub-Gaussian). Since there are two types of
non-Gaussian distributions, it is common practice in most BSS
methods to assume that source signals are super-Gaussian [18].
Hence, in this work, we consider the constituent spectra of an
HSI to have super-Gaussian distributions. Hence, from a given
HSI data matrix X, we aim to extract an endmember matrix A,
whose columnwise average kurtosis is maximized, utilizing an
NMF framework. Thus, we introduce a novel constrained NMF
algorithm which incorporates the maximization of the average
kurtosis of endmembers.

B. Average Kurtosis

Obeying the notations introduced in Section II-A, A € R}*"
is the endmember matrix whose columns represent the spectra of
each of the » endmembers of the HSI. Thus, it is possible to ex-
tract the 7th endmember utilizing a simple matrix manipulation
as follows:

where a; is spectrum of the ith endmember from matrix A (or
the ith column of matrix A) and ®; € R™*! is a column vector
whose all elements are zeros except for the ith element which
equals 1. If the kurtosis of the ith endmember is K, it can be
expressed as follows according to (10):

E[(a; —a)"]
(Ef(a; —a3)?])?
where a; is the average of the corresponding ith endmember.

Thus, the average kurtosis through all » endmembers K can be
expressed as follows utilizing (12) and (13):

K= (13)

T

— 1
K=->K,

q=1

(14)

1 E[(A®, - A%,
T q; (E[(A®, — AD,)2])?

Thus, it is seen that K is a function of A; therefore, it can be
written as K (A). We try to maximize K so that the extracted
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Underlying mechanism of the proposed algorithm. According to the unmixing strategy, it is discernible that every pixel is a linear combination of several

independent endmembers. The proposed method promotes independence of endmembers by increasing the super-Gaussianity. The algorithm concept is a derivative

of the central limit theorem.

endmembers will have a higher average kurtosis, i.e., they will
be closer to super-Gaussian signals. Hence, the proposed frame-
work would favorably influence the extraction of more realistic
endmember spectra from the underlying HSI.

C. Derivative of Average Kurtosis

In order to incorporate the average kurtosis regularizer onto
the conventional NMF framework, it is essential to find the
gradient (or the partial derivative) of K wrt A and S, ie.,
VaK € R™" and VgK € R™™. Since K is not a function
of S, Vs K = 0 € R™ " In this section, we provide a detailed
explanation on finding V o K. Since A is the endmember matrix,
we denote each of its elements by the notation Ay;, with the
meaning of the reflectance value belonging to the kth spectral
band of the ith endmember. Thus, the (k, 7)th element of VA K
can be written as follows implementing an elementwise deriva-
five:

— 0K
VaKy = E
15
Z 5 Am (15)
where
0K, _ | a5, ifq=i 16)
0AR; 0 otherwise.

For the convenience of simplifying, we assume that each of the
endmember spectra vectors have unit variance, i.e., (E[(a; —
a;)?])? = 1, Vi.Inordertorectify the effects of this assumption,
a normalization step is carried out as discussed in Section V-B.
As aresult, we obtain a simplified version of V A K as follows:
19 [E[(a; —@)"]]

r

VaKy 9L,

7)

where A,; is the reflectance value belonging to the pth spectral
band of the ith endmember, and y; is the mean reflectance of
the ith endmember. As can be seen, V 5 K, is a summation of
n more partial derivative terms for which the solutions can be
obtained by utilizing the chain rule in calculus

Oy A =) (=) =k
OAk Hi —4(Api — 13)? (2) otherwise.
(18)

Thus, the partial derivative term V AK1; in (17) can be written
as follows:

—4

VaKyi = — [Si = (Aki — 11)?] (19)

where §; = 1 >yt (Api — pi)? represents a normalized ver-
sion of the third central moment (skewness) of the ith endmem-
ber. However, in this work, we do not explore the implication
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of skewness within the derivative of the average kurtosis. Con-
catenating the elementwise derivatives, we then express Va K
as the difference between two matrices as follows:

— -4
VaK=—(P-Q)

nr
where Py; = S; and Qi; = (Ag; — 115)>. Then, Q and P can be
written as in (21) and (22), respectively, for the convenience of

incorporating V o K in the NMF framework

(20)

03
Q= [A - ilnan} = [NAJ*® Q21
]. 1 03
n n

where N = (I—11,,,) and 1 € R™" denotes a matrix
whose all elements are ones. [.]°® denotes the Hadamard
(element-by-element) power by 3. Finally, from (20), Vo K can
be written as follows:

VaK = — [11nm [INA]® — [NA}OB}
nr |n

- % [N [NA}"?’} .

(23)
IV. KURTOSIS-BASED SMOOTH NONNEGATIVE MATRIX
FACTORIZATION

In this section, we propose a novel blind HU algorithm which
not only promotes the independence of endmembers via the
kurtosis regularizer but also promotes the smoothness of the
abundance maps by integrating a smoothing matrix to the con-
ventional NMF framework. Hence, we denominate the proposed
algorithm as KbSNMF. In the proceeding sections, we discuss
two variants of KbSNMF depending on the objective function
utilized for approximation.

