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Abstract—Few-shot synthetic aperture radar (SAR) target clas-
sification has received more and more attention in recent years,
where most of the existing methods have applied off-the-shelf
networks designed for natural images to SAR images, ignoring
the special characteristics of SAR data. Therefore, in this article,
we propose an attribute-guided multi-scale prototypical network
(AG-MsPN) combined with subband decomposition for few-shot
SAR target classification, aiming to learn more discriminative
features from a few labeled data. Since the SAR images are es-
sentially complex-valued images containing both amplitude and
phase information, we implement the subband decomposition of
complex-valued SAR images to explore the backscattering varia-
tions of targets, thus obtaining more complete descriptions of tar-
gets. Then, considering the complementary features extracted by
different convolutional layers, based on the prototypical network,
a multi-scale prototypical network (MsPN) is proposed to fuse the
features of different layers to enhance the discrimination of fea-
ture representations, thus relieving the problem of high intra-class
diversity and inter-class similarity for the images of SAR targets.
Besides, we devise the prior binary attributes of SAR targets and
add an extra attribute classification module (ACM) into the MsPN
to map the images into the attribute space for classification. During
the training phase, the proposed MsPN and the ACM are jointly
utilized to realize the target classification in both the feature space
and the attribute space, and meanwhile, the model parameters are
optimized by the joint loss. Thus, the classification performance of
the MsPN is further enhanced under the joint supervision of class
label information from a few labeled data and the target attribute
information from the prior knowledge. Therefore, we name the
proposed method the AG-MsPN. We demonstrate the effectiveness
of our proposed AG-MsPN on the Moving and Stationary Target
Acquisition and Recognition benchmark dataset, and our method
surpasses many other existing methods in the few-shot cases.

Index Terms—Attribute classification, few-shot, synthetic
aperture radar (SAR), target classification.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) has become an important
ground observation device due to its advantage of working

in all-day and all-weather conditions. SAR is widely used in
target classification and plays an important role in military
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and homeland security. With the development of convolutional
neural networks (CNNs), the CNN-based SAR target classifica-
tion methods [1]–[6] have achieved remarkable performance.
However, most of the existing methods require a substantial
amount of training data, and preparing such high-quality labeled
SAR data is labor-intensive and impractical. Thus, the research
on SAR target classification with a few labeled data has been a
challenging but active topic.

Since the labeled SAR data are hard to acquire in practice, the
public Moving and Stationary Target Acquisition and Recog-
nition (MSTAR) benchmark dataset [9] (there are ten classes
of targets and no more than 300 training images per class) is
widely used in SAR target classification research. Compared
with the large-scale optical image datasets (e.g., ImageNet [10]
with 21 841 classes and more than 14 million images in total), the
number of training images in the MSTAR dataset is quite limited.
Directly training the deep CNN with limited labeled SAR data
may cause overfitting. To address the problem of SAR target
classification with limited labeled data, data augmentation [2],
[11]–[14] (e.g., translation, rotation, simulated data generation,
etc.) and reduction of network parameters [2], [15], [16] are com-
monly considered. For example, Ding et al. [11] adopted various
data augmentation methods, including random translation, pose
synthesis, etc., to get more samples for training. In [2], a new
all-convolutional network (A-ConvNet) is proposed to reduce
the free parameters to avoid the overfitting. Besides, robust
feature extraction and selection [17]–[20] are also beneficial.
For example, an effective feature extraction approach based on
a visual saliency model [18] was proposed to extract more ef-
fective discriminative features. In recent years, transfer learning
methods [21]–[25] have been increasingly applied in SAR target
classification with limited labeled data. The core of the transfer
learning methods is to transfer the rich knowledge obtained from
the source domain to the target domain. Sun et al. [25] designed
the angular rotation generative network (ARGN) to transfer the
shared angular-related information to the target domain to solve
the SAR target classification with limited labeled data. Huang
et al. [21] exploited the transferrable knowledge obtained from
the pretrained convolutional layers to facilitate the SAR target
classification with limited data.

Although the above methods have achieved excellent perfor-
mance with limited labeled data, when the amount of labeled
data is further decreased (e.g., only five labeled samples per
class), the classification performance of these methods degrades
severely. However, humans excel in rapid understanding of
visual characteristics with few demonstrations. Inspired by the
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Fig. 1. SAR images of BMP2 and T72 targets with the azimuth angles of 30◦,
100◦, and 250◦, and their corresponding optical photographs.

rapid learning ability of humans, few-shot learning (FSL) based
on meta-learning [26]–[28] has attracted increasing attention,
which intends to learn a classifier from a large number of
training samples in the source domain and then recognizes the
unseen new classes in the target domain given only a few labeled
samples (usually one to ten samples per class).

In this article, we tackle the SAR target classification with
extremely few labeled samples via meta-learning [27]. The
FSL methods based on meta-learning have attained remarkable
performance in optical image classification [26]–[32], but there
are only a handful of such kind of methods in the field of SAR
target classification [33]–[39]. For instance, Wang et al. [38]
introduced the simulated SAR data into the training procedure
of meta-learning, aiming to employ the transferrable knowledge
learned from the simulated data to assist the classification of
SAR targets in the target domain. To extract more discriminative
features, Li et al. [36] improved the structure of relation network
(RN) [31] and adopted the pretraining strategy. In the aforemen-
tioned approaches in SAR field, the researchers only slightly
improve the off-the-shelf networks designed for optical images
and then apply them to SAR images. The special characteristics
of SAR images are not fully taken into account, which include
the following three aspects.

1) Bidimensional complex-valued images: Due to the special
active microwave imaging mechanism, the SAR images
are essentially bidimensional complex-valued images that
contain the amplitude information and phase informa-
tion. Previous works [40]–[43] have verified that the
phase information of complex-valued SAR images can
provide effective target information. For instance, some
methods based on time–frequency analysis (TFA) [40],
[41], [44] and subband decomposition (SD) [45]–[47] are
employed to analyze the physical scattering properties of
SAR targets. Therefore, it is necessary to jointly use the
amplitude information and phase information of the few
complex-valued SAR images to fully exploit the rich target
information.

2) High intra-class diversity and large inter-class similarity:
Differing from the optical images, SAR images reveal
the radar backscattering of the ground objects. The slight
variation in imaging condition, as well as the configuration
of targets, may result in large differences in SAR images.
Fig. 1 shows the SAR images of BMP2 and T72 with

different azimuth angles from the MSTAR dataset, and
their corresponding optical photographs. It can be seen
that the same target has various backscattering behaviors
at different azimuth angles, and the different targets may
also look quite similar. The high intra-class diversity and
the large inter-class similarity of SAR images make the
few-shot SAR target classification more challenging.

3) Limited transferrable knowledge from the source domain
to the target domain for SAR image datasets: In few-shot
SAR target classification, on the one hand, there are ex-
tremely few labeled samples in the target domain; on the
other hand, compared to the optical image datasets, the
amount of labeled data in the source domain of SAR
image datasets is also much less, which leads to the
limited transferrable knowledge from the source domain
to the target domain. Due to the limited transferrable
knowledge, the performance of the few-shot SAR target
classification methods [33]–[39] using only the high-level
visual features is still limited. For instance, with only
five labeled samples per class, the prototypical network
(PN) [30] achieves the classification accuracy of 99.7%
on the optical Omniglot dataset [48], but only 75.12% on
the MSTAR dataset, as shown in the experimental result
in Section V. Using prior knowledge obtained from other
sources, such as the prior attributes of targets obtained
from the optical photographs and text descriptions from
the Internet, to assist the meta-learning may improve
the performance of few-shot classification. Therefore, we
hope to combine the visual feature classification with
the attribute classification during the meta-learning, to
further improve the performance of few-shot SAR target
classification.

Considering the three issues raised above, based on the
PN [30], an attribute-guided multi-scale prototypical network
(AG-MsPN) is proposed, as shown in Fig. 2. The proposed AG-
MsPN consists of a multi-scale prototypical network (MsPN)
and an attribute classification module (ACM). Meanwhile, the
complete amplitude information and phase information con-
tained in the complex-valued SAR images are taken into account.
First of all, the azimuth and range SD [45]–[47] of the complex-
valued SAR images is performed to reveal the backscattering
variations of targets under different azimuth look angles and
range chirp bands. To tackle the problems of high intra-class
diversity and inter-class similarity within SAR images, we im-
prove the feature extractor of the PN and propose the MsPN to
fuse the output multi-scale features from different layers. There-
fore, both the fine-grained local discriminative information in
the low-level layers and the global semantic information in the
high-level layers are considered to strengthen the feature repre-
sentations of targets. Thereby, the targets of different categories
with high similarity become easier to be distinguished. Finally,
to compensate for the performance degradation of meta-learning
under limited data of source domain, the attribute classification
of targets is merged into the MsPN. Specifically, we devise the
prior binary attributes for each class of targets and present an
ACM to map the SAR target images into the attribute space for
attribute classification. The class labels of the SAR targets are
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Fig. 2. Overall framework of attribute-guided multi-scale prototypical network in the case of three-class classification. MsPN denotes the multi-scale prototypical
network and ACM is the attribute classification module. CA denotes the channel attention [7] module, and Conv represents the convolutional block. DS is the
downsampling block, which is realized by using the same architecture as Conv. Tran is the proposed transformation block and is composed of a batch normalization [8]
layer, a channel attention module, and a convolutional block. ft(xj) denotes the multi-scale feature of query sample xj extracted by the MsPN, and axj is the
attribute of xj predicted by the ACM. Lc and Ls are the classification loss of the MsPN and the similarity loss of the ACM, respectively. L is the total loss, in
which λ is a balance parameter.

predicted by comprehensively considering the classification re-
sults of the MsPN and the ACM. Through an end-to-end training
of the MsPN and the ACM, the classification performance of the
MsPN can be improved under the supervision of both the class
label information from a few labeled data and the prior attribute
information of targets. Therefore, we name the proposed method
as the AG-MsPN.

