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Abstract—An EF1 tornado associated with tropical cyclone (TC)
Ewiniar hit Dali Town, Foshan, Guangdong Province at 06:03 UTC
on June 8, 2018, and the first special tornado warning was issued to
five towns at 05:05 UTC. This article utilizes minute-scale observa-
tions from an X-band dual-polarization radar and measurements
from an S-band Doppler radar to resolve the polarization char-
acteristics associated with this tornado. In addition, second-scale
atmospheric pressure data obtained from micropressure gauge and
NCEP FNL (Final) Operational Global Analysis data are used to
investigate the synoptic conditions and features of gravity waves
(GWs). The conspicuous features of the descending reflectivity
core, Doppler velocity couplet, Zpg arc, Kpp foot, and the separation
of the Zpg arc and Kpp foot are detailed to quantify the tornadic evo-
lution. The amplitude fluctuation of the GWs suddenly increased to
77.3 Pa, 2 h before the tornado occurred. Two focus regions with Kpp
values greater than 6°/km are discussed by combining the Doppler
velocity couplet and Zpg arc. The separation distance of the Zpg
arc and Kpp foot was approximately 2.1 km. The appearance of
these features may be indicative of fundamental processes intrinsic
to tornado storms.

Index Terms—Polarimetric weather radar, severe weather,
tornado warning.

1. INTRODUCTION

ORNADOES are one of the most violent weather phe-
T nomena and are always accompanied by strong convective
weather, such as hail, heavy rain, and thunderstorms. On a
global scale, the annual average number of tornadoes can exceed
1000 in the United States [1]; the annual average number of
tornadoes in Europe has been 483 in recent years with a clear
increasing trend [2]. The total number of significant tornadoes
in China was 165 from 1961 to 2010, most of which occurred in
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plain areas, including areas in South China, the Northeast China
Plain, the Jianghuai Plain, and the North China Plain [3].

An initial study of tornadic environments began in the late
1940s by Miller and Fawbush and included a detailed analysis
of the environment on subsynaptic scales. In the early 1950s,
the Weather Bureau Army Navy in the United States estab-
lished a convective forecasting group to issue tornado warnings.
Mesoscale analysis of tornadoes was originally accomplished by
Fujita [4], and then the schematic evolution of the hook echo and
the concept of mesocyclones combining original radar film and
surface observations from available stations were developed [5].
Tornadic storms and airflows in tornadic storms have been sys-
tematically examined using radar as the primary observational
tool. The dome characteristics in thunderstorms correspond to
strong continuous updrafts [6], [7]. During the 1970s, Burgess
and Brown [8] found that the Doppler velocity signature of
the presence of maximum positive and negative velocities in
adjacent azimuths coincides with the location of the tornado
touchdown by analyzing several tornado cases. The tornadic
vortex signature (TVS) was proposed to describe this character-
istic, which first appears in the middle layer of thunderstorms,
enhances at every height, and then touches the ground to form a
tornado [9]-[11]. In the fall of 1990, the first Weather Surveil-
lance Radar-1988 Doppler (WSR-88D) instrument was installed
in Norman, Oklahoma, with the purpose of identifying tornadoes
using the TVS. Tornado warnings improved significantly after
the deployment of the WSR-88D network: The percentage of
tornado warnings increased from 35% to 60%, and the mean lead
time of tornado warnings increased from 5.3 to 9.5 min. More
importantly, the expected fatalities and injuries were reduced
by 45% and 40%, respectively, during tornado events. The
Verification of the Origins of Rotation in Tornadoes Experiment
(VORTEX) was successively implemented between 1994—1995
and 2009-2010 to explore tornado genesis and structures and
improve forecasts. The VORTEX also provided us with further
understanding of the thermal and dynamic structures of hook
echoes and areas of rear flank downdraft [12]-[14].

