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Abstract—Many studies consider landslide susceptibility predic-
tion as a binary classification problem when using machine learning
methods, which requires both landslide and nonlandslide samples
for modeling. Nevertheless, there are only landslide and unlabeled
areas in the real world, and directly considering unlabeled areas as
nonlandslide areas may cause bias and incorrect label assignment.
In this article, we present a positive unlabeled learning method
coupled with adaptive sampling and random forest (AdaPU-RF)
to predict landslide susceptibility in the Three Gorges Reservoir
area, China. This method can make full use of the landslide and
nonlandslide information contained in unlabeled areas. Experi-
mental results show that the AdaPU-RF method achieves desir-
able predication outcomes in terms of accuracy analysis, sensitiv-
ity analysis, and uncertainty analysis. Overall, the application of
AdaPU-RF provides a new perspective for landslide susceptibility
prediction, and can be recommended for other areas with similar
geo-environmental conditions.

Index Terms—Adaptive sampling, landslide susceptibility
prediction (LSP), positive unlabeled (PU) learning, sensitivity
analysis, uncertainty analysis.

I. INTRODUCTION

LANDSLIDES are one of the most common and destructive
geological disasters worldwide. According to the Emer-

gency Events Database, 761 major landslide disasters occurred
from 1900 to 2020, causing 67 058 deaths, approximately 14.6
million people affected and economic loss of about 10.9 billion
dollars [1]. As a key step in landslide risk assessment, landslide
susceptibility prediction (LSP) can predict where landslides are
likely to occur and the likelihood of occurrence [2].
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In the past few decades, different methods have been pro-
posed for LSP, such as qualitative methods, physically based
methods, and statistical methods. The qualitative methods are
subjective and rely on the ability of experts to assess actual
and potential landslides [3], [4]. The physically based methods
perform mathematical modeling based on the controlling mech-
anisms of landslides, which require detailed geotechnical data
[5]–[7]. The statistical methods are implemented by evaluating
the relationship between landslide occurrence and related influ-
encing factors, such as multicriteria decision analysis [8]–[10],
bivariate analysis [11], [12], entropy-based methods [13], [14],
and weight of evidence [15]–[17]. Recently, machine learning
methods have flourished for LSP due to the improvement of
computer science and the accessibility of high-quality data [18].
The most commonly used machine learning methods include
logistic regression (LR) [19], [20], decision tree [21], support
vector machine (SVM) [22]–[25], random forest (RF) [26], [27],
artificial neural networks [28], [29], and deep learning methods
[30]–[35].

When applying machine learning methods, most researchers
consider LSP as a binary classification problem to distinguish
whether an area will be landslide and predict the possibility
of landslide occurrence. Consequently, positive (landslide) and
negative (nonlandslide) samples are required for modeling.
Positive samples are collected from known landslide locations
identified by field investigation, historical records, and interpre-
tation of remote sensing images. As for negative samples, most
researchers consider the areas located outside landslide polygons
as nonlandslide areas, and select negative samples from these ar-
eas [36]–[39]. However, the above-mentioned process has some
disadvantages. First, the areas outside landslides are unlabeled
areas, and we cannot know the true labels of samples. Therefore,
it may cause bias when we directly regard unlabeled areas as
nonlandslide areas and then use binary classification methods for
prediction. Secondly, the unlabeled areas include nonlandslide
areas and potential landslide areas. The nonlandslide sampling
procedure mentioned above may select wrong samples, and
cause incorrect and unreliable susceptibility prediction results.
Therefore, it is necessary to find an appropriate method to solve
the above problems.

Positive unlabeled (PU) learning can learn classifiers from
positive and unlabeled samples [40]. The application scenarios
of PU learning include many real-world classification problems,
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Fig. 1. Location of the study area.

such as medical diagnosis [41], fake reviews detection [42],
and fault detection [43]. In fields related to natural disasters,
we can only obtain disaster areas and unknown areas from the
geographic space. Therefore, LSP is more precisely equivalent
to a PU learning problem, rather than a binary classification
problem.