A. KbSNMF-Fnorm

Here, we present KbSNMF based on Frobenius norm
(KbSNMF-fnorm). The general optimization problem for
KbSNMF-fnorm is as follows:

argminy g {||X — AMS|% —7K(A)}, st AS=0.
(24)
Here, v € R is a parameter which establishes the tradeoff
between approximation error and non-Gaussianity of the end-
members rendered by K, and M € R’," is a symmetric matrix
called the smoothing matrix which is defined as follows:
M = (1 - 9)1 + glrxl]wj:xl (25)
where I is the identity matrix, 1 € R"™! is a vector whose
all elements are ones, and 6 is a parameter which satisfies
0 <6 <1 and controls the extent of smoothness. Enforcing
smoothness onto the abundance matrix can be interpreted as
Y = MS, where Y is the smoothness-enforced abundance
matrix. When § = 0, M = I; hence, Y = S and no smoothing
has occurred in S. As § — 1, Y tends to become smoother and
reaches the smoothest possible at # = 1. The matrix M is an
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adaptive smoothing matrix whose window length changes with
the parameter 6. The 0 parameter will affect the minute details
of the abundance maps such that as @ is increased, noise will
be removed from the abundance map at the expense of fine
information of the image. Fig. 2 demonstrates the effects of
smoothing parameter 6 on the abundance maps.

In order to find a solution for (24), we consider the objective
function below

L(A,S) = [|X — AMS|[z —7K(A). (26)

In order to make the algorithm much simpler, the variable
matrices A and S are updated in turns. In each iteration, first, A is
updated while S is kept constant and then S is updated while A is
kept constant. This scheme is called a block-coordinate descent
approach and is widely utilized in NMF-based algorithms [70].
The updates rules can be primarily written as follows:

A+ A —naoVaL

S+ S—1ngoVsL 27)

where o denotes the Hadamard (element-by-element) product.
Updating A and S directly accounts to computing the partial
derivatives VAL € R and VgL € R’ and finding suit-
able learning rates 75 € R’™" and ng € R*™.

Computing the partial derivatives of . w.r.t. A and S can
be seen as two parts, i.e., partial derivatives of | X — AMS||%
term and 7/ (A) term. We refer the readers to [47] and [70] for
detailed explanation of the partial derivative of || X — AMS]||%.
Incorporating the result in (23), we can present the partial
derivatives of IL as follows:

L
SA* — 2XS™M7 + 2AMSSTM? + 2v/N[NAJ*

OL T AT TAT

o5 = ~2MTATX 4 2M7ATAMS (28)

where ' is the scalar quantity which equals %ﬂ By substituting
% and % in the original block-coordinate descent equations
in (27), we can obtain the following update rules for KbSNMF-

fnorm:
A A—qa o (—2XSTM” +2AMSS" M +27/N[NAJ?)
S+ S —ngo(-2MTATX+2MTATAMS).

However, due to the subtracting terms in the gradients, the
update rules (29) can enforce A and S to contain negative
elements, which contradicts with the parts-based representation
of the NMF framework as well as the HU setting. Thus, following
a methodology similar to that proposed by Lee and Seung [23],
we define data-adaptive learning rates na and ng as follows in
order to ensure all positive elements in A and S at each update
step:

(29)

A
1A = 9AMSSTMT + 27/ N[NAJ~
B S
ST OMTATAMS'
The fraction line denotes element-by-element division. This
results in the multiplicative update rules for the proposed

(30)
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Effects of the smoothing parameter demonstrated on a ground truth abundance map (“Soil”) of a real HSI dataset (“Samson”). (a) & = 0 (no smoothing).
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Fig. 2.
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KbSNMF-fnorm algorithm as follows:
XSTM”

AMSSTMT + +'N[NA]J*3

MTATX
MTATAMS'
For convenience, we reconfigure the placement of matrices.
Therefore, the final update rules for the proposed KbSNMF-
fnorm algorithm will be as follows:

X (MS)”
AMS)(MS)” + 4/N[NAJ*3
(AM)"X

(AM)"(AM)S

It can be seen that choosing the data-adaptive learning rates
in the form of (30) to avoid subtraction has enforced A and S to

contain nonnegative elements throughout the block-coordinate
descent approach, given initial nonnegative A and S.

A+ Ao

S« So (31)

S« So (32)

B. KbSNMF-Div

Analogously, we present the following optimization problem
for KbSNMF based on divergence (KbSNMF-div):

arg miny g { D(X[|AMS) — YK(A)}, stA,S>=0.
(33)
Following a similar procedure as in Section IV-A, the following
multiplicative update rules can be derived for KbSNMF-div
algorithm:
X T
apvs) (MS)
Losem(MS)” + 7/N[NAJ3
T
(AM)" z7os
(AM) 1,1,

A+ Ao

S« So (34)

where 1 € R™*"™ is a matrix whose all elements are one, and
the other notations are the same as defined previously.

V. ALGORITHM IMPLEMENTATION
In this section, we will discuss several points related to the
implementation of the proposed algorithm.