Nevertheless, very few meteorological instruments are good
at observing the fine structures of fast-evolving, small-scale,
and short-lived tornadoes. Dual-polarization radars can provide
both vertical and horizontal information about the features of
scattering particles in the resolution volume. In addition to
the conventional variables of reflectivity factor at horizontal
polarization (Z},), Doppler velocity (V), and Doppler spectrum
width (SW), the new variables are the differential reflectivity
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(Zpr), meaning the logarithmic ratio of the reflectivity factors at
H and V polarization, differential propagation phase shift (¢pp),
resulting difference in phase shift between H and V polarization,
specific differential phase (Kpp), the amount of differential phase
shift per unit distance, and the co-polar correlation coefficient
(puv)- The size, shape, composition, and orientation of scattering
particles from dual-polarization radars reflect different types of
hydrometeors and can be used to demonstrate the characteristics
of tornadoes. A descending reflectivity core (DRC) may appear
at the beginning of the tornado and can be a signature used to
detect tornado genesis. The definition of DRCs and a preliminary
survey in supercell storms were described by Rasmussen [15]
after analyzing limited examples, which puts forward the hy-
potheses that flow stagnation or growing cumulus tower merges
and creates a confined region where precipitation develops
rapidly and descends into the periphery of the main updraft.
A statistical survey of 64 isolated supercells with persistent
rear-flank hook echo appendages indicated that DRCs have no
necessary relationship with tornadoes [16]. Three types of DRCs
were categorized based on different precipitation observations
by Doppler on Wheels radars [17]. The tornadic debris signature
(TDS) was first reported by Ryzhkov et al. [18]. Based on
the tornado case outbreaking on May 3, 1999 in Oklahoma,
anomalously low ppy and Zpr values of approximately zero
were identified as features of the TDS. More tornado cases
were analyzed to quantify the polarimetric radar variables as
low values of pyy less than 0.5, low values of Zpg less than
0.5 dB, and high values of Z;, greater than 45 dBZ [19]. Bluestein
et al. [20] used finer spatial resolution data from dual-
polarization X-band mobile radar to investigate debris rings in
tornadoes and showed that debris rings demonstrated Zpg values
less than 0.5 dB, ppy values less than 0.5, and a large range of
Zj, values. The polarimetric analysis of supercells at low levels
conducted by Kumjian and Ryzhkov [21] found that, in a region
of enhanced Zpgr along the inflow side of the forward flank
referred to as the “Zpr arc,” the simultaneous appearance of
an enhanced region of Kpp noted as the “Kpp foot” occurred, as
described by Romine [22]. These phenomena were indicative
of a kinematic property of supercell storms. Differences in
observations between S-band and X-band radar during tornadic
supercells summarized by Snyder et al. [23] revealed that the
Zpr arc emerges along the inflow side of the forward-flank
downdraft (FFD), representing size sorting, as mentioned by
Kumjian and Ryzhkov [21]. These separated horizontal scale
features on radar displays occur due to sorting of drops based
on size because smaller drops take longer to fall through a layer
than larger drops do, and this residence time allows smaller drops
to advect farther downstream by the storm-relative winds than
larger drops. This generates horizontal-scale separation between
larger and smaller drops corresponding to the separation of
enhanced low-level regions of Zpr and Kpp in supercells [24],
which may be an intriguing signal for producing tornadoes.
Many recent studies have started to exploit the relationship
between these two regions’ separation features in supercells and
nonsupercells as well as tornadic and nontornadic cases [25]—
[27]. Loeffler et al. [28] considered both the magnitudes and
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the orientations of the shifts between the two regions and found
that tornadic supercells have orientations more orthogonal to the
storm motion than do nontornadic supercells. The relationships
between the hook echo, weak echo hole, weak echo column, and
rotational couplet with visual tornadic characteristics were ini-
tially presented with photogrammetry by Wakimoto et al. [29].
Previous studies of tornadoes in China have mainly focused
on different (regional) tornado climate, including tropical cy-
clone (TC) tornadoes [30]-[32], midlatitude tornadoes [33],
and tornadoes formed in a typical environment of midlevel
large-scale cold vortex [34]. The environmental conditions,
radar echo structures and Doppler wind analyses, as well as
associated damage survey were the key considerations in those
studies [35], [36].