Wu et al. [44] used a bagging-based PU learning method that
integrates tree classifiers (PU-BaggingDT) to predict landslide
susceptibility and achieved higher accuracy than traditional
machine learning methods. The PU-BaggingDT method uses
bootstrap sampling to reduce the instability caused by the non-
landslide sampling process. However, it treats all unlabeled
samples as nonlandslide data, so there is a problem of incorrect
label assignment. Yang et al. [45] used a wrapper-based adaptive
sampling PU learning method in synthetic and real datasets.
The method can iteratively select reliable negative samples from
unlabeled sets to train the model. However, it ignores the positive
information hidden in the unlabeled set. In addition, although PU
learning is theoretically more suitable for solving LSP problems,
few studies have attempted to use this technology.

To fill the knowledge gap of LSP, this study aims to use a PU
learning method coupled with adaptive sampling and random
forest (AdaPU-RF) to predict landslide susceptibility in the
Three Gorges Reservoir area, China. The main contributions
of this study are summarized as follows. First, we explore the
application potential of PU learning for predicting landslide sus-
ceptibility and introduce a PU learning strategy that considers the
unlabeled areas as nonlandslide areas contaminated by hidden
landslides. Compared to the PU-BaggingDT method proposed
by Wu et al. [44], it can avoid the problem of incorrect label
assignment. Second, the AdaPU-RF methods are proposed for
predicting landslide susceptibility, which can make full use of

the landslide and nonlandslide information contained in unla-
beled areas.

The rest of this article is organized as follows. Section II
introduces the study area. Section III presents the data used
in experiments and explains the proposed AdaPU-RF method.
Section IV analyzes the landslide susceptibility results from
accuracy, sensitivity, and uncertainty. In Section V, we discuss
the susceptibility prediction results of the proposed method.
Finally, Section VI concludes the article.

II. STUDY AREA

The study area is located in the Zigui-Badong section of the
Three Gorges Reservoir area, China. The area is 446.32 km2

and its altitude ranges from 80 to 1968.1 m (see Fig. 1). The
mainstream of the Yangtze River runs from west to east, with
a flow path about 80 km. Moreover, the secondary tributaries
of the Yangtze River, such as Yandu River, Qinggan River,
Xiangxi River, and Jiuwanxi River, are staggered to form a
dendritic hydrological network with a river network density of
1.2 kilometers per square kilometer. The farmland accounts for
42.73% of the entire study area and the residential accounts for
only 5.16%.

The stratum of the study area is generally intact from the
Sinian to Quaternary, extending from east to west. Specifically,
the lithological categories of limestone, dolomite, and silicalite
are distributed in the Miaohe-Xiangxi section with the stratum
from the Sinian to the Lower Triassic, and the lithological
categories of sandstone, shale, mudstone, and marlstone, which
are prone to landslide occurrence, are distributed in the Xiangxi-
Badong section with the stratum from the Middle Triassic to
Jurassic.
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Fig. 2. Flowchart of the study.

The construction of the Three Gorges Reservoir greatly in-
fluences the natural environment of the study area. The slope
changes in the dredging process of large-scale excavation and
abandoned slag severely destroy the morphological structure
and stress balance of the original natural slope, causing geo-
logical disasters. During the impoundment period, the periodic
fluctuation of water level adversely influences the rock and soil
mass near the bank slope. Reservoir storage has significantly
increased the number of geological disasters in this area, espe-
cially landslide disasters [46]. Therefore, it is necessary to obtain
accurate landslide susceptibility maps for disaster management
and land resource planning in the Three Gorges Reservoir area.

III. MATERIAL AND METHODOLOGY

The flowchart of our study is illustrated in Fig. 2. First, we
extracted landslide influencing factors, positive data and unla-
beled data from multiple data sources. Then, we built landslide
susceptibility models using the training set. Next, the proposed
AdaPU-RF method was compared with five benchmark methods
in terms of accuracy, sensitivity, and uncertainty. Finally, we
predicted landslide susceptibility of each grid cell and output
landslide susceptibility maps.