A. Initialization

Many algorithms had been designed in the past to enhance the
initialization of the conventional NMF problem. In this work,
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we utilize the nonnegative double singular value decomposition
(NNDSVD) algorithm [71] in order to initialize the matrices A
and S. NNDSVD takes the HSI X and the number of endmem-
bers r as the input and generates a pair of A and S matrices.
The basic NNDSVD algorithm is based on two singular value
decomposition (SVD) processes, first, approximating the data
matrix and the, second, approximating positive sections of the
resulting partial SVD factors incorporating the properties of
unit rank matrices. Extensive evidence can be found to suggest
that NNDSVD promotes the rapid convergence of the NMF
algorithm.

B. Normalization

To avoid the complexity of computing V 5 K, the endmember
spectra are considered as signals of unit variance (see Sec-
tion III-C), which is not always true in HU setting. In order
to rectify this premise, at the beginning of each iteration of the
proposed algorithm, we normalize the endmember spectra by
their individual variances (see Algorithm 1: lines 5 and 13).
Thus, the resulting algorithm follows the essence of projected
gradient descent methods which are often utilized in signal
processing applications [18].

C. Convergence

Fig. 3 demonstrates the convergence of KbSNMF over num-
ber of iterations. Here, we have fixed the parameters ~ and 6 at
3 and 0.4, respectively, for KbSNMF-fnorm and at 8 and 0.4,
respectively, for KbSNMF-div. Selection of suitable v and 6
and their effects on the unmixing performance are extensively
discussed in Section VI-C1. Observing Fig. 3(a) and (b), it
is evident that KbSNMF converges to a local minimum w.r.t.
A and S. Also, our primary objective of maximizing K has
been achieved and can be clearly seen in Fig. 3(c) and (d).
In the meantime, as seen in Fig. 3(e) and (f), Frobenius norm
and divergence, respectively, converges to local minima w.r.t. A
and S which ensures the quality of approximation between X
and AMS.

D. Termination

In this work, we utilize two stopping criteria, one based on
the maximum number of iterations and the other based on the
rate of change in the objective function. We choose a maximum
number of iterations, ty,x and a minimum rate of change in
the objective function Cy;,. The algorithm is terminated either
if the present iteration ¢ reaches ¢, or if the present rate of
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change in the objective function C(¢) falls below Cy,,. Here,
Ct) = W, where L(f) is the value of the objective
function at the tth iteration. The selection of suitable ¢,,x and

Chin 18 discussed in Section V-E.

E. Parameter Selection

Observing Fig. 3(a) and (b), it is evident that both variants
of KbSNMF algorithm have converged to local minima by
the 1000th iteration. Thus, we fix t,x at 1000 preserving a
reasonable allowance. Also, it is seen that the percentage change
in the objective function around the 1000th iteration is in the
order of 10~#. Thus, we fix Cpy, at 10~° to ensure convergence.
Determining optimum control parameters ~ and 6 is discussed
in Section VI-C1 via experiment.

The matrix M removes minute details in the abundance map
while preserving general spatial attributes and the 6 balances
noise removal and fine information retainment in the abundance
maps. Hence, by removing noise in the abundance maps, the
matrix M indirectly removes noise from the spectral signatures
which has an impact on the endmember extraction process. Then
the parameter ~y controls the effect from the kurtosis regulariza-
tion for super-Gaussianity maximization. As -y is increased, the
thrust on super-Gaussianity is increased which affects the ex-
tracted endmembers. In the update rules, the term “IM” appears
in both the endmember estimation and abundance estimation
update rules for both the variants, while the effect of ~ is only
applicable to endmember extraction update rules. Hence, it was
apt to use spectral angle distance (SAD) of the endmembers for
parametric sweep.

Adhering to all the implementing issues discussed above,
the proposed KbSNMF algorithm can be summarized as in
Algorithm 1.

FE. Computational Complexity

Computational complexity was calculated for the number of
mathematical operations required for matrix operations. The
computation of matrix N is only performed once, whereas rest
of the operations are given for an iteration. Table I describes the
computational complexity of the KbSNMF algorithms.

VI. EXPERIMENTS AND DISCUSSIONS
A. Performance Criteria

In order to evaluate the performance of the proposed Kb-
SNMF algorithm and assess its competitiveness with the other
state-of-the-art algorithms, we utilize two performance criteria,
which are commonly adopted in HU performance evaluation,
i.e., SAD and root mean square error (RMSE). In most of the
previous literature on HU, SAD had been utilized to compare the
extracted endmember spectra with the ground truth endmember
spectra, while RMSE had been utilized to compare the extracted
abundance maps with the ground truth abundance maps. In our
work, SAD;, as in (35), measures the spectral angle between the
tth ground truth endmember spectrum a; and the corresponding
extracted endmember spectrum aj, in radians; RMSE; as in (36)
measures the error between the ith ground truth abundance map
S; and the corresponding extracted abundance map S;