In general, the contributions of this article are as follows.
1) To address the problems of high intra-class diversity and

inter-class similarity within SAR images and enhance the
feature representations of targets, we improve the feature
extractor of the PN and propose the MsPN to fuse the
output multi-scale features from different layers. Hence,
aided with the fused fine-grained local discriminative fea-
tures, the targets of different classes with high similarity
become easier to be distinguished.

2) To compensate for the performance degradation of meta-
learning with limited data in the source domain, we devise
the prior binary attributes of SAR targets in the MSTAR
dataset and propose an ACM to predict the class labels
of SAR targets together with the MsPN, yielding the
proposed AG-MsPN. During the end-to-end optimization
process of the MsPN and the ACM, the performance of
the MsPN is enhanced under the supervision of both the
label information and the prior attribute information of
SAR targets.

3) A novel few-shot SAR target classification framework,
AG-MsPN, is proposed, in which the complete ampli-
tude information and phase information contained in the
complex-valued SAR images are taken into account. We
implement the range and azimuth SD of the complex-
valued SAR images to explore the backscattering vari-
ations of SAR targets hidden during the imaging phase,

aiming to better extract the discriminative features of SAR
targets. Extensive experiments on the MSTAR dataset
demonstrate that the proposed few-shot SAR target classi-
fication framework AG-MsPN outperforms many state-of-
the-art methods under various settings of the target domain
and the source domain.

The rest of this article is organized as follows. Section II
introduces the related work. Preliminary is briefly reviewed in
Section III. A detailed description of the proposed AG-MsPN
is presented in Section IV, and the implementation details and
experiments are provided in Section V. Finally, Section VI
concludes this article.

II. RELATED WORK

A. Few-Shot SAR Target Classification

In recent years, FSL has received increasing attention in
the field of SAR target classification [33]–[39], which aims to
learn a classifier for unseen classes with few labeled samples.
Meta-Learning [27] is commonly used in FSL, which extracts
the transferrable knowledge from the relevant source domain
to assist the few-shot classification task in the target domain.
In contrast to transfer learning, the special episodic training
strategy [27] is applied in meta-learning to acquire the trans-
ferrable knowledge, allowing for more rapid adaptation of the
classification model to the unseen classes.

Meta-Learning can be mainly divided into three streams:
metric-based [30], [31], optimization-based [29], and memory-
module-based [49], where metric-based [33], [34], [36], [37] and
optimization-based [35], [38] methods are mainly considered
in few-shot SAR target classification. For instance, in [35], an
optimization-based meta-learning model is designed to obtain
good initialization parameters that can be applied to new classes
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with only a few steps of gradient descent. However, training the
optimization-based meta-learning models is time-consuming.
The metric-based meta-learning dedicates to learning a good
metric space, in which sample features of the same category are
clustered, and the class labels of the samples are determined via
finding the nearest class prototype. For example, in [37], the
triplet loss is applied to constrain the sample distance within the
same class and among different classes to facilitate the learning
of metric space. Wang et al. [33] merged a bidirectional recurrent
neural network [50] into the PN [30] to extract target features,
which are robust to the variation of poses. Tang et al. [34]
replaced the feature extractor of the Siamese network [51] with
the one in the A-ConvNet [2], in order to obtain better feature
representation and improve the performance of metric-based
meta-learning.

Although the aforementioned methods have improved the
performance of few-shot SAR target classification, the special
characteristics of SAR images are not fully taken into account
and the prior auxiliary information is ignored. Thus, different
from the previous works [33]–[38], a novel few-shot SAR target
classification model AG-MsPN is proposed, in which the com-
plete target information contained in the complex-valued SAR
images and the prior attribute information of targets are taken
into account.

B. Applications of Complex-Valued SAR Images

Differing from optical images, SAR images are complex
valued, which contain the amplitude information and phase
information. Nevertheless, only a few studies [40]–[43], [52],
[53] have jointly utilized the amplitude information and phase
information of complex-valued SAR images to analyze SAR
targets. For example, the complex-valued convolutional neural
networks (CV-CNNs) [43], [52], [53] are designed to extend all
the elements of the CNN to the complex domain to fully explore
the complete target information contained in the complex-valued
SAR images. However, training the CV-CNN still requires a
large number of labeled SAR images. Besides, some meth-
ods based on TFA [40]–[42] are also presented to reveal the
backscattering variations along the azimuth and range directions
during the imaging phase. In [40], Spigai et al. proposed the
TFA-based method to quickly calculate the radar spectrogram to
characterize the backscattering variations of point targets during
the acquisition of SAR images. Singh and Datcu [41] leveraged
the TFA algorithm to analyze the backscattering properties of
targets to better distinguish the targets that look quite similar.
However, the TFA-based methods only analyze the physical
properties of target at the pixel level, and the backscattering
behaviors of the entire target are not directly depicted. Moreover,
the TFA-based methods are mainly used in scene classification
or the physical property analysis of targets and could not be
directly applied to target recognition.

SD [45]–[47] is also utilized to fully leverage the rich target
information contained in the complex-valued SAR images. For
instance, in [45], the maximum-likelihood statistics based on the
Wishart probability distribution is used to detect the nonstation-
ary pixels of the subapertures, and then, the influence of azimuth

backscattering variations on conventional polarimetric SAR data
analysis is eliminated by using the coherent restoration. In [47], a
series of subband images are generated in the azimuth and range
directions, and then, the two-looks internal Hermitian product
based on the nonnormalized interferometric coherence of the
two sublooks is proposed to distinguish the point targets from
the nearby speckle. To the best of our knowledge, the SD of
complex-valued SAR data has still not been applied in the field
of SAR target classification. Therefore, we implement the SD in
the azimuth and range directions to explore the rich target infor-
mation contained in the complex-valued SAR images, aiming to
enhance the performance of few-shot SAR target classification.

Different from the previous works [45]–[47], after generating
the subband images, we do not use these methods to process
the subband images, like the nonnormalized interferometric
coherence and the coherent restoration, but merge the amplitude
images of the original SAR image with the decomposed subband
images via the channel-wise concatenation. Then, considering
the remarkable performance of CNN, we send the obtained
multi-channel SAR images into the CNN, aiming to adaptively
explore the valuable information contained in the original SAR
image and the subband images.

C. Prior Attribute Information

Attributes are high-level descriptions of objects [54], such
as shape, color, or geographic information. The same attribute
can be shared by multiple categories of objects. In general, the
attributes of objects can be obtained from the prior knowledge,
such as searching for the optical photographs and text descrip-
tions from the website. Given a set of attributes, humans can
quickly recognize the targets with the prior knowledge. For
instance, the elephant can be reliably recognized when looking
for the attributes of gray animals, four legs, and long trunks.

Benefiting from the additional target information provided
by the attributes, attribute-based zero-shot learning (ZSL) [54]–
[58] has attracted more and more attention, which aims to
recognize the novel class never seen before without any labeled
samples. In the attribute-based ZSL methods [54]–[58], an em-
bedding function from the images to the high-level attributes
is commonly learned, to facilitate the recognition of the unseen
classes. For instance, Lampert et al. [54] first designed the direct
attribute prediction model and the indirect attribute prediction
model to recognize the images of unseen classes by predicting
the posterior probability of each attribute. However, these two
attribute prediction models are trained based on each individual
attribute; thus, the correlations between attributes are ignored.
To construct the relationships between different attributes, some
ZSL methods [57], [58] work on learning a transformation model
to map the images into a shared attribute space. For instance,
in [57], the images are mapped into the shared semantic space,
and then, the classification is performed by finding the nearest
class semantic vector.

Inspired by the method of [57], we design the prior binary
attributes of MSTAR SAR targets and present an ACM based
on the MsPN, aiming to enhance the performance of few-shot
SAR target classification. Compared with [57], only the way
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Fig. 3. Differences of datasets in traditional classification and few-shot classification. (a) Datasets in the traditional classification. (b) Datasets in the few-shot
classification. The samples with the same category are represented by triangles of the same color.

of attribute prediction in our method is similar to it, while the
attribute classification and the training strategy of our method
are different from it, which will be depicted in Section IV-C.

III. PRELIMINARY

In this section, the definitions of FSL, PN, and SD are briefly
introduced.

A. Brief Introduction of FSL

FSL aims to recognize the unseen classes with only
few labeled samples. Fig. 3(a) and (b) shows the datasets
of traditional classification and few-shot classification,
respectively. As shown in Fig. 3(a), in the traditional
classification, the training set and the test set share the
same label space. However, as illustrated in Fig. 3(b), there
are three datasets in the few-shot classification: the training
set in the source domain, the support set, and the test set
in the target domain. The support set and the test set in the
target domain share the same label space, which are similar to
the training set and the test set in the traditional classification.
However, the class labels of the training set in the source domain
and data in the target domain are disjoint. Suppose that there
are N classes and K labeled samples per class in the support set
(generally K ≤ 10); then, this few-shot classification problem
is defined as an N -way K-shot task, which aims to classify the
test samples given only N ×K support samples.

From Fig. 3(b), we can see that, in the target domain, the
labeled samples in the support set are insufficient to train a
classifier. Hence, the training set of the relevant source domain
is introduced to assist the classification of test samples. Since
the class labels of the training set and the test set are disjoint,
the classifier trained by the traditional training method on the
training set cannot generalize well to the unseen test samples.
Therefore, the episodic training strategy [27] is introduced into
the meta-training procedure, in order to enable the classifier to
learn the transferrable knowledge and obtain good generaliza-
tion ability.