Aimed at monitoring small-scale strong convective weather
such as tornadoes, an X-band radar network composed of
four polarimetric radars was deployed in Foshan, Guangdong
Province. An EF1 tornado associated with TC Ewiniar hit Dali
Town, Foshan, at 06:03 UTC on June 8, 2018. The tornado path
was narrow and long with a length of approximately 350 m
and a width of less than 100 m. The damage area was mainly
concentrated in the yellow frame area of A and B in the Bomei
aluminum hardware city, Dali Town, shown in Fig. 1. The
tornado was first seen in area A, as indicated by eyewitnesses E1
and E2, where light objects such as asbestos tiles were rolled up,
and parts of roofs were lifted. The most damaged area was the
yellow B region shown in Fig. 1, where a steel-frame roof was
rolled up and fell to the ground. The metal sheet was scattered
around, and some of it was rolled up and scattered a few hundred
meters away. The damaged roof before and after the tornado is
depicted in Fig. 1, which was observed by eyewitnesses E3 and
E4. The video evidence was taken by C1 using a cell phone, and
the shooting direction was along the green arrow. The video
shows that some iron pieces rolled up by the tornado were
spinning in the air.

The tornadic storm was captured by one of the Foshan X-
band dual-polarization radar nodes that is located approximately
13 km from Dali Town. As such, this study takes advantage of
using high-resolution X-band dual-polarization radar to monitor
tornadoes and resolve tornadic signatures [37]-[40]. This is
among the first studies of such kind in China. Based on our
analysis, the first specific tornado warning (in China) was suc-
cessfully issued 58 min in advance. In fact, very few studies have
reported the DRCs of tornadic storms at such close ranges from
the radar, and the periodic-amplitude dynamic-spectral variation
characteristics of GWs caused by tornadic storms have never
been investigated in the literature.

The minute-scale measurements from the polarimetric X-
band radar, 6-min volume data from a nearby S-band Doppler
radar, second-scale atmospheric press data from micropressure
gauge, and NCEP FNL (Final) Operational Global Analysis
1.0° x 1.0° data were utilized to resolve the radar characteristics
and gravity wave (GW) features of this typhoon-peripheral
EF1 tornado. The rest of this article is organized as follows.
Section II describes the data and methods used in this study.
The synoptic conditions are detailed in Section III. Section IV
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Fig. 1.
(C1) during this tornado event.

introduces the characteristics and evolving features of this tor-
nado through multivariate analyses. A summary is provided in
Section V.

II. DATA AND METHODOLOGY

During this event, many types of monitoring devices managed
and operated by the Foshan Meteorological Service were active,
including X-band dual-polarization radar, S-band Doppler radar,
and micropressure gauges. Data with high temporal—spatial
resolutions obtained from these devices were utilized to address
the polarization characteristics and GW features of the tornado.
The main specifications of the X-band dual-polarization radar
and the S-band Doppler radar are listed in Table 1. The TC
best track (obtained from tcdata.typhoon.org.cn) [41], [42] and
locations of monitoring devices are illustrated in Fig. 2. The blue
and green solid points indicate the TC track at different stages:
The blue solid points are the tropical storm (TS) stage, whereas
the green solid points are the tropical depression (TD) stage.
The S-band Doppler radar has a coverage range of 230 km,
and the X-band dual-polarization radar has a coverage range of
75 km. The red dots represent the locations of the micropressure
gauges. The inverted triangle indicates the tornado touchdown,
which occurred during the TS stage at a distance of 75 km from
the TS location at 06:00 UTC on June 8.