SAD; = cos (Q”‘) (35)
laill2la:ll2
1 &« s \?2
RMSE; = m Z (Sij - Sij) . (36)
=1

Unless otherwise noted, in all experiments, SAD and RMSE
are average values over all extracted endmember spectra and
abundance maps, respectively.
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Algorithm 1: KbSNMF Algorithm for HU

Input: X, r, v, 0, tmaez, and Chpin,
Algorithm variant

1 Initialize A and S utilizing NNDSVD algorithm [72];
2 Compute M utilizing (25);
3 Compute N as in (21);
4 Compute ' as in (28);
5 Normalize each column of A w.r.t its variance;
6 while ¢t <t,,,. NC > C,,in, do

7 Update A:
8 switch Algorithm variant do
9 case KbSNMF-fnorm do
T
10 ‘ A Ao A(MS)(IJI(S()MT?’WN[NA]"?’;
11 end
12 case KbSNMF-div do
_X __(MS)T
B ‘ A Ao 1nm<?\(4h§>s%(+w1\)1[NA]°3;
14 end
15 end
16 Normalize each column of A w.r.t its variance;
17 Update S:
18 switch Algorithm variant do
19 case KbSNMF-fnorm do
20 ‘ S+ So 7(1&;%1\;1();3)5
21 end
22 case KbSNMF-div do
T X
23 ‘ S+ So mﬂ
24 end
25 end
26 Normalize each column of S according to
abundances sum-to-one constraint

27 end
Output: Extracted A and S

B. Experimental Setting

The proposed algorithm is tested on simulated as well as
real hyperspectral datasets (see Fig. 4). Also, we compare
the performance of our proposed algorithm with the popu-
lar state-of-the-art NMF-based HU baselines: [; 72-NMF [8],
SGSNMF [42], Min-vol NMF [43], R-CoNMF [48], SS-
RNMF [49], and MVNTF [52]. To ensure that the evaluations
are done on common grounds, we utilize the same initializing
procedure and stopping criteria as mentioned in Sections V-A
and V-D, respectively, for all the competing algorithms except
MVNTEF algorithm which is initialized with random values.

Simulated HST data were generated utilizing the hyperspectral
imagery synthesis toolbox (HSIST)? in order to conduct experi-
ments. HSIST consists of the full USGS spectral library* which
contains hundreds of endmember spectra including minerals,
organic and volatile compounds, vegetation, and man-made

3[Online]. Available: http://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Imagery_Synthesis_tools_for_ MATLAB
4[Online]. Available: https:/www.usgs.gov/labs/spec-lab

TABLE I

COMPUTATIONAL COMPLEXITY OF THE PROPOSED ALGORITHMS

No. of Operations

Description gy SNMF-faorm _ KbSNMF-div
N matrix additions : 1 additions : 2
multiplications : multiplications :
numerator
m-+r m+3r+1
update - .. ..
additions : additions :
endmember
m-4+r—2 m+3r—4
denominator multiplications : multiplications :
undate - 2m 4+ 2r 4+2n —6 m—+r+2n
en(fmember additions : additions :
2m+2r+2n—-6 m+r+2n—4
mathematical multiplications : 3 multiplications : 3
operations additions : 1 additions : 2
multiplications : multiplications :
normalization r+n r+2
additions : 2n additions : 2n
numerator multiplications : multiplications :
undate - r+n 3r+n+1
P additions : additions :
abundance
r+n—2 3r+n—4
. multiplications : multiplications :
denominator
undate - 2r r+n
P additions : additions :
abundance
2r — 2 r+n-—2
mathematical S T
. multiplications : 2  multiplications : 2
operations
. multiplications : 1  multiplications : 1
normalization

additions : r

additions : r

Fig. 4.

(b) Samson dataset. (c) Urban dataset. (d) Cuprite dataset.
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RGB representations of the HSI datasets. (a) Simulated dataset.

materials. The corresponding abundance maps were generated
incorporating a spherical Gaussian field [72].

To assess the performance of the proposed method in real
environments, we conduct experiments on real hyperspectral
data. The Samson dataset, the Urban dataset, and the Cuprite


http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_tools_for_MATLAB
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_tools_for_MATLAB
https://www.usgs.gov/labs/spec-lab
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TABLE II
UNMIXING PERFORMANCE COMPARISON IN TERMS OF SAD FOR THE SIMULATED DATASET

Methods KbSNME  KbSNME  ;  NMF SGSNMF ~ Mivol - R.CoNMF  SSRNMF  MVNTE
Scawater 0.5000 02746 06855 05416 08891  1.7408 03017 03905
Clintonite 0.1078 0.1119 02990 02288 02803 07109  0.1410  0.1326
Sodiumbicarbonate  0.1508 0.1311 00168  0.0090 00188 00614 00160  0.0567
Average 0.1862 01725 03337 02598 03961 08377 _ 0.1529 _ 0.1933

The best performances are in bold typeface; the second best performances are italicized; and the third best performances are underlined.