Fig. 4 shows the episodic training strategy in the 3-way 1-shot
case. Specifically, a set of auxiliary few-shot classification tasks
{T1, T2, . . . , Tn} is sampled from the training set of the source
domain to imitate the 3-way 1-shot classification task in the
target domain. As demonstrated in Fig. 4, in the ith iteration,

Fig. 4. Episodic training strategy of the few-shot classification. Ti is the
sampled few-shot classification task in the ith iteration and Si and Qi denote
the sampled support set and query set, respectively.

the support set Si with three classes and one sample per class
is first randomly selected from the training set. Then, a batch of
samples (e.g., five samples per class as shown in Fig. 4) from the
remaining of the selected three classes are randomly sampled to
serve as the query set Qi. The few-shot classification task Ti is
formed of the selected support set Si and query set Qi, and then,
the samples in Si and Qi are fed into the classification model
with the aim of recognizing the query samples given the 3× 1
support samples. The iterative update of the model parameters
is based on each few-shot classification task.

After the episodic training, the classification model has
adapted to a lot of few-shot classification tasks. Therefore,
the classification model can obtain the transferrable knowledge
from the training set, so that it quickly adapts to the unseen
classification task in the target domain.

B. Prototypical Network

The PN [30] is a typical metric-based meta-learning network
for few-shot object classification. The feature extractor of the PN
consists of four convolutional blocks, and each convolutional
block is composed of a convolutional layer, a batch normaliza-
tion (BN) [8] layer, a ReLU nonlinear activation function [59],
and a max-pooling layer, as shown in Fig. 5. The key idea of the
PN is to learn an embedding function, with which the embedded
features of the samples within the same category are grouped
together. With the embedded features, each class is represented
by its prototype, which is defined as the average feature of this
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Fig. 5. Classification process of the PN. Conv denotes the convolutional block. m1, m2, and m3 are the prototypes of three classes. f(xj) is the extracted
feature of query sample xj . Lc is the classification loss of the PN.

class. Then, the distances from the embedded features to each
prototype are calculated to determine which class the samples
belong to. In view of the small number of parameters and
the excellent achievements of the PN in the few-shot optical
image classification, we choose the PN as the baseline to tackle
the problem of few-shot SAR target classification. We simply
introduce it by referring to [30] as follows.

Given a few-shot classification task sampled in the ith iter-
ation, the support set and the query set are denoted as Si =
{(xi, yi), i = 1, . . . ,m} and Qi = {(xj , yj), j = 1, . . . , n}, re-
spectively, where yi and yj are the corresponding labels of
samples xi and xj .

As described in Fig. 5, the support samples are mapped into
the embedding space. Then, the prototype of class k is generated
by averaging the embedded features of support samples within
class k, which is shown as follows:

mk =
1

|Sk|
∑

(xi,yi)∈Sk

f (xi) (1)

where Sk denotes the set of support samples labeled with class
k and f denotes the embedding function.

After calculating the prototype of each class, the query sam-
ples are classified by finding the nearest prototype in the em-
bedding space. Given a query sample xj ∈ Qi, we first calculate
the Euclidean distance between its embedded feature f(xj) and
each prototype, to evaluate their similarities. Then, based on
the softmax function, the probability that the query sample xj

belongs to class k is predicted as follows:

p (yj = k | xj) =
exp

(
−dkxj

)

∑
k′ exp

(
−dk′xj

) (2)

where dkxj
denotes the Euclidean distance between the feature

f(xj) and the prototype of class k, i.e., mk.
As can be seen from (2), the larger the Euclidean distance,

the smaller the probability that the query sample belongs to the
class. Thus, the classification loss Lc for query sample xj with
true class k is defined as

Lc = − log p (yj = k | xj) . (3)

By minimizing the classification loss of query sample xj , the
embedded feature f(xj) of xj is pulled closer to the prototype

of true class k in the embedding space, so that the query sample
xj can be correctly classified.

In the meta-training procedure of the PN, a large number of
training classes and training samples from the relevant source
domain are required to learn the transferrable knowledge and
improve the generalization ability on the unseen test data. How-
ever, compared to the optical image datasets, such as miniIma-
geNet [60] (64 training classes and 600 samples per class), the
number of training classes and training samples in the source
domain of the SAR image dataset is much fewer, leading to
the poor few-shot classification performance via meta-learning.
Therefore, we improve the feature extractor and the label pre-
diction of the PN to tackle the few-shot SAR target classification
under not only the extremely few labeled samples in the target
domain, but also the limited training samples of the source
domain.

C. Subband Decomposition

In this article, we follow the SD method for azimuth and range
directions proposed in [45]–[47], aiming to reveal the rich target
information from both the amplitude and the phase of complex-
valued SAR data. The SD of azimuth and range directions is
introduced, respectively, as follows.

1) Azimuth SD: In order to get the full-resolution SAR im-
ages, many low-resolution echoes of targets received at
different azimuth angles are integrated in the imaging
phase. Thus, the azimuth SD [45] of complex-valued SAR
images is performed to generate several subband images,
which are observed under different azimuth look angles.
The generation steps are as follows.
a) 1-D Fourier transform: First, we perform the 1-D

Fourier transform in the azimuth direction on complex-
valued SAR images to get the azimuth spectrum.

b) Azimuth weighting function estimation: The amplitude
of the azimuth spectrum is averaged along the range di-
rection, and then, we can obtain the estimated azimuth
weighting function [46].

c) Azimuth spectrum correction: In order to correct the
spectrum, we multiply the inverse of the estimated
azimuth weighting function with the azimuth spectrum.

d) Azimuth spectrum division: According to the number
we need, the corrected spectrum is divided into several
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equal nonoverlapping subspectrums along the azimuth
direction, and the center frequency of each subspectrum
is moved to zero frequency.

e) Subspectrum weighting: After obtaining the subspec-
trums, we use the estimated azimuth weighting func-
tion in step (b) to weight each subspectrum and imple-
ment the zero-padding operation around the subspec-
trums to restore the original size of the complex-valued
SAR image.

f) 1-D inverse Fourier transform: Finally, the subband
images decomposed in the azimuth direction are pro-
duced by performing the 1-D inverse Fourier transform
on each subspectrum.

2) Range SD: Similar to the azimuth SD, the range SD [47]
produces a series of subband images under different range
chirp bands. The process is as follows.
a) 1-D Fourier transform: First, we perform the 1-D

Fourier transform in the range direction on complex-
valued SAR images to get the range spectrum.

b) Range weighting function estimation: The amplitude
of the range spectrum is averaged along the azimuth
direction, and then, we can obtain the estimated range
weighting function.

c) Range spectrum correction: We multiply the inverse of
the estimated range weighting function with the range
spectrum, thereby getting the corrected spectrum.

d) Range spectrum division: According to the number
we need, the corrected range spectrum is divided into
several equal nonoverlapping subspectrums along the
range direction, and the center frequency of each sub-
spectrum is moved to zero frequency.

e) Subspectrum weighting: After obtaining the subspec-
trums, we use the estimated range weighting function
in step (b) to weight each subspectrum and implement
the zero-padding operation around the subspectrums.

f) 1-D inverse Fourier transform: Finally, the subband
images decomposed in range direction are produced
by performing the 1-D inverse Fourier transform on
each subspectrum.

IV. METHODOLOGY

In this article, a novel few-shot SAR target classification
network AG-MsPN is proposed, as illustrated in Fig. 2, in which
the complete target information revealed via the SD is taken
into account. Compared with the PN shown in Fig. 5, we first
improve the feature extractor to fuse the output multi-scale
features from different layers and propose the MsPN. Then,
to utilize the attribute information to assist the meta-learning,
the binary attribute of each type of target is designed, and an
ACM is proposed and merged into the MsPN to predict the class
labels of samples together with the MsPN. Next, we will give a
detailed introduction about the SD, the MsPN, and the ACM of
the AG-MsPN.

A. SD of Complex-Valued SAR Data

As illustrated in Fig. 1, due to the special active microwave
imaging mechanism, the high inter-class similarity and

Fig. 6. SAR images and their corresponding subband images of BMP2 and
T72 targets. The subband images are obtained by splitting the azimuth spectrum
and range spectrum into three equal nonoverlapping parts, respectively.

intra-class diversity in SAR amplitude images provide
misleading information to the models, thus increasing the
challenge of few-shot SAR target classification. Considering
the fact that SAR images are essentially the bidimensional
complex-valued signals, we follow the idea of [45]–[47] and
use the range and azimuth SD for complex-valued SAR images,
to fully exploit the target amplitude information and phase
information. Thus, we can obtain richer descriptions of SAR
targets so that they become easier to be discriminated.

Specifically, we perform the azimuth and range SD of
complex-valued SAR images according to the methods de-
scribed in Section III-C. First, we conduct the azimuth SD to
decompose the SAR images into three subband images, which
characterize the backscattering of targets under different az-
imuth look angles during the imaging phase. Then, considering
the target responses at different range chirp bands, the range
subband decomposition is also implemented to gather three
subband images. Therefore, six complex-valued subband images
are obtained for each complex-valued SAR image. With these
subband images, the various scattering behaviors of SAR targets
during the imaging process, which are hidden in the processed
full-band SAR images, are discovered to express the targets more
comprehensively.

Fig. 6 shows the SAR images and their corresponding subband
images of BMP2 and T72 targets under different azimuth look
angles and range chirp bands. It can be seen that the targets of
BMP2 and T72 that look similar in original SAR images can
be easily distinguished, aided with the various backscattering
behaviors revealed in subband images. Thus, we can better ex-
plore the discriminative features of targets by comprehensively
considering the SAR images and their subband images.
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Fig. 7. Optical photographs of ten classes of SAR targets in the MSTAR
dataset.

Differing from the previous works [45]–[47], in our method,
the amplitude images of the original SAR images and their
subband images are merged via the channel-wise concatenation
to obtain the multi-channel SAR images. Then, we employ the
proposed AG-MsPN to adaptively explore the valuable target
information contained in the multi-channel SAR images, instead
of using some methods like the interferometric coherence or
coherent restoration to process the obtained subband images as
in the existing works [45]–[47].