A. Landslide Inventory Map

An accurate landslide inventory map is particularly important
for LSP. In this study, 196 landslide polygons were identified
through field surveys, historical landslide records, and visual
interpretation of Google Earth images. Fig. 1 shows the spatial
distribution of landslides. Among these landslides, the smallest

Kuihua street landslide has an area of 2068.8 m2, and the largest
Fanjiaping landslide is about 1.51 km2. The 196 landslide poly-
gons were randomly divided into two parts: 70% (137 polygons)
for training and the remaining 30% (59) for testing.

B. Landslide Influencing Factors

The selection of landslide influencing factors is important for
constructing landslide susceptibility models [2]. Many schol-
ars have conducted LSP in the Three Gorges Reservoir area
[47]–[51]. In this study, 13 landslide influencing factors were
selected for modeling based on previous publications and the
characteristics of the study area, including ten continuous factors
and three discrete factors. The continuous factors are elevation,
plan curvature, profile curvature, slope, terrain position index
(TPI), topographic wetness index (TWI), distance to faults,
normalized difference vegetation index (NDVI), rainfall, and
distance to rivers. The discrete factors include aspect, land
use, and stratum. Fig. 3 shows the thematic maps of landslide
susceptibility factors.

The elevation determines the distribution of the free surface
and directly influences the movement of the landslide [52].
The plan curvature reflects the surface runoff, and the profile
curvature reflects the slope shape that affects the risk of land-
slides [51], [53]. Slope is a key factor because landslides only
occur in sloped terrain. In addition, the slope can directly or
indirectly reflect the surface runoff, vegetation characteristics,
and the stress distribution on the slope [37]. TPI is defined as
the difference between the target central grid cell and its sur-
rounding cells, and can measure the topographic slope position
[49]. The TWI determines the dry and humid conditions of soil
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Fig. 3. Thematic maps of landslide influencing factors. (a) Elevation. (b) Plan curvature. (c) Profile curvature. (d) Slope. (e) TPI. (f) TWI. (g) Distance to faults.
(h) NDVI. (i) Rainfall. (j) Distance to rivers. (k) Aspect. (l) Land use. (m) Stratum.
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moisture, which strongly influences the occurrence of landslides
[54]. The distance to faults and stratum are selected because
geological conditions play an important role in the formation
of landslides [51], [55]. NDVI reflects the growth conditions of
green vegetation in an area [56]. Vegetation can retain water and
reduce rain erosion on slopes. Rainfall is one of the main external
forces that cause slope deformation and destruction [57]–[59].
The Three Gorges Reservoir has a great impact on landslides in
this area, and rivers affect the stability of the slope by weakening
the resistance of the front edge and increasing the open surface.
The aspect determines the intensity of solar radiation and then
affects slope evaporation and erosion [19]. Land use reflects the
intensity of human activities, especially the construction of the
Three Gorges Dam greatly affects the stability of landslides in
this study area [46], [60]

The elevation, plan curvature, profile curvature, slope, TPI,
TWI, and river networks were calculated from the ASTER
GDEM V2 data. The fault network and stratum were extracted
from the geological map provided by Hubei Geological Bureau.1

The Landsat 7 ETM+ satellite images were used to generate the
NDVI and land use factors. The average annual rainfall factor
was constructed using the precipitation data during 2003–2010
at seven rainfall stations.

C. Adaptive Sampling

The adaptive sampling technique selects samples based on the
information learned from previous surveys [61]. In this sense,
the sampling design is adaptive and the sampling manner may
change based on previous observations. In our study, the adaptive
sampling used in the proposed method is an extension of the
bootstrap sampling technique [45], [62]. Different from the boot-
strap sampling that randomly selects samples with replacement,
adaptive sampling selects a sample with replacement according
to the probability associated with each sample in D (which is
the original sample set), and repeats n times. Finally, we get n
samples for further modeling.