TABLE III
UNMIXING PERFORMANCE COMPARISON IN TERMS OF RMSE FOR THE SIMULATED DATASET

Methods KBSNME— KbSNME — _ NMF  sGSNMF ~ Mi¥el  R.CONMF  SSRNMF  MVNTF
Scawater 0.3049 03190 02488 03579 0052 01753  0.0817  0.4088
Clintonite 0.1195 01200 00573 02906 00854  0.473  0.0774 01506
Sodiumbicarbonate  0.2797 02985 02394  0.1123 00745 0.1475 00768  0.1324
Average 0.2347 02458 0818 02538 0.0884 __ 0.569 _ 0.0786 _ 0.2306

The best performances are in bold typeface; the second best performances are italicized; and the third best performances are underlined.

dataset have been widely utilized for performance evaluation
and comparison in recent HU studies [3], [46], [73]. The Samson
dataset’s each pixel is recorded at 156 spectral channels covering
wavelengths in the range of 401-889 nm with a spectral resolu-
tion of 3.13 nm. The Urban dataset’s each pixel isrecorded at 210
spectral channels originally; however, due to dense water vapor
and atmospheric effects, several bands are customarily removed
prior to analysis, resulting in 162 spectral bands ranging from
400 to 2500 nm, with a spectral resolution of 10 nm. The Urban
dataset possesses several ground truth versions; here, we utilize
the one with five endmembers. The Cuprite dataset is the widely
used benchmark dataset for HU and each of its pixels is recorded
at 188 spectral channels covering wavelengths in the range of
370-2480 nm.

The ground truths for all real datasets are worked out utilizing
a procedure similar to that of [4] and [74]. First, the virtual
dimensionality (VD) algorithm [75] is utilized to determine the
number of endmembers of the HSI. Second, the pixels that con-
tain pure endmember spectra are chosen manually in accordance
with the USGS mineral spectral library. Finally, the correspond-
ing abundances are computed utilizing the CVX optimization
Toolbox in MATLAB. Accordingly generated ground truths are
often utilized in HU method evaluation and comparison and are
readily available.?

C. Experiments on Simulated Data

1) Sensitivity to Control Parameters: We conduct experi-
ments to find optimum values for v and 6 for KbSNMF-fnorm
and KbSNMF-div. We increase vy from 0 to 25 in steps of
1, increase 6 from O to 1 in steps of 0.1, and evaluate the
unmixing performance at each step. It is seen that SAD reaches
minimum around v = 3 and 6 = 0.4 in Fig. 5(a) and around
~v = 8and # = 0.4 in Fig. 5(b). Thus, we fix v and 0 at 3 and 0.4,

3[Online]. Available: http://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes
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Fig. 5. Variation of unmixing performance in terms of SAD with ~y and 6 for
(a) KbSNMF-fnorm and (b) KbSNMF-div. The minimum SAD value in each
3-D surface is marked in red.
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Fig.6. Endmember spectra extracted utilizing KbSNMF algorithms and other
comparison algorithms of the simulated dataset: “Seawater,” “Clintonite,” and
“Sodiumbicarbonate,” respectively.

respectively, for KbSNMF-fnorm and at 8 and 0.4, respectively,
for KbSNMF-div.

2) Unmixing Performance: Under this experiment, we com-
pare the unmixing performance of KbSNMF with the other HU
algorithms. Table II shows SAD values for each of the extracted
endmember spectra and Table III shows RMSE values for each of
the extracted abundance maps, under the different methods. It is
clearly seen that the KbSNMF under its both variants dominates
the other competing algorithms in terms of SAD while signifying
competitive performance in terms of RMSE. Figs. 6— 8, respec-
tively, illustrate the endmember spectra, abundance maps, and
mean reconstruction error matrix extracted utilizing KbSNMF
algorithms along with their ground truths. However, for the
optimization of the abundance estimation to converge within a
fewer number of iterations, the initialization of the abundances
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Fig. 7. Abundance maps extracted utilizing KbSNMF. Top row: ground truth
abundance maps. Middle row: extracted abundance maps by KbSNMF-fnorm.
Bottom row: extracted abundance maps by KbSNMF-div.

Fig. 8. Mean reconstruction error of the simulated dataset. (a) KbSNMF-
fnorm. (b) KbSNMF-div.

must reside near, at least, a local minimum. Furthermore, since
the gradient for the abundance estimation does not contain the
~ parameter, it can be concluded that the effect of the kurtosis
regularization does not affect the abundance estimation.

3) Robustness to Noise: In this experiment, we aim to an-
alyze how the proposed algorithm performs in noisy environ-
ments. We add zero-mean white Gaussian noise to the original
noise-free simulated dataset with a predetermined signal-to-
noise ratio (SNR) given by the following equation:

E(x"x)

SNR = 10log;, E(nn)

where x is the pixel spectrum vector, n is the noise signal vector,
and E is the expectation operator. We conduct the experiment
under 11 SNR levels: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, and
50dB, and the results are illustrated in Fig. 9 in terms of SAD and
RMSE. Although SSRNMF and MVNTF show high immunity
to large noise in terms of SAD values, it is discernible that
KbSNMF-fnorm and KbSNMF-div report the best performance
showing superior performance over all competing algorithms at
noise levels in the range of 15-50 dB. They also show robustness
to noise up until 30 dB. In terms of RMSE, both KbSNMF-fnorm
and KbSNMF-div show robustness to noise up until 20 dB and
gradually deteriorate in performance thereafter. However, both
KbSNMF-fnorm and KbSNMF-div outperform SSRNMF at all