B. Multi-Scale Prototypical Network

Fig. 7 shows the optical photographs of the vehicle targets
in the MSTAR dataset that we are interested in. From Fig. 7,
we can see that some vehicle targets have shared structures
and subtle differences, e.g., the targets “T62” and“T72,” or the
targets “BTR60” and “BTR70.” Due to the appearance similarity
and the pose variations of the vehicle targets, the acquired SAR
images have higher inter-class similarity and intra-class diversity
than optical images. To tackle the problems of high inter-class
similarity and intra-class diversity within SAR images, except
for the global information, the local details of targets (e.g., the
cannon of the target) should also be considered to facilitate the
discrimination of different classes of targets.

Previous studies [61]–[63] have demonstrated the abundant
complementary texture information between different layers
of the CNN. The high-level layers of the CNN extract global
information and rich semantic information about the targets, but
the descriptions of local details are scarce, while the low-level
ones focus more on the discriminative local details of the targets.
Hence, as depicted in Fig. 2, by improving the fusion method
of [64], we design an MsPN to fuse the low-level local detailed
information and the high-level global information. Thus, the
feature representations of SAR targets are strengthened aided
with the fused local detailed features. Next, before describing
the classification of the MsPN, we first provide the explanation
of the multi-scale feature extraction.

1) Multi-Scale Feature Extraction: Fig. 8(b) describes the
multi-scale feature extraction network of MsPN. Compared with
the feature extraction network of the PN shown in Fig. 8(a), the
channel attention (CA) [7] module, the downsampling block for
multi-scale feature fusion (MsFF), and the transformation block
are newly added.

a) CA module: As shown in Fig. 6, there are differences
in the target information contained in each subband image

Fig. 8. Feature extractor of the PN and the proposed MsPN. (a) Original feature
extractor of the PN. (b) Proposed multi-scale feature extractor of the MsPN.
Conv denotes the convolutional block, which consists of a convolutional layer,
a BN layer, a ReLU nonlinear activation function, and a max-pooling layer. CA
represents the channel attention module, and DS is the downsampling block that
is realized by using the same architecture as Conv.

Fig. 9. Process of CA by referring to [7]. AvgPool and MaxPool are
the average-pooling and max-pooling operations, respectively. σ denotes the
sigmoid activation function, and ⊗ is the element-wise multiplication.

and the original SAR image, resulting in different degrees of
contribution to the classification by them. Since the inputs of
the AG-MsPN are the multi-channel SAR images, the CA is
first applied to selectively emphasize the informative features
and suppress the redundant ones.

The process of CA is shown in Fig. 9. Given an input SAR
image x ∈ RC×H×W with a size of H ×W and C channels,
we conduct the average-pooling and max-pooling operations
for images in each channel to generate the channel descriptors
Fa ∈ RC×1×1 and Fm ∈ RC×1×1, respectively, to denote the
whole information of each channel. Then, the channel descrip-
tors are sent to the shared fully connected layers to learn the inter-
channel relationship and generate the CA map Mc ∈ RC×1×1,
thereby representing “what” to emphasize in channels. In sum-
marize, the CA map of x is computed as

Mc(x) = σ(FC(AvgPool(x)) + FC(MaxPool(x)))

= σ (FC (Fa) + FC (Fm)) (4)

where σ denotes the sigmoid activation function [65], FC rep-
resents the fully connected layers, and AvgPool and MaxPool
are the average-pooling and max-pooling operations, respec-
tively.

Then, the channel-refined SAR image xc ∈ RC×H×W is
produced by implementing the element-wise multiplication of
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sample x and the CA map Mc(x), as shown in the following
equation:

xc = Mc(x)⊗ x (5)

where ⊗ represents the element-wise multiplication.
b) Multi-scale feature fusion: After obtaining the channel-

refined SAR images, we gradually fuse the low-level local de-
tailed features and the high-level global features of the channel-
refined SAR images by using feature downsampling and con-
catenation as that in [64].

As shown in Fig. 8(b), the convolutional blocks hierarchically
extract the features {Fl, l = 1, . . . , L} of the channel-refined
SAR image xc, where Fl denotes the feature of the lth layer. The
structure of each convolutional block [30] is the same, consisting
of a convolutional layer composed of 64 3× 3 filters, a BN
layer, a ReLU nonlinear activation function, and a 2× 2 max-
pooling layer with a stride of 2. For the fusion of the two adjacent
features, we follow the same way of [64]. Specifically, we first
downsample the features with larger spatial resolution and then
merge the downsampled features with the features of smaller
spatial resolution by channel-wise concatenation, as shown in
Fig. 8(b). Based on the above feature fusion strategy, we can
obtain the multi-scale feature f(x) by aggregating the output
features from layer 1 to layer L:

f(x) = DS (. . .DS (DS (F1)⊕ F2)⊕ F3 . . .)⊕ FL (6)

where DS represents the downsampling block and ⊕ is the op-
eration of concatenating features along the channel dimension.

c) Transformation block: For the fused multi-scale feature
f(x) obtained above, the features from each layer (each Fl has
64 feature maps) are preserved; meanwhile, some redundant
information might be also preserved and is not beneficial for
classification. In order to refine the fused multi-scale feature
f(x), we design another transformation block, as shown in
Fig. 8(b). The transformation block is composed of a BN layer,
a CA module, and a convolutional block, where BN is used to
normalize the distribution of the input features to accelerate the
convergence of the CNN. The CA is adopted to learn the inter-
channel relationship, to enable the CNN to focus on channels
with critical discriminative information and suppress channels
with irrelevant redundant information. The convolutional block
is used to reduce the dimension of the multi-scale feature f(x)
and further extract the abstract category-related features. There-
fore, the transformed multi-scale feature of samplex is produced
as

ft(x) = Tran(f(x))

= Conv(CA(BN(f(x)))) (7)

where BN and CA are the batch normalization and channel at-
tention, respectively, and Conv denotes the convolutional block.

Compared to the multi-scale feature fusion strategy proposed
in [64], the proposed MsFF model in the AG-MsPN has two
newly added elements, i.e., the CA module after the input and
the transformation block before the output, as shown in Fig. 8(b).
As demonstrated in the experimental results in Table IX, the
newly added elements indeed improve the feature extraction

ability of the network, which results in the higher classification
accuracy of the proposed MsFF model than only using the
feature downsampling and concatenation as that in [64].

2) Classification of the MsPN: In our method, each sample
is, in fact, a multi-channel SAR image. According to (4)–(7), we
can calculate the transformed multi-scale features of samples in
the support set Si and the query set Qi selected within a few-
shot classification task in the ith iteration, respectively. Then,
the class labels of query samples {xj , xj ∈ Qi} are predicted
via finding the nearest prototypes, as depicted in Fig. 2. The
classification of the MsPN is explained in detail as follows.

First, the transformed multi-scale features of the support sam-
ples within the same class are averaged to obtain the prototype
of this class. The prototype of class k is calculated as

mk =
1

|Sk|
∑

(xi,yi)∈Sk

ft (xi) (8)

where xi is the support sample in the support set, yi is the
corresponding class label of xi, ft(xi) denotes the transformed
multi-scale feature of xi, and Sk ⊂ Si denotes the set of support
samples labeled with class k.

After generating the prototype of each class, the Euclidean
distances between the transformed multi-scale features of query
samples and the prototypes are calculated to evaluate their
similarities. The smaller the distance, the higher the similarity
between the transformed multi-scale feature of one query sample
and the prototype.

Specifically, given a query sample xj ∈ Qi, the Euclidean
distance between its transformed multi-scale feature ft(xj) and
the prototype of class k is calculated as

dkxj
= ‖ft (xj)−mk‖2 . (9)

According to (9), we can calculate the Euclidean distances
between ft(xj) and the prototypes of all the classes. Then, based
on the softmax function, the Euclidean distances are normalized
into the interval (0,1) to get the probabilities that xj belongs
to each class. The probability that xj belongs to class k is
defined as

p (yj = k | xj) =
exp

(
−dkxj

)

∑
k′ exp

(
−dk′xj

) . (10)

It is noticed from (10) that when the query sample xj has
smaller distance with the prototype mk, it will be predicted to
belong to class k with a higher probability.

The classification loss Lc for query sample xj with true class
k is defined as

Lc = − log p (yj = k | xj) . (11)

C. Attribute Classification Module

Since the numbers of training classes and the total training
samples in the source domain of SAR image datasets are far
fewer than those of optical image datasets, the MsPN learned
with limited training samples in the source domain still cannot
generalize well enough to the unseen test data. However, with
the prior attribute information of the object, even without the
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TABLE I
DESIGNED PRIOR BINARY ATTRIBUTES OF TEN CLASSES OF TARGETS IN THE

MSTAR DATASET

The numbers 1–12 represent 12 different attributes, which are pedrail, machine gun,
cannon, battery, tank, armored personnel carrier, armored reconnaissance vehicle,
rocket launcher, air defense unit, truck, bulldozer, and derived type, respectively.

training samples of it, humans can recognize the unseen object
by its attributes. Therefore, except for the visual feature classifi-
cation of the MsPN, we design the prior binary attribute for each
class of target and devise an ACM to map SAR target images
into the attribute space for the attribute classification, which is
shown at the bottom of Fig. 2. The class labels of SAR targets
are predicted by comprehensively considering the visual feature
classification result of the MsPN and the attribute classification
result of the ACM. Hence, with the end-to-end training process
of the MsPN and the ACM, the classification performance of
the MsPN is further enhanced under the joint supervision of the
one-hot class label information from a few labeled data and the
attribute information from the prior knowledge.

To the best of our knowledge, the attribute information has
not been used in the few-shot SAR target classification models
before. For the first time, our method tries to combine the at-
tribute classification with the few-shot SAR target classification
models to improve the few-shot classification performance.

The design of the prior binary attributes and the ACM is
described as follows.