D. Modeling Process of AdaPU-RF

Considering a series of influencing factors, landslide suscep-
tibility refers to the possibility of landslide occurrence in a given
area [2]. We aim to predict the landslide susceptibility of each
grid cell in the study area. It is assumed that the input data of
landslide susceptibility models are organized in raster format.
Each grid cell in the study area represents a sample containing
factors and landslide information. The data extracted from the
actual landslide polygon are positive samples. Grid cells located
outside the landslide polygon are considered as unlabeled sam-
ples. In fact, the unlabeled areas contain both landslide and
nonlandslide samples, but the true label of these samples is
unknown. Moreover, nonlandslide areas are much larger than
landslide areas in the real world. Therefore, unlabeled data can
be regarded as negative (nonlandslide) data contaminated by
hidden positive (landslide) samples. In this study, we treat LSP as
a PU learning problem to predict landslide susceptibility based
on landslide and unlabeled datasets.

1[Online]. Available: http://dzj.hubei.gov.cn

Fig. 4. Detailed procedure of the AdaPU-RF method.

In AdaPU-RF, we simplify PU learning into a traditional
binary classification problem, which repeatedly selects reliable
positive samples and negative samples from unlabeled data to
train the landslide susceptibility model. Let P (label y = 1) and
U denote positive samples and unlabeled samples, respectively.
In the first iteration, a negative sample N is selected with equal
probability from U and combined with P as follows:

[D1, y] = [P, y = 1] ∪ [N1, y = 0] (1)

where N1 ⊂ U and the superscript 1 denotes the first iteration
index; D1 are the sample data used for PU learning in the first
iteration. The learned model is expressed as follows:

p(y |x ) = h(x; [D1, y]). (2)

The learned model is used to predict the probability of un-
labeled samples belonging to the positive class. For the next
iteration, a sample with a higher probability of p(y = 1|U) in
U is selected as the newly added positive data L. A negative
sample N is selected from U with replacement according to the
probability of 1− p(y = 1|U). Thus, the training data for PU
modeling are updated as follows:

[Di, y] = [P, y = 1] ∪ [Li, y = 1] ∪ [N i, y = 0] (3)

where i represents the current iteration of sampling. During the
modeling process, the training data are updated according to (3).
Once the iteration is completed, the RF method is trained based
on the optimized training set, and then used to predict landside
susceptibility. Generally, the AdaPU-RF method can make full
use of unlabeled information and repeatedly select high-quality

http://dzj.hubei.gov.cn
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TABLE I
PARAMETERS SETTING OF DIFFERENT METHODS

samples for modeling. Fig. 4 shows the detailed process of the
proposed AdaPU-RF method.

IV. RESULTS

A. Model Construction

In this study, we applied AdaPU-RF and five benchmark
methods of PU-BaggingDT, RF, SVM, LR, and convolutional
neural network (CNN) to predict landslide susceptibility. PU-
BaggingDT is a PU learning method that was recently proposed
to predict landslide susceptibility [44]. RF, SVM, and LR are
popular and robust machine learning methods, which have been
widely used for LSP [26], [47]. CNN is a typical and powerful
deep learning method.

Initially, we converted all landslide influencing factors into a
raster format with a spatial resolution of 30 m. A normalization
process was used to eliminate bias that existed in continuous
factors. The one-hot encoding procedure was applied to quan-
tify these discrete influencing factors. For the AdaPU-RF and
PU-BaggingDT methods, we used 70% of landslides and all
unlabeled areas for modeling, and used the remaining 30% of
landslides to test model performance. For RF, SVM, LR, and
CNN, we randomly selected 70% of the landslides for training
and the remaining 30% for testing. Meanwhile, the same number
of nonlandslide grid cells was randomly sampled from unlabeled
areas to construct training and test sets [39], [59], [63]. Parameter
optimization is an important step, which has a great influence
on the final susceptibility results. In our experiments, we used
a three-fold cross-validation procedure to find the optimal pa-
rameters of different models. In this study, we referred to the
recent work to set the parameters of the PU-BaggingDT and
CNN method [32], [44]. Table I presents the parameters setting
of different methods.