(37)
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noise levels in terms of RMSE. The superior performance of
KbSNMF-fnorm and KbSNMF-div in terms of SAD is due to the
novel auxiliary regularizers on the endmember matrix, thereby
attempting to extract the most realistic endmember spectra. The
increase in RMSE values for low SNR values is due to the matrix
M. Since the matrix M performs a compromise between noise
removal and information retention, when the noise power is
dominant, more portion of the high frequency components will
be removed from the image. Hence, the abundance map will
mostly contain general attributes of that hyperspectral dataset.
Also, when the extracted abundance maps deviate from the
actual abundance map, it will vitiate the endmember extraction
process via the reconstruction error of the hyperspectral dataset.

4) Sensitivity to Number of Spectral Bands: Here we vary the
number of spectral bands of the endmembers and observe the
unmixing performance of the algorithms. The results are shown
inFig. 10. KbSNMF-fnorm and KbSNMF-div outperform all the
competing algorithms in terms of SAD for the number of spectral
bands in the range of 300-960. However, the performance of
KbSNMF-fnorm and KbSNMF-div deteriorate drastically in
terms of SAD for very low number of spectral bands, i.e., around
200 spectral bands. In terms of RMSE, KbSNMF-fnorm and
KbSNMF-div outperform MVNTF at a high number of spectral
bands, specifically more than 180, and outperform SGSNMF at
a low number of spectral bands, i.e., below 480 spectral bands.
When spectral bands are removed from the original signature,
it damages the super-Gaussian nature of the endmember. But,
as long as the super-Gaussian nature of the endmember is
preserved, the algorithm will perform adequately. And once the
endmember loses its super-Gaussian nature of the endmember,
the algorithm’s performance will worsen. To elaborate more, the
kurtosis values of the sea-water endmember as the number of
spectral bands is reduced are given in Fig. 11.

5) Sensitivity to Number of Endmembers: In this experi-
ment, we vary the number of endmembers and investigate the
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Fig. 12.  Variation of (a) SAD and (b) RMSE with the number of endmembers.

o~ KbSNME.fnom| ™
~ KbSNMF-div

L L o L L
64 256 1024 4096 16384 3 256 1024 4096 16384
no. of pixels no. of pixels

(a) (b)

Fig. 13.  Variation of (a) SAD and (b) RMSE with the number of pixels.

performance of the algorithms. The results are illustrated in
Fig. 12. All the algorithms have the tendency to deteriorate
the performance in terms of SAD with the number of end-
members. KbSNMF-fnorm and KbSNMF-div outperform R-
CoNMF when the number of endmembers are low, i.e., be-
low seven endmembers, and outperform SGSNMF when the
number of endmembers is high, i.e., above five endmembers. In
terms of RMSE, KbSNMF-fnorm and KbSNMF-div outperform
SGSNMF when the number of endmembers is low, i.e., below
four endmembers.

6) Sensitivity to Number of Pixels: Within this experiment,
we illustrate how the proposed algorithm performs under sim-
ulated HSI datasets against different number of pixels. The
number of pixels in an HSI is a major concern since it de-
notes the amount of statistical information in the input to the
algorithm. The amount of statistical information presented to a
numerical algorithm determines the tendency of an algorithm to
be trapped in a local minima [76]. Fig. 13 illustrates the results
in terms of SAD and RMSE. The unmixing performance of
KbSNMF-fnorm and KbSNMF-div improves in terms of SAD
when the number of pixels is increased and even outperforms all
competing algorithms except MVNTF and SSRNMF when the
number of pixelsis very high, i.e., 64 x 64 and 128 x 128 pixels. In
terms of RMSE, KbSNMF-fnorm and KbSNMF-div outperform
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Fig. 14. Endmember spectra extracted utilizing KbSNMF algorithms and
other comparison algorithms of the Samson dataset: “Soil,” “Tree,” and “Water,”
respectively.

Fig. 15.  Abundance maps extracted utilizing KbSNMF of the Samson dataset.
Top row: ground truth abundance maps. Middle row: extracted abundance maps
by KbSNMF-fnorm. Bottom row: extracted abundance maps by KbSNMF-div.
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Fig. 16.  Mean reconstruction error of the Samson dataset. (a) KbSNMF-
fnorm. (b) KbSNMF-div.
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Fig. 17. Endmember spectra extracted utilizing KbSNMF algorithms and
other comparison algorithms of the Urban dataset: “Asphalt,” “Grass,” “Tree,”
“Roof,” and “Dirt,” respectively.