1) Definition of Prior Binary Attributes: According to the
attributes utilized in previous ZSL studies [54], [57], we define
the binary attributes for each type of target according to the
following rules.

a) Distinguishability: The prior binary attribute of each class
must be different, so that the network can be provided with
the correct guidance information during the training phase.

b) Shareability: An attribute should be contained by multiple
classes in order to construct an attribute space shared by
multiple classes, in which the samples are mapped and
classified by finding the most similar class attributes.

For example, in order to classify otter, polar bear, and zebra,
the shared attributes black, white, brown, stripes, water, and
eat fish are selected to describe them. Thus, the prior binary
attributes of otter, polar bear, and zebra are, respectively, devised
as [1,0,1,0,1,1], [0,1,0,0,1,1], and [1,1,0,1,0,0], where “0” means
there is no such attribute and “1” is the opposite. Then, a new

object can be classified to the three classes by finding whether
it has the above attributes.

Thus, according to the rules described above, we define the
prior binary attributes of vehicle targets in the MSTAR dataset,
where the optical photographs of all classes are depicted in
Fig. 7. Following the characteristics of these targets, we select
four obvious appearance attributes of pedrail, machine gun, can-
non, and battery based on the corresponding optical photographs
of these vehicle targets. Because of the high appearance similar-
ity between the targets in the MSTAR dataset, the four attributes
selected above, as shown in the first four columns in Table I,
are not enough to distinguish the ten classes of targets. In [54],
Lampert et al. pointed out that not only the color and shape of
the targets but also the geographic information, which are not
observed in the images, can also be utilized. Inspired by this, we
add the functional attributes tank, armored personnel carrier,
armored reconnaissance vehicle, rocket launcher, air defense
unit, truck, and bulldozer for the ten classes of MSTAR vehicle
targets to expand the prior binary attributes. Additionally, the
attribute derived type is also added to distinguish the types of
T62 and T72, BTR60, and BTR70, which are highly similar
in appearance and function. Finally, the designed prior binary
attributes of the ten classes of targets in the MSTAR dataset are
shown in Table I, where “0” means there is no such attribute and
“1” is the opposite.

2) Attribute Classification: In order to enhance the meta-
learning of the MsPN under limited training samples in the
source domain, inspired by the method of [57], we propose an
ACM to map SAR target images into the attribute space via
the linear combination of the defined prior binary attributes for
attribute classification.

As shown in Fig. 2, in a few-shot classification task, after
the query samples are classified by the MsPN, we first send the
predicted class probabilities of the MsPN together with the prior
binary attributes into the ACM to predict the attributes of query
samples. Afterward, the similarity scores between the predicted
attributes of query samples and the prior binary attribute of each
class are calculated to evaluate their similarities. The class labels
of query samples are determined by finding the class prior binary
attributes with the highest similarity scores to the predicted
attributes.

As illustrated in Fig. 2, given a query sample xj , we first em-
ploy the MsPN to predict the probabilities {p(yj = k | xj), k ∈
Ci} that xj belongs to each of the classes, where Ci is the
training label set of the current sampled few-shot classification
task. Then, in the ACM, we map the query sample xj into the
attribute space via the linear combination of the prior binary
attributes {bk, k ∈ Ci}. The predicted attributeaxj

ofxj is given
as follows:

axj
=

∑
k

p (yj = k | xj) · bk. (12)

After obtaining the predicted attribute axj
of the query sample

xj , in the attribute space, we compute the similarity score be-
tween axj

and the prior binary attribute of each class to evaluate
their similarity. The similarity score of axj

and the prior binary
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attribute bk is given as

s
(
axj

, bk
)
=

exp
(
−dkxj

)

∑
k′ exp

(
−dk′xj

) (13)

where

dkxj
=

∥∥axj
− bk

∥∥
2
. (14)

dkxj
is the Euclidean distance between axj

and bk, which
measures the similarity between axj

and bk.
The similarity loss Ls for attribute axj

with true class k is

Ls = − log s
(
axj

, bk
)
. (15)

In the proposed ACM, only the way of attribute prediction is
the same as that in [57]. In the attribute classification method
proposed in [57], the attribute classification is only used in
the test procedure. Specifically, a base classifier is first trained
using the training data. Then, in the test stage, the well-trained
base classifier is utilized to predict the class probabilities of
test data, and then, the obtained class probabilities and the prior
attributes of each class are sent into the attribute classification
model proposed in [57] to predict the class labels of test data.
Differing from the method proposed in [57], we jointly utilize
the ACM and the MsPN to predict the class labels of test data.
Besides, the ACM and the MsPN are optimized end-to-end, thus
improving the classification performance of the MsPN under the
supervision of both the label information from a few labeled data
and the attribute information from the prior knowledge.

D. Joint Optimization of the AG-MsPN

By comprehensively considering the predicted class proba-
bilities of the MsPN and the similarity scores of the ACM, the
class label that the AG-MsPN predicts for query sample xj is
defined as

yj = argmax
k

(
p (yj = k | xj) + s

(
axj

, bk
))

. (16)

The joint loss of the proposed AG-MsPN corresponding to
the query sample xj is defined as follows:

L = Lc + λLs (17)

where λ is a balance parameter.
During the parameter optimization of the AG-MsPN, the

backward propagation pass is illustrated by the red-dashed ar-
rows in Fig. 2. It can be observed that the parameter optimization
of the feature extractor is influenced by both Lc and Ls.

During the minimization of the classification loss Lc of the
MsPN, the class probability p(yj = k | xj) of query sample
xj with true class k should be optimized toward 1. Therefore,
according to (9) and (10), the extracted feature ft(xj) of xj

is optimized toward the prototype of the kth class, which is
supervised by the one-hot class label information of query
sample xj .

As can be seen from Fig. 2 that when minimizing the similarity
loss Ls of the ACM, the similarity score s(axj

, bk) is optimized
toward 1. This means that the predicted attribute axj

of query

sample xj is pulled toward the prior binary attribute bk. In order
to pull axj

closer toward bk, as can be seen in (12), the class
probability p(yi = k | xj) of the MsPN should be optimized
toward 1. Therefore, the classification performance of the MsPN
is promoted under the additional supervision of the attribute
information of query samplexj . In other words, the optimization
of the MsPN is guided by the attribute information, that is why
we call it the AG-MsPN.

In summary, under the joint supervision of the one-hot class
label information and the attribute information of targets, the
classification performance of the proposed AG-MsPN has been
effectively improved.

V. EXPERIMENTS

A. Dataset
In this section, we evaluate our method on the MSTAR

benchmark dataset [9]. There are ten types of ground targets
in the MSTAR dataset, and the images were collected by a
SAR sensor with a resolution of 0.3 m× 0.3 m. To eliminate
the influence of background on the target classification, we
crop the complex-valued SAR images from 128× 128 pixels
to 64× 64 pixels. Subsequently, the SD is used for the cropped
complex-valued SAR data to obtain the subband images. All the
SAR images used for training and testing are processed by L2
normalization. The target classes and the sample number of the
MSTAR dataset are shown in Table II.

To evaluate the performance of our proposed AG-MsPN, we
implement the classification experiments for the three classes of
targets, according to the experimental settings in [25]. Therefore,
in this article, the three-class target classification is regarded as
our target task, where the target classes and the sample numbers
of the support set and test set in the target domain are shown
in Table III. Meanwhile, we use the samples of the remaining
seven classes in the MSTAR dataset as the training set of the
source domain, as illustrated in Table IV, to assist the three-class
target classification in the target domain. The training set and
the support set have the same depression angle of 17◦, but the
samples in the test set are acquired under the depression angle
of 15◦. Notice that the serial numbers of the same targets in
the support set and test set are different, which increases the
difficulty of classification.

B. Implementation Details

In our proposed method, we set the structure of convolutional
blocks and downsampling blocks of each layer to be the same,
and the balance parameter λ is set to 1 according to the parameter
sensitivity analysis shown later in Section V-D. We employ the
ADAM optimization algorithm [66] to optimize our network.
The model is trained by 5000 iterations in total, where the
learning rate starts from 0.001 and decreases by 1/10 for every
1000 iterations.

Meta-Training Procedure: In the meta-training procedure, to
fully leverage the label information of the support set in the target
domain, we follow the training method of [67] to combine the
support set and the training set to optimize the parameters of
AG-MsPN.



WANG et al.: ATTRIBUTE-GUIDED MULTI-SCALE PROTOTYPICAL NETWORK FOR FEW-SHOT SAR TARGET CLASSIFICATION 12235

Algorithm 1: Meta-Training Procedure of the AG-MsPN in
the N -Way K-Shot Case.

Input: The training set Dtr in the source domain, the
augmented support set SA in the target domain,
Dall = SA

⋃
Dtr, the training set Dk

all of class k, Dk
all ⊂ Dall,

the label set Call corresponding to Dall, the predefined prior
binary attributes Ball = {bk, k ∈ Call}, the maximum number
n of training iterations, the number K of support samples per
class in the selected support set, the number Kq of query
samples per class in the selected query set,
RandomSample(A,B) represents a set composed of B
elements which are randomly sampled from set A without
repetition.