B. Landslide Susceptibility Maps

The constructed models were used to predict landslide sus-
ceptibility of each grid cell in the study area. Fig. 5 shows
landslide susceptibility maps obtained by the different methods.
All landslide susceptibility values were reclassified into five
classes based on the natural break algorithm, namely very low,
low, moderate, high, and very high classes. All susceptibility
maps have similar spatial distribution characteristics, i.e., high
and very high susceptible regions are mainly located near the

Yangtze River. The moderate susceptibility class has the small-
est area among all susceptibility classes. Compared with the
benchmark methods, AdaPU-RF can obtain larger very low and
very high susceptibility areas, but has smaller low, moderate,
and high susceptibility areas. Fig. 6 presents the frequency
analysis of landslides on different susceptibility maps. The very
high susceptibility areas obtained by AdaPU-RF achieved the
highest landslide percentage, followed by RF, PU-BaggingDT,
CNN, SVM, and LR. This indicates that the AdaPU-RF method
achieves more accurate landslide susceptibility map. The PU-
BaggingDT had the highest landslide percentage in very low
susceptibility areas. This may be because it occurred incorrect
label assignment during the training process.

C. Model Accuracy Analysis

We plotted the success rate and prediction rate curves, and
calculated the area under the curve (AUC) to evaluate the model
accuracy [64]. First, we sorted all landslide susceptibility values
in descending order. Then, we divided equally these values
into 100 classes [56]. The x-axis is the cumulative percentage
of the study area, and the y-axis is the cumulative percentage
of landslide areas. The success rate curve and the prediction
rate curve are plotted based on training landslides and testing
landslides, respectively. The larger the AUC value, the better
the fit and prediction accuracy. Fig. 7 shows the success rate
and prediction rate curves of different methods. For the success
rate curves, PU-BaggingDT achieved the highest AUC value
(0.999), followed by RF (0.988), AdaPU-RF (0.979), and SVM
(0.908). For the prediction rate curves, AdaPU-RF had the
highest AUC value of 0.906, which is 0.042–0.07 higher than the
three benchmark methods. We can observe that PU-BaggingDT
and RF were better than AdaPU-RF with success rate curves.
However, they have lower accuracy than AdaPU-RF in terms of
prediction rate curves. This means PU-baggingDT and RF are
overfitted during training process, and AdaPU-RF keeps a good
balance between fit ability and prediction ability.

D. Sensitivity Analysis

Generally, statistical methods are very sensitive to the input
data. If the input data vary within a reasonable range, the results
of a reliable and robust model will not change significantly
[55]. In this study, we evaluated the sensitivity of the model
from two aspects: one is the impact of different training sample



FANG et al.: LSP BASED ON POSITIVE UNLABELED LEARNING COUPLED WITH ADAPTIVE SAMPLING 11587

Fig. 5. Landslide susceptibility maps of different methods. (a) AdaPU-RF. (b) PU-BaggingDT. (c) RF. (d) SVM. (e) LR. (f) CNN.

Fig. 6. Frequency analysis of landslides on susceptibility maps.

sizes on model performance, and the other is the impact of the
random sampling process that generates training and test sets on
model performance. We randomly selected samples with differ-
ent proportions as the training set, and used the corresponding
remaining samples as the test set. Meanwhile, we repeated the
random sampling process ten times. Fig. 8 shows the model
sensitivity of different methods. When the percentage of training
set is between 10% and 70%, the AdaPU-RF method obtained
the highest prediction accuracy than the benchmark methods.
Meanwhile, only two results obtained by AdaPU-RF showed

higher accuracy than the other methods when the training sam-
ples account for 90% of the total samples. This phenomenon
still shows that AdaPU-RF maintains good predictive ability in
the face of different numbers of training samples.