SGSNMF when the number of pixels is very high, i.e., 64x64
and 128 x 128 pixels. Therefore, the more realizations we have
of each endmember signature, the better error performances will
record for endmember extraction and abundance estimation and
vice versa as the algorithm uses the ensemble averaging process.
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TABLE IV
UNMIXING PERFORMANCE COMPARISON IN TERMS OF SAD FOR THE SAMSON DATASET

Methods ~ KBSNME — KbSNME — NMF  sGsnmp  Miwol  R.CoNMF  SSRNMF - MVNTF
Soil 0.4975 0.2078 03455 03743 03463  0.1253  0.6091  0.1488
Tree 0.0456 0.0647 0.1433 01721 02315 00105 00750  0.0944

Water 02771 02014 03513 02941 02429 03219 0.1624  0.0887

Average  0.2734 0.0580 02800 02802 02736 0526 02822 0.1106

The best performances are in bold typeface; the second best performances are italicized; and the third best performances are underlined.

TABLE V
UNMIXING PERFORMANCE COMPARISON IN TERMS OF RMSE FOR THE SAMSON DATASET

Methods ~ KPSNME - KbSNME —  NMF  sgsnmp  Milvol - R.CoONMF  SSRNMF  MVNTF
Soil 0.3429 0.1574 04217 00532 00967 00431 03832 03517
Tree 0.2673 0.0911 0.0432 00882  0.1245 00118 00325  0.2454

Water  0.0910 0.0927 02359 01432 00432 05321 0.1654 04162

Average  0.2337 0.1137 02336 0.0949 00881 __ 0.1957 _ 0.1937 _ 0.3378

The best performances are in bold typeface; the second best performances are italicized, and the third best performances are underlined.

Fig. 18.  Abundance maps extracted utilizing KbSNMF of the Urban dataset.
Top row: ground truth abundance maps. Middle row: extracted abundance maps
by KbSNMF-fnorm. Bottom row: extracted abundance maps by KbSNMF-div.

D. Experiments on Real Data

We compare the unmixing performance of KbSNMF with the
other competing methods in terms of SAD and RMSE for the
Samson and Urban datasets. But for the Cuprite dataset, only
the SAD values are tabulated.

1) Samson Dataset: Table IV shows SAD values for each of
the extracted endmember spectra and Table V shows RMSE
values for each of the extracted abundance maps, under the
different methods. In terms of average SAD, MVNTF and
R-CoNMF outperform all methods. However, KbSNMF-fnorm
and KbSNMF-div outperform the rest of the other methods.
Also, KbSNMF-div reports the third best performance in terms
of SAD in extracting each endmember. In terms of RMSE, Min-
vol NMF and SGSNMF outperform all methods. KbSNMF-div
reports the third best average performance in terms of RMSE.
The endmember spectra extracted utilizing KbSNMF-fnorm and
KbSNMF-div as shown in Fig. 14. Also, the abundance maps
extracted by KbSNMF-fnorm and KbSNMF-div are shown in
Fig. 15, and it is evident that KbSNMF-div has managed to
accurately extract the spatial variation of the abundance maps.
As given in Fig. 14, the extracted signature for the “soil”

endmember with the f-norm variant is disparate with the ground-
truth signature while the difference between that and the sig-
nature from the div variant is comparatively less. Since the
soil endmember is not super-Gaussian but sub-Gaussian, such
a difference can be visible in the abundance map. Moreover,
Fig. 16 illustrates the mean reconstruction error matrices for the
KbSNMF algorithms.

2) Urban Dataset: Table VI shows SAD values for each of
the extracted endmember spectra under the different methods.
In terms of SAD, KbSNMF-fnorm outperforms all methods and
KbSNMF-div outperforms the rest of the methods except for
Min-vol NMF. Also, KbSNMF-fnorm reports the best perfor-
mance and KbSNMF-div reports the second best performance
in extracting the spectra of the endmembers “Tree” and “Roof.”
The endmember spectra extracted utilizing KbSNMF-fnorm and
KbSNMF-div are shown in Fig. 17, and it can be observed
that they closely follow their ground truth spectra. Table VII
reports RMSE values for each of the extracted abundance maps,
under the different methods. In terms of RMSE, Min-vol NMF
outperforms all methods, followed by R-CoNMF and MVNTFE.
KbSNMF-fnorm reports the best performance in extracting the
spectra of the endmembers “Grass” and “Roof,” and KbSNMF-
div reports the second best performance in extracting the spectra
of the endmember “Asphalt.” The abundance maps extracted uti-
lizing KbSNMF-fnorm and KbSNMF-div are shown in Fig. 18,
and it can be observed that they closely follow their ground truth
abundance maps.