Output: The well-trained parameters θ of the AG-MsPN.
1: Initialize the parameters θ of the AG-MsPN;
2: for i = 1 : n do
3: Ci ← RandomSample(Call, N); �Select the label set of

the few-shot classification task
4: for k in Ci do
5: Sk ← RandomSample(Dk

all, K); �Select support set
of class k

6: Qk ← RandomSample(Dk
all \ Sk, Kq); �Select

query set of class k
7: end for
8: Si =

⋃N
k=1 Sk; �Selected support set in the ith iteration

9: Qi =
⋃N

k=1 Qk; �Selected query set in the ith iteration
10: Ti = Si

⋃
Qi; �Selected few-shot classification task in

the ith iteration
11: Bi = {bk, k ∈ Ci}, where Bi ⊂ Ball; �Select prior

binary attributes in the ith iteration
12: Send the samples in Ti and the binary attributes in Bi

into the AG-MsPN;
13: Compute the prototypes {mk, k ∈ Ci} using the support

samples in Si by (8);
14: for j = 1 : N ×Kq do
15: Compute the class probabilities

{p(yj = k | xj), k ∈ Ci} of query sample xj by (10),
where xj ∈ Qi;

16: Compute the classification loss Lc of xj by (11);
17: Predict the attribute axj of xj by (12);
18: Compute the similarity scores {s(axj , bk), bk ∈ Bi} by

(13);
19: Compute the similarity loss Ls of xj by (15);
20: Compute the joint loss Lj of xj by (17);
21: j ← j + 1;
22: end for
23: Update θ ← θ − α∇θ

1
N×Kq

∑
j Lj , where α is the

learning rate;
24: end for

As can be seen from Table III, the sample number of each
class in the support set is more than 200. To imitate the few-shot
classification in the target domain, the current K-shot support
set SC is randomly selected from the total support set shown in
Table III. Specifically, in the 3-way K-shot few-shot classifica-
tion experiment, we randomly select K samples per class from
the support set shown in Table III to serve as the current support
set SC . Afterwards, for each sample in SC , we randomly select

Algorithm 2: Meta-Test Procedure of the AG-MsPN in the
N -Way K-Shot Case.

Input: Randomly selected support set SC and the test set
Dte in the target domain, the label set Cte corresponding
to Dte, the predefined prior binary attributes
Bte = {bk, k ∈ Cte} of the classes in Cte, and the number
nte of test samples in Dte.

Output: The class labels of the test samples predicted by
the AG-MsPN.

1: The samples in SC and Dte are fed into the AG-MsPN;
2: Compute prototypes {mk, k ∈ Cte} using the support

samples in SC according to (8);
3: for j = 1 to nte do
4: Compute the class probabilities
{p(yj = k | xj), k ∈ Cte} of xj by (10), where
xj ∈ Dte;

5: Predict the attribute axj
of xj by (12);

6: Compute the similarity scores {s(axj
, bk), bk ∈ Bte}

by (13);
7: Predict the class label of xj by (16);
8: j ← j + 1;
9: end for

three angles from the interval [0◦, 360◦), and then rotate the
sample clockwise according to these selected angles. Combining
the original samples in SC and their rotated versions, we obtain
the augmented support set SA. Thus, the training set shown in
Table IV and the augmented support set SA are jointly utilized
to train the AG-MsPN.

The details of meta-training is shown in Algorithm 1.
Meta-Test Procedure: In the meta-test procedure, the selected

current K-shot support set SC is directly used to calculate the
prototypes of the three classes in the target domain. The same
procedure as meta-training is utilized to predict the class labels
of test data, which is shown in Algorithm 2.

C. Performance Comparison

In 3-way K-shot experiments, we set the number K to 5,
10, and 20. To eliminate the randomness of the experimental
results, we conduct the experiments 20 times and reselect the
current K-shot support set in each experiment. Table V displays
the average results of the following methods.

1) A-ConvNet [2]: It uses the convolutional layers to replace
the fully connected layers to reduce the number of free
parameters and is trained with the augmented training set.

2) The method proposed in [11] (denoted by DA-Net): DA-
Net is a CNN that uses various data augmentation methods
to expand the training set, such as translation, pose syn-
thesis, etc.

3) The ARGN [25] based on transfer learning: The network
is trained with sufficient data in the source domain and
aims to transfer the shared angular-related information
from the source domain to the target domain to solve the
SAR target classification with limited labeled data.



12236 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE II
TEN CLASSES OF TARGETS IN THE MSTAR DATASET

TABLE III
TARGET DOMAIN: THREE CLASSES OF TARGETS IN THE MSTAR DATASET

TABLE IV
SOURCE DOMAIN: SEVEN CLASSES OF TARGETS IN THE MSTAR DATASET

TABLE V
CLASSIFICATION ACCURACIES OF EXPERIMENTS IN THE 3-WAY K-SHOT CASE

4) The PN [30] and the RN [31] based on meta-learning: The
PN maps samples into the embedding space and classifies
them by computing the Euclidean distances between the
sample feature and the prototype of each class. The RN
learns a relation module to measure the relationships
between sample features and the class prototypes for
classification.

5) Meta-Baseline [68]: Meta-Baseline aims to learn a metric
space, in which the sample features of the same class
are clustered, and the class labels of the samples are
determined via finding the class prototype with the highest
cosine similarity to the samples. Compared with the PN,
Meta-Baseline makes the following two aspects of im-
provements. First, it uses the pretraining strategy. Second,
it introduces a learnable parameter to scale the calculated
cosine similarities in the meta-training procedure, to en-
hance the performance of few-shot classification.

6) The few-shot SAR target classification network proposed
by Fu et al. [35] (named as MSAR). MSAR is an

optimization-based meta-learning framework. The pre-
training is first utilized to obtain the transferrable knowl-
edge from the metatraining set of the source domain.
Then, the parameters of MSAR are fine-tuned on the
metatraining set according to the training method in [69],
where the transfer operation proposed in [70] and the hard
task mining strategy proposed in [35] are also merged
to facilitate the classification performance improving of
MSAR.

Table V shows the quantitative comparison of seven dif-
ferent methods. From Table V, we can see that our proposed
network achieves the best classification performance in all the
comparison methods under all 3-way K-shot settings, which
demonstrates the superiority of our proposed method. Com-
pared with A-ConvNet [2] and DA-Net [11], our method ob-
tains a performance improvement of 24.52% and 23.56% in
the 3-way 5-shot scenario, respectively. This is mainly be-
cause the DA-Net and the A-ConvNet employ the augmen-
tation strategy to solve the classification problem under lim-
ited SAR data. But the augmented data still lacks diversity,
so they cannot learn better feature representations. As for the
A-ConvNet, we can see that the classification accuracy drops
rapidly when there are only five samples. Although decreas-
ing the network parameters can alleviate the overfitting caused
by the limited labeled data, the alleviation is limited. In contrast,
the methods based on meta-learning (i.e., PN [30], RN [31],
Meta-Baseline [68], MSAR [35], and our proposed method) can
achieve higher accuracy in the case of 5-shot, which confirms
that the meta-learning method is more suitable for few-shot SAR
target classification. Besides, in all scenarios, our method out-
performs the PN and the RN by at least 6% and 9%, respectively.
Compared with the metric-based meta-learning methods PN and
RN, due to the introduced pretraining strategy and a learnable
scale parameter to scale the similarities between the sample
features and the class prototypes, the classification performance
of Meta-Baseline is slightly better than the PN and the RN,
but still worse than ours. This is mainly because our method
comprehensively considers the characteristics of SAR images.
We not only leverage the rich amplitude information and the
phase information contained in complex-valued SAR data to
obtain better feature representations, but also devise the MsPN
and the ACM to further improve the classification performance
with few training samples. For ARGN, although the data of the
source domain are used to facilitate the classification, it does not
use the episodic training method, resulting in poor generalization
of the ARGN to the novel classes in the target domain. Although
the hard task mining and the transfer operation are used in
MSAR, the classifier learned by the limited training samples
in the source domain still cannot generalize well enough to the
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TABLE VI
CLASSIFICATION RESULTS OF EXPERIMENTS WITH THE SAME SUPPORT SET

The average accuracy (%) of 20 training models is shown followed by the standard deviation (%). Set1, Set2, and Set3 represent three randomly selected support sets in each
few-shot scenario.

unseen test data. Thus, its classification accuracy is lower than
ours in the 5-shot, 10-shot, and 20-shot cases.

Table V shows the average performance of our proposed AG-
MsPN and other comparison methods on 20 different randomly
selected support sets. To further verify that our method is better
than other comparison methods with the same support set, the
following experiments are implemented. Specifically, we first
fix three sets of support sets in each few-shot scenario. Then,
we train each comparison model for 20 times and calculate
its average test accuracy and standard deviation. As shown
in Table VI, the classification performance of our proposed
AG-MsPN is absolutely superior compared with other methods
for the same support set, in all three few-shot scenarios. In
addition, the robustness of our proposed AG-MsPN outperforms
other approaches. Due to the severe data limitation in the 5-shot
scenario, the robustness of our method also degrades to a certain
extent.

D. Parameter Sensitivity Analysis

The subband number in SD, the layers to be fused in MsFF,
and the balance parameter λ in the joint loss function shown in
(17) are the main parameters affecting the performance of the
AG-MsPN. The sensitivity analysis about the above three pa-
rameters is provided as follows. All the experiments mentioned
below are performed with the same training set, support set, and
test set, which are shown in Tables III and IV.

1) Number of Subbands: In order to discuss the influence of
the number of decomposed subbands on our proposed method,
we show the performance comparison result in Fig. 10 with
different numbers of subbands. Specifically, we select to divide
the azimuth spectrum and range spectrum into two, three, four,
and five equal parts without overlap, respectively. Thereby,
four, six, eight, and ten decomposed subband images can be
obtained for each complex-valued SAR image, respectively. As
demonstrated in Fig. 10, the classification accuracy achieves the
highest when the spectrum is divided into three parts along the
range and azimuth directions, respectively. When the spectrum
is divided into four and five parts, in the condition of 3-way
5-shot, the classification accuracies of the AG-MsPN drop to
78.15% and 76.25%, respectively. As the number of divided

Fig. 10. Performance of the AG-MsPN with different number of subbands.

subspectrums increases, the target information contained in each
subspectrum is more incomplete; thus, the detailed information
of the target contained in each subband image becomes fewer.
Therefore, the useful information of the SAR targets learned by
the AG-MsPN is reduced, leading to a decrease in the classifi-
cation accuracy. When we divide the spectrum into two parts,
the backscattering variation of the targets is not fully reflected
due to the insufficient decomposition. Hence, the classification
accuracy drops to 79.22% in the case of 5 shots. Based on the
above analysis, we finally choose to divide the azimuth spectrum
and range spectrum into three parts, respectively, to obtain six
subband images.