In addition, all the methods that use 10% and 90% training
samples had greater AUC variations than methods that use 30%,
50%, and 70% training samples. This is because the test set only
contains 10% of the total number of samples, which can hardly
reflect the true prediction performance of the model. Also, we
can find that AdaPU-RF was less sensitive to the randomness of
the training/test splitting process than the other methods when
the percentage of training data is 10%, indicating its stable
predictive ability with a small number of training samples.

E. Uncertainty Analysis

To analyze the uncertainty of landslide susceptibility mapping
models, we selected the models [the same as Fig. 8(d)] that are
trained with 70% of the training data. Therefore, we obtained ten
landslide susceptibility estimates for each model. Fig. 9 shows
the uncertainty analysis of different methods. These figures plot
the average susceptibility estimate on the x-axis against two
standard deviations (2σ) on the y-axis [55]. The 2σ values of
the four models were low for grid cells classified as very high
(probability> 0.8) and very low susceptibility areas (probability
≤ 0.2), indicating that the uncertainty in these areas is small. The
grid cells classified as moderate susceptibility areas had higher
2σ values than other grid cells, which indicates that model cannot
predict these grid cells as landslides or nonlandslides stably.
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Fig. 7. (a) Success rate and (b) prediction rate curves of four methods.

Fig. 8. Sensitivity analysis of four different methods. (a)–(e) AUC values of models with different percentages of the training data. Each modeling process is
repeated ten times, and the ten yellow dots are the AUC values. The red dot is the mean value of the ten AUC values. The median line denotes the median value of
the ten AUC values. The blue rectangle contains AUC values between the first quartile and the third quartile.

TABLE II
AVERAGE VALUES OF 2σ IN VERY LOW AND VERY HIGH

SUSCEPTIBILITY AREAS

Table II lists the average of 2σ in the very low and very high
susceptibility areas. SVM and LR achieved the lowest average
value of 2σ in the very low and very high susceptibility areas,
respectively. RF had the highest average value of 2σ in the very
low and very high susceptibility areas, indicating that RF has the
largest uncertainty. In general, the uncertainty of AdaPU-RF is
within an acceptable range.

V. DISCUSSION

Since the mid-2000s, a large number of studies have applied
machine learning methods to predict landslide susceptibility
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Fig. 9. Uncertainty analysis of different methods. x-axis denotes the mean of ten susceptibility estimates. y-axis denotes two standard deviations of the susceptibility
estimates. (a) AdaPU-RF. (b) PU-BaggingDT. (c) RF. (d) SVM. (e) LR. (f) CNN.

[18]. These machine learning methods suffer the deficiency that
requires both landslide samples and nonlandslide samples for
modeling [36]. In the real-world, landslide information can be
collected from existed landslide events. However, it is difficult
for field investigators to identify real nonlandslide areas. This
is because, on the one hand, the unknown area is much larger
than the landslide area, so investigating all the unknown areas
will spend a lot of resources. On the other hand, it is difficult
to judge whether a landslide will occur in a certain area in the
future. In this study, we treat LSP as a PU learning problem to
predict landslide susceptibility based on landslide and unlabeled
data.

The RF, SVM, LR, and CNN are commonly used machine
learning method in landslide susceptibility analysis. They regard
LSP as a binary classification problem and randomly select non-
landslide samples from the areas outside the landslide polygon.
This selection procedure may select wrong samples, and cause
bias and uncertainty. The PU-BaggingDT method uses bootstrap
sampling to reduce the instability caused by the nonlandslide
sampling process and obtain stable prediction results. However,
it treats all unlabeled samples as nonlandslide data, so there is a
problem of incorrect label assignment. The AdaPU-RF method
trains a model based on landslide and unlabeled information. By
iteratively selecting reliable landslide and nonlandslide samples,
it can make full use of unlabeled information to update the train-
ing set. It can avoid the problem of incorrect label assignment
that occurs in traditional nonlandslide sampling procedures and
improve prediction performance.