3) Cuprite Dataset: Table VIII shows SAD values for each
of the extracted endmember spectra under the different methods.
In terms of SAD, KbSNMF-div sits at the second place while
SSRNMF stands at the top. The both KbSNMF forms report
compelling results as they show best performance in extracting
several endmembers, i.e., “Andradite,” “Kaolinite 2,” “Mus-
covite,” and “Sphene.” The endmember spectra extracted uti-
lizing KbSNMF-fnorm and KbSNMF-div are shown in Fig. 19,
and it can be observed that they closely follow their ground truth
spectra.
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TABLE VI
UNMIXING PERFORMANCE COMPARISON IN TERMS OF SAD FOR THE URBAN DATASET

Methods ~ KPSNME - KbSNME 3 NMF  sgsnmp — Minwol - R.CoNMF  SSRNMF ~ MVNTE

fnorm
Asphalt 0.1178 0.1252 0.2966 0.4173 0.1849 0.2017 0.0599 0.1721
Grass 0.1299 0.2821 0.4993 0.3434 0.1045 0.2786 0.1780 0.2080
Tree 0.1069 0.1498 0.1603 0.1499 0.1798 0.2125 0.1795 0.2310
Roof 0.1044 0.1621 0.2518 0.3822 0.1930 0.2478 0.4217 0.3941
Dirt 0.2999 0.1742 0.3379 0.3359 0.1521 0.2435 0.1534 0.3689
Average 0.1518 0.1787 0.3092 0.3257 0.1628 0.2368 0.1985 0.2748

The best performances are in bold typeface; the second best performances are italicized; and the third best performances are underlined.

TABLE VII
UNMIXING PERFORMANCE COMPARISON IN TERMS OF RMSE FOR THE URBAN DATASET

Methods ~ KBSNME — KbSNME 3 NMF - sgsnmp  Mivol  R.CoNMF  SSRNMF  MVNTF

fnorm
Asphalt 0.5425 0.1654 0.3197 0.5578 0.1376 0.1980 0.3237 0.3354
Grass 0.1296 0.2354 0.2140 0.2545 0.1490 0.3010 0.2437 0.3164
Tree 0.5470 0.4240 0.4607 0.2692 0.1064 0.1258 0.2660 0.3183
Roof 0.1528 0.4584 0.5350 0.2256 0.2130 0.1986 0.2851 0.1858
Dirt 0.3691 0.5789 0.4293 0.5610 0.5409 0.5210 0.3589 0.2004
Average 0.3482 0.3724 0.3917 0.3736 0.2294 0.2689 0.3121 0.2713

The best performances are in bold typeface; the second best performances are italicized, and the third best performances are underlined.

TABLE VIII
UNMIXING PERFORMANCE COMPARISON IN TERMS OF SAD FOR THE CUPRITE DATASET

Methods KbSNME KbSNMF —; ,NMF SGSNMF ~ Mvel  R.CONME SSRNMF MVNTF
Alunite 0.4960 03162 090145 0.7456 0.4747 05745 02521 03938
Andradite 0.0953 0.1977 05638  0.5926 0.1161 0.2054 0.1760 03118
Buddingtonite 0.5837 02731 0.8468  0.1182 0.1908 0.1936 0.1885  0.5634
Dumortierite 0.4210 0.1864 07002 0.7599 0.1316 02515 10213 03161
Kaolinite 1 0.4682 0.2842 02366  0.5824 0.4536 0.5683 0.1375  0.4766
Kaolinite 2 0.5530 0.1459 05869  0.7393 0.4702 0.4079 0.1625  0.4595
Muscovite 0.2352 0.2086 04558  0.5179 03358 0.3534 02240 02555
Montmorillonite ~ 0.2926 0.4222 0.1127  0.5160 0.1651 0.2266 0.1311 03130
Nontronite 03374 0.5450 10758 02102 0.1845 0.4106 0.1249  0.2899
Pyrope 0.1654 0.2630 09745 04753 0.4885 0.4181 0.0595  0.3846
Sphene 0.1590 03174 10424 0.4875 0.2821 0.3770 06160  0.4048
Chalcedony 0.2723 0.4818 02291  0.6865 03511 0.5228 02394 03648
Average 0.3399 0.3035 0.6449 05360 03037 03758 02777 03778

The best performances are in bold typeface; the second best performances are italicized, and the third best performances are underlined.
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Fig. 19. Endmember spectra extracted utilizing KbSNMF algorithms of the Cuprite dataset: “Alunite,” “Andradite,” “Buddingtonite,” “Dumortierite,” “Kaolinite
1,” “Kaolinite 2,” “Muscovite,” “Montmorillonite,” “Nontronite,” “Pyrope,” “Sphene,” and “Chalcedony,” respectively.
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VII. CONCLUSION

This article proposed a blind HU algorithm called KbSNMFE,
which is based on incorporating the independence of endmem-
bers to the conventional NMF framework. This was done by
introducing a novel kurtosis regularizer based on the fourth
central moment of a signal which signifies the statistical inde-
pendence of the underlying signal. We illustrated a comprehen-
sive derivation of the proposed algorithm in this article along
with its performance evaluation in simulated as well as real
environments (diverse simulated HSI datasets and three standard
real HSI datasets). We have assessed the sensitivity of the
proposed algorithm to control parameters, noise levels, number
of spectral bands, number of pixels, and number of endmembers
of the HSI. We have also provided performance comparisons
of the proposed algorithm with the state-of-the-art NMF-based
blind HU baselines. Moreover, experimental results verify that
dominant performance in endmember extraction can be obtained
through the novel algorithm. Hence, the proposed algorithm can
be effectively utilized to extract accurate endmembers which can
thereafter be passed through as supervisory input data to modern
DL methods.
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