2) Layers to be Fused in MsFF: Since the ways of MsFF are
flexible, we investigate the impact of different MsFF methods
on the performance of few-shot SAR target classification. For
simplicity, we use the token MsFF(i, j) to represent the MsFF
from the ith to the jth layers mentioned in Section IV-B, and
MsFF(0) denotes the feature extraction without the MsFF. The
experiments are carried out in the 3-way K-shot scenario where
K = 5, 10, and 20, and the performance comparison results are
depicted in Fig. 11. From Fig. 11, we can see that the models
with the MsFF [i.e., MsFF(1,4), MsFF(2,4) and MsFF(3,4)]
have a significant enhancement in classification performance
compared to the model without the MsFF [MsFF(0)], and
MsFF(1,4) achieves the highest classification accuracy. In the
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Fig. 11. Performance of the AG-MsPN with different feature fusion methods
on the MSTAR dataset. MsFF(i, j) represents to fuse the features from the ith
layer to the jth layer. MsFF(0) means that only the output features from the
fourth layer are used without any fusion strategy.

TABLE VII
CLASSIFICATION ACCURACIES (%) UNDER DIFFERENT VALUES OF λ

5-shot, 10-shot, and 20-shot cases, the classification accuracies
of MsFF(1,4) are about 4%, 6%, and 5% higher than those of the
MsFF(0), respectively. The above experimental results confirm
that the detailed information extracted by the low-level layers
benefits the classification. Thus, in the proposed AG-MsPN, we
choose the way of MsFF(1,4) to fuse the features from the first
to the fourth layers, to improve the classification performance.

3) Balance Parameter λ: In order to determine the appro-
priate value for the balance parameter λ in (17), we set λ =
0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10 to gradually increase the influence
of the similarity loss of the ACM in the total loss. We performed
the experiments 20 times to eliminate the randomness of the
experimental results. Table VII displays the average results. It
is noticed from Table VII that, under the condition of 5-shot
and 10-shot, the classification performance achieves the best
when λ = 1. However, in the 20-shot scenario, the accuracy at
λ = 0.5 is 93.02%, which is a little higher than that at λ = 1.
Since the performance improvement atλ = 0.5 is not significant,
we finally set λ = 1.

E. Ablation Study

In this section, a series of ablation experiments are conducted
on the MSTAR dataset to further analyze the contribution of
our proposed method to few-shot SAR target classification.
All the experiments mentioned below are performed with the
same training set, support set, and test set, which are shown in
Tables III and IV.

1) Contributions of SD, MsFF, and ACM: To further evaluate
the effectiveness of the complex-valued SAR image SD, the
MsFF strategy, and the added ACM, we conducted the following
experiments.

TABLE VIII
VERIFICATION OF THE CONTRIBUTIONS OF DIFFERENT COMPONENTS IN THE

PROPOSED AG-MSPN

a) Baseline: Only the PN is utilized to classify the SAR
images; the complex-valued SAR image SD, the MsFF
strategy, and the attribute classification are not used here.

b) Baseline+SD: The SD of the complex-valued SAR images
is introduced into Baseline.

c) Baseline+SD+MsFF: On the basis of Baseline+SD, we
add the MsFF strategy to improve the feature extractor of
the PN.

d) Baseline+SD+MsFF+ACM: The SD, the MsFF, and the
attribute classification are added to Baseline at the same
time, which is our proposed AG-MsPN.

The ablation experiments mentioned above are also per-
formed in the 3-way K-shot scenario, where K is set to 5, 10,
and 20, and the selected support set of the target domain and
the training set in the source domain are jointly used to train the
models. The experimental results are reported in Table VIII. In
Table VIII, the classification accuracies of Baseline are higher
than those of the PN in Table V. This phenomenon is due to
that we follow the original method in [30] to get the results
in Table V, that is, only the training set of the source domain
is used to train the PN. It is obvious that the classification
performance of Baseline+SD+MsFF+ACM achieves the best in
5-shot, 10-shot, and 20-shot scenarios. Compared with Baseline,
the classification accuracy of Baseline+SD is 86.72% in the
20-shot case, which is about 1.6% higher than Baseline. This
indicates that with the various backscattering behaviors of the
targets in subband images, the SAR targets can be expressed
in more detail. Thereby, the network acquires more useful in-
formation about the targets from limited labeled data, and the
classification accuracy is enhanced. Due to the added MsFF
strategy, the classification performance of Baseline+SD has been
dramatically improved from 86.72% to 91.20% in the 20-shot
case. Since the low-level detailed information and the high-level
global information are fused gradually, the extracted features
become more discriminative, leading to a higher classification
accuracy of SAR targets. In the 3-way 20-shot case, the classi-
fication accuracy of Baseline+SD+MsFF+ACM is about 1.4%
higher than that of Baseline+SD+MsFF, which indicates that
with the additional supervision of the attribute information from
the prior knowledge, the model parameters have been further
optimized to obtain a better feature embedding.

2) Contributions of Newly Added CA and Tran in MsFF:
The MsFF used in the AG-MsPN is based on the feature fusion
method of [64]. To verify the effect of the two newly added
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TABLE IX
CONTRIBUTIONS OF THE CA MODULE AND THE TRANSFORMATION BLOCK

TABLE X
EFFECTIVENESS VERIFICATION OF OUR DEFINED 12-D PRIOR BINARY

ATTRIBUTES

The token Ni, i = 1,2, . . .12, mentioned above means to remove the ith attribute.

elements, i.e., the CA module after the input, and the transfor-
mation block before the output, as shown in Fig. 8(b), some
ablation experiments have been implemented as follows.

Table IX reports the average performance of each model on 20
different randomly selected support sets, where MsFF0 denotes
that only the feature downsampling and concatenation in [64]
are used in our method, and CA and Tran represent the channel
attention and the transformation block, respectively.

From Table IX, we can see that MsFF0 has the lowest
classification accuracy. After utilizing the CA, the classifica-
tion accuracy of MsFF0 is improved by approximately 1.8%,
1.5%, and 1.2% in the 5-shot, 10-shot, and 20-shot cases. This
indicates that the generated CA map effectively weights the
SAR images of different channels. Thus, the channels with
critical discriminative features are emphasized, while the ones
that contribute less to classification are suppressed. Compared
with MsFF0 and MsFF0+CA, MsFF0+CA+Tran achieves the
highest classification accuracy in 5-shot, 10-shot, and 20-shot
cases. This phenomenon demonstrates that the multi-scale fea-
tures obtained by simply merging all features from different
network layers contain redundant information, which leads to
degraded classification performance. Through the learning of
the transformation block, the important information in the fused
multi-scale features is further selected, where the complemen-
tary information extracted by different layers of the CNN is
retained, and the redundant information is removed at the same
time.

3) Exploration of Prior Binary Attribute Design: To evaluate
the effectiveness of our defined 12-D prior binary attributes,
we conducted a series of experiments on attribute selection.
Specifically, we remove a certain attribute in turn from the
defined 12-D prior binary attributes and then train and test our
AG-MsPN using the remaining 11-D prior binary attributes in
the 3-way 20-shot scenario, aiming to prove the necessity of the
12-D attributes we have defined. Table X reports the results of the
above experiments, where the token Ni, i = 1, 2, . . . 12, means
to remove the ith attribute. It can be seen from Table X that the
classification performance of AG-MsPN degrades to different
degrees using the different 11-D attributes. The classification

performance of the AG-MsPN is worst when removing the 12th
attribute derived type. From Table I, we know that after the 12th
attribute derived type is removed, the 11-D prior binary attributes
of BTR60 and BTR70 are the same, as well as T62 and T72.
Therefore, when the samples of BTR70 and BTR60 or T72 and
T62 are selected within a training iteration, the ACM fails to
distinguish them, resulting in the poor few-shot classification
performance of the AG-MsPN. For further validation, in Fig. 12,
we also show the confusion matrices of the AG-MsPN on the test
classes after removing a certain attribute. From the confusion
matrices, we can clearly see that when the attribute derived
type is removed, the classification accuracy of the AG-MsPN
for BTR70 and T72 is reduced to 89.64% and 91.11%, respec-
tively, reaching the lowest. The above phenomenon confirms
our view that the mappings of BTR70 and T72, learned by the
AG-MsPN, are slightly worse than those of the other types under
the condition of removing the attribute derived type.

In summary, the AG-MsPN has the best classification result
when using the designed 12-D prior binary attributes; thereby,
the necessity of the 12-D attributes is proved. To further show the
effectiveness of the designed 12-D attributes more intuitively,
we use Baseline+SD+MsFF and Baseline+SD+MsFF+ACM,
which are shown in Table VIII, to extract the features of test
data. Then, t-SNE [71] is applied to visualize them in Fig. 13.
It is obvious that the features of the same class in Fig. 13(b)
are closer to each other, and the boundaries between different
classes are clearer, compared with Fig. 13(a). This phenomenon
verifies that the designed 12-D attributes yield a better feature
distribution in the feature space, thereby improving the classifi-
cation performance.

4) Effectiveness of Attributes on the Obscured Test Data: In
real scenes, the vehicle targets we are interested in might be
obscured by surrounding objects, resulting in some components
of targets invisible in SAR images (e.g., the cannon, battery,
etc.). In this case, some attributes in the defined 12-D prior binary
attributes do not exist in the captured SAR images. In order to
verify that the defined prior binary attributes can still contribute
to the classification of the obscured SAR images, in this section,
we conduct the comparison experiments in the condition of
obscuration. Specifically, we perform the random obscuration
on the three classes of test images (shown in Table III) and train
the AG-MsPN on the training images with no obscuration to
directly classify the obscured test images.