A comprehensive assessment of landslide susceptibility mod-
els is important and necessary [65]. Guzzetti et al. [55] proposed
a series of criteria to rank the quality of landslide susceptibility
evaluation with the quality scale from 0 to 7. In our experi-
ment, we used the highest quality assessment scale (level 7)
to validate the AdaPU-RF method and compared it with the
benchmark methods. Regarding the degree of model fitting, we
found that the AdaPU-RF method cannot obtain the highest
AUC value (see Fig. 7), which is lower than PU-baggingDT
and RF. For the degree of model prediction, the AdaPU-RF
and PU-BaggingDT methods obtained the highest and lowest
AUC values, respectively. This indicates that PU-baggingDT has
overfitted during training, whereas AdaPU-RF is well trained.
The reason for this phenomenon is because PU-baggingDT is an
ensemble method that combines multiple decision tree models,
which will exacerbate the problem of label assignment errors.

Model sensitivity analysis can describe the robustness of the
model. In this study, we tested the changes in the modeling
results when two factors change: one is the training sample size,
and the other is the random splitting process of the training and
test sets. The former factor is important because a good model
should maintain a high accuracy when the training sample size
changes [66]. The latter will change the landslide distribution
of the training set and cause uncertainty. Results show that
the AdaPU-RF method is more robust and less sensitive to
the randomness of the training/test splitting process, compared
to the other methods. In addition, when the training samples
account for 90% of the total number of samples, the AUC values
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of all the methods will change greatly as the random splitting
process is repeated [see Fig. 8(e)]. This is because the test set
only contains 10% of the total number of samples, which can
hardly reflect the true prediction performance of the model.

Many studies focus on the quantitative assessment of model
performance on training and test sets [18], [21], [53], [59],
which is useful, but does not fully evaluate the accuracy and
reliability of the susceptibility prediction model. We investigated
the uncertainty of the susceptibility estimate corresponding to
each grid cell in the study area. 2σ was used as a quantitative
measure of landslide susceptibility (see Fig. 9). We find that all
susceptibility models are stable in predicting very low and very
high susceptible areas. When estimating the susceptibility of
grid cells in the moderate susceptible area, the model will lose the
ability to distinguish whether the grid cell is stable. The finding
is consistent with previous studies [47], [55], [67]. From the
statistical results of 2σ (see Table II), the AdaPU-RF method is
more stable than PU-baggingDT, RF, and CNN, but the stability
is lower than SVM and LR. This may be because the repeated se-
lection of landslide and nonlandslide samples during the training
process will increase the uncertainty of the AdaPU-RF method.
However, considering the improvement of prediction accuracy
and calculation efficiency, it is more recommended to use the
AdaPU-RF method to predict landslide susceptibility. Compared
with the traditional application of machine learning methods, PU
learning provides a new application perspective for researchers
to carry out the LSP task.

VI. CONCLUSION

This study develops a new AdaPU-RF method to predict land-
slide susceptibility in the Three Gorges Reservoir area, China.
The AdaPU-RF method combines PU learning with an adaptive
sampling strategy to make full use of landslide and unlabeled in-
formation, and avoid the problem of incorrect label assignment.
The main conclusions are summarized as follows. First, the
AdaPU-RF method can obtain accurate landslide susceptibility
results. In terms of the AUC value of the prediction rate curve,
the proposed method is 0.042–0.07 higher than the benchmark
methods. Second, the AdaPU-RF method was not sensitive
to the randomness of training/test splitting process, compared
with the other methods. In addition, the proposed method can
retain higher prediction accuracy than the benchmark methods
when using different percentages of the training set. Third,
the uncertainty of the susceptibility estimation obtained by the
AdaPU-RF method is within a reasonable and satisfactory range.
Generally, the AdaPU-RF method is enlightening and more
recommended for predicting landslide susceptibility. The PU
learning provides a new application perspective for the problem
of LSP. Meanwhile, we expect that the proposed method can
promote other researchers to further explore the application
potential of PU learning.
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