The process of generating the obscured test images [72] is
shown in Fig. 14. Given a complex-valued SAR image, we
first randomly select a pixel from the specified area of 30× 30
pixels [as shown in Fig. 14(b)]. With this pixel as the center, the
surrounding area of 54× 54 pixels is selected, which is denoted
as obspart. Then, we perform a threshold segmentation on the
complex-valued SLICY imagex in the MSTAR dataset to set the
pixel values of the target region to 1 and set the background ones
to 0, to obtain the binary segmented SLICY image xseg, where
the SLICY image is acquired at an azimuth angle of 260.95◦with
a size of 54× 54. Then, the obscured 54× 54 region obspart′

of complex-valued SAR image can be defined as follows:

obspart′ = obspart× (I − xseg) + x× xseg (18)
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Fig. 12. Confusion matrices of the AG-MsPN on the test classes after removing a certain attribute.

Fig. 13. Feature visualization of test data. (a) Features extracted by Base-
line+SD+MsFF in the 3-way 20-shot case. (b) Features extracted by Base-
line+SD+MsFF+ACM in the 3-way 20-shot case.

where I represents a matrix of size 54× 54 and the value of
each element is set to 1.

Finally, we replace obspart by obspart′ in the original
complex-valued SAR image to obtain the obscured complex-
valued SAR image, which is shown in Fig. 14(c).

Following the above obscuration process, we randomly select
450, 900, and all of the samples (1365) from the test set to gen-
erate the obscured test images. Fig. 15 displays the comparison
results under three different numbers of obscured test images,
where MsPN indicates that only the multi-scale prototypical
network is used to implement the test. In addition, other methods
are also compared and shown in Fig. 15. Since all the models

Fig. 14. Diagram of synthesizing the obscured SAR data. (a) SLICY image.
(b) Original image. (c) Obscured image.

are trained on the unobscured dataset, we can see that the clas-
sification accuracies of each model decrease to various degrees
when testing the obscured SAR data. Moreover, as the number
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Fig. 15. Classification performance of our model and the other comparison models with different number of obscured images.

of obscured samples in the test set increases, the classification
performance of the models gradually decreases. Obviously, the
classification performance of our proposed AG-MsPN is the
best. For instance, the classification accuracy of the AG-MsPN is
84.25% with 450 obscured test images in the 20-shot case, which
is higher than the other methods without obscuration, as shown in
Table V, implying that the MsPN and prior binary attributes we
designed can maintain better performance on the obscured test
data and allow a good generalization ability to realistic scenarios
of the proposed method. Compared to the MsPN, the AG-MsPN
achieves the better performance regardless of the 5-shot, 10-shot,
or 20-shot scenario. It means that the classification results of the
MsPN can still be improved by further mapping the obscured
test data into the attribute space for classification. Although the
gain from the ACM becomes smaller when the obscuration is
severe compared to that without the obscuration, the designed
SD and multi-scale feature extraction methods still enable our
model to maintain a better classification performance than other

methods, so that the proposed AG-MsPN can still be general-
ized to obtain a better classification result in the presence of
obscuration.

F. Generalization Ability
To explore the generalization ability of our model, we analyze

the classification performance of the proposed AG-MsPN under
different settings of the target domain and the source domain
in this section. Specifically, we randomly select three different
target domains and their corresponding source domains from the
ten classes of targets in the MSTAR dataset shown in Table II.
Table XI shows the target classes and the sample numbers in each
selected target domain, respectively. For the training set of the
source domain corresponding to each target domain, the samples
at the 17◦ depression angle of the remaining seven classes are
used. The training set for each source domain is not shown here.
For simplicity, we use the tokens TD1, TD2, and TD3 to denote
the reselected target domains, respectively, and TD0 is applied
to represent the target domain in Table III.
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TABLE XI
TARGET DOMAINS UNDER THREE DIFFERENT SETTINGS

TABLE XII
CLASSIFICATION ACCURACIES OF EXPERIMENTS IN THE 3-WAY K-SHOT CASE UNDER THREE DIFFERENT TARGET DOMAINS

Table XII illustrates the results of our proposed AG-MsPN and
other comparison methods under different target domains and
the source domains. It can be seen that our proposed AG-MsPN
can still maintain the optimal classification performance under
different divisions of the target domain and the source domain.
Moreover, the performance of the AG-MsPN has a substantial
improvement with the change of the target domain. The main
reason for this phenomenon is that the classification problems
of TD1, TD2, and TD3 are simpler, compared to TD0. In
TD0, as shown in Table III, the test set and the support set
of BMP2 and T72 have different serial numbers, which makes
the classification much more difficult. However, in TD1, TD2,
and TD3, only the test images of T72 in TD1 have different
serial numbers from the support set. Therefore, the classification
accuracy of the AG-MsPN in TD1 condition is lower than that in
TD2 and TD3, but still higher than that in TD0. Furthermore, in
TD2, the bulldozer D7 has a distinct appearance difference from
tank T62 and the rocket launcher 2S1, as shown in Fig. 7, so they
can be better classified. Similarly, it is easier to distinguish the
truck ZSU23/4 and the other targets in TD3.

To further confirm our above analysis, we use t-SNE to
visualize the original test images in TD0, TD1, TD2, and TD3
and display them in Fig. 16(a)–(d). At the same time, the fea-
tures of test images extracted by the AG-MsPN under different
target domains are also visualized in Fig. 16(e)–(h). From the
visualization images (a)–(d), it is obvious that the distribution
boundaries between different classes of test images gradually
become clearer from TD0 to TD3, which indicates that the
samples in our reselected target domains TD1, TD2, and TD3
are more easily to be separated than those in TD0. Moreover,
as the target domain changes from TD0 to TD3, the extracted
features of the same class become more compact, resulting in

more distinct boundaries among different classes, which leads to
a substantial improvement in the classification performance of
the AG-MsPN. In short, our proposed AG-MsPN can maintain
excellent generalization capabilities under different settings of
the target domains and the source domains.

G. Model Complexity and Running Time

In this section, the model complexity and the running time
during the test procedure have been carefully analyzed. All
the experiments are implemented on a DELL workstation with
the Intel Xeon Silver 4210R CPU (six cores, 2.40 GHz) and the
NVIDIA GeForce RTX 2080 Ti GPU (11-GB memory).

1) Model Complexity: For the classification models based
on deep learning [73]–[75], the model complexity is usually
evaluated via calculating the total number of parameters to be
optimized in the network. Thus, following these works [73]–
[75], we calculate the total number of parameters in our model
and other comparison models to show their model complexity.
The results are presented in Table XIII.

2) Running Time: In the training stage, since the size of the
minibatch and the number of iterations are different for the
comparison methods, the running time of the training phase is
not compared. To fairly show the running time of the comparison
models in the 5-shot, 10-shot, and 20-shot scenarios during the
test stage, we feed the samples in the test set shown in Table III
into the comparison models with the same batch size (batch
size is set to 1). Each model is tested 20 times, and the average
running time in the test procedure is shown in Table XIII.

For the ARGN, a feature extractor is first trained during the
training procedure and then fixed for feature extraction in the
test stage. The test sample features extracted by the trained
feature extractor are finally classified by the support vector
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Fig. 16. Visualization of test images and the test features extracted by the AG-MsPN under different target domains. (a)–(d) represent the visualization of test
images under TD0, TD1, TD2, and TD3, respectively. (e)–(h) are the feature visualization of the test images extracted by the AG-MsPN under TD0, TD1, TD2,
and TD3, respectively.

TABLE XIII
TOTAL NUMBER OF PARAMETERS AND RUNNING TIME OF DIFFERENT MODELS

machine [76]. Thus, the running time of the ARGN in the test
procedure achieves the shortest, as illustrated in Table XIII.
Since the number of convolutional layers in A-ConvNet (five
layers) is larger than that of DA-Net (three layers), the running
time of the A-ConvNet in the test stage is longer than that of
the DA-Net. It is noticed that the running time of the metric-
based meta-learning methods (i.e., PN, RN, Meta-Baseline, and
ours) is longer than the ordinary deep-learning-based methods
(A-ConvNet, DA-Net, and ARGN). This is because the class
labels of samples predicted by the metric-based meta-learning
methods are obtained via calculating the distances or similarity
scores between the sample features and the prototype of each
class, which increases the computation burden. Moreover, since
the prototype of each class is calculated by the support set in the
target domain, more running time is required in the metric-based
meta-learning methods (i.e., PN, RN, Meta-Baseline, and ours)
when the sample number of the support set increases. For the
MSAR based on meta-learning, the class labels of images are
predicted by the fully connected layers; therefore, the running

time of MSAR is smaller than that of PN, RN, Meta-Baseline,
and our model. A great number of parameters in Meta-Baseline
leads to a substantial increase in the running time, which is
the longest among all the comparison models. In the proposed
method, since the feature extractor of the PN is improved to
fuse the low-level detailed information and high-level global
information, the model complexity of our proposed method is
slightly higher than that of the PN, as well as the running time.
However, considering the significant performance improvement
of our model, the slightly increased model complexity and
running time are acceptable.

VI. CONCLUSION

In this article, we propose an AG-MsPN, in which the com-
plete information contained in the complex-valued SAR data,
as well as the prior attribute information of the targets, is
fully considered to enhance the performance of few-shot SAR
target classification. Specifically, we first perform SD of the
complex-valued SAR data to obtain more information about
SAR targets. In order to extract more discriminative features
to alleviate the intra-class diversity and inter-class similarity
problems of SAR images, an MsPN is proposed to adaptively
fuse the low-level detailed information and the high-level global
information. Besides, we design the prior binary attributes for
SAR targets and present an ACM, aiming to enhance the perfor-
mance of the MsPN under the joint guidance of the one-hot class
label information of the few training samples and the attribute
information from the prior knowledge. In the 3-way 5-shot,
10-shot, and 20-shot cases, the classification accuracies of our
proposed network on the MSTAR dataset surpass those of other
comparison methods. In the future, we will further consider the
few-shot SAR target classification combining with the simulated
data.
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