The X-band radar provided fine-scale observations during the
prescribed tornado event, including seven parameters at each
range volume, including Zj, V, SW, Zpr, puv, ¢pp, and Kpp.
To fully capture small- to medium-scale severe weather systems
with short life cycles and supply minute-scale observations, the
X-band dual-polarization radar was set up in the fast volume

Tornado path (purple dashed line), damage area (red dashed line, mainly in A and B), and the locations of the eyewitnesses (E1,..., E4) and photographer

TABLE I
MAIN SPECIFICATIONS OF THE X-BAND DUAL-POLARIZATION AND S-BAND
DOPPLER RADARS USED IN THIS STUDY

Radar specifications X-band S-band
Transmitter Klystron Klystron
Antenna Size (m) 2.4 8.5
Beam Width (°) 0.97 0.93
Antenna Gain(dB) 443 45.2
Polarization STSR Single Polarization
Transmit Frequency (MHz) 9350 2885
Transmit Peak Power (Kw) 75 650
Pulse Width (us) 0.5 6.67
PRF (Hz) 300~2000 322~1304
Radial Resolution (m) 75 1000
Minimum Discernible Signal (dBm) 107 109
Receiver Dynamic Range (dB) 85 85
Observation parameters Zn, V, SW Zn, V, SW
Zpr. $DP
Kpp. prv

coverage pattern (VCP) mode, which only includes scans at two
low-level elevation angles, i.e., 1.8° and 2.8°.

Similar to WSR-88D from both hardware and software per-
spectives, the S-band Doppler radar used in this study was
routinely operating in VCP21 mode during this tornado event,
providing surveillance scans at nine elevation angles, i.e., 0.5°,
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Fig. 2.

TC track and distribution of observational instruments. The blue and green solid dots indicate the TC track at different stages (obtained from

tedata.typhoon.org.cn): blue solid dots are the TS stage, and green solid dots are the TD stage. The S-band Doppler radar has a detection range of 230 km,
and the X-band dual-polarization radar detection range is 75 km. The red point indicates the location of the boundary layer wind-profiling radar and micropressure
gauge. The inverted triangle represents the tornado touchdown, which occurred in the TS stage at a distance of approximately 75 km from the TS location at 06:00
UTC on June 8. The subfigure in the higher right corner is the X-band radar network with a coverage range of 75 km.

Height(hPa)

Fig. 3.
speed.

Vertical cross section of divergence and updraft movements and wind

1.4°,2.4°,3.3°,4.3°,6°,9.9°, 14.6°, and 19.5°. The update rate
of the S-band is approximately 6 min.

The tornado touchdown was located at an azimuth angle of
108.5°, approximately 13.2 km from the radar. In this VCP
model, the direct detection heights were approximately 530 and
760 m at the 1.8° and 2.8° elevation angles, respectively.

The micropressure gauge is composed of a thermostat-
controlled cavity, inner intelligent pressure sensor, and an ex-
ternal temperature indicator. The barometric pressure data were
recorded at a sampling frequency of 1 Hz with a resolution
of 0.1 Pa and a measurement error of 1 Pa; eventually, the

high-precision dataset on the second scale was recorded in real
time. An intelligent pressure sensor is the key component of
this device [43] with a working environment temperature of
45° + 1°, which is supplied by a thermostat-controlled cavity.
The periods and amplitudes in the frequency domain of GWs
hide in the barometric pressure data in the time domain. The
dynamic spectrum characteristics of periods and amplitudes
are extracted through a fast Fourier transform (FFT) at a fixed
sampling time, which has myriad effects and major contributions
to the circulation, structure, and variability in the atmosphere.

The X-band radar polarization parameters of Zpg and pyv
were corrected using the methods presented by Ryzhkov
et al. [19], and ¢pp was processed by linear programming. The
related equations are shown as follows:

Zpr(0)
[Zpr (0)1/2sin? () + cos?(0)]2

piv = pav < (1 +1/SNR)

ZDR(Q) ~ (D

@)

where Zpr(0) and Zpgr(0) are differential reflectivities at ele-
vation angles 0 and 6, respectively. SNR is the signal-to-noise
ratio.

III. SYNOPTIC CONDITIONS

TC Ewiniar was generated on the southern surface of the
South China Sea at 06:00 UTC on June 2 and landed three times
throughout the entire process. At 00:00 UTC on June 8, the Pearl
River Delta region was located in the strong south-southeast
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Fig. 4. (a) Water vapor flux (solid color lines) and water vapor flux divergence (isotherms), and (b) vertical wind shear at 925 hPa at 06:00 UTC.
25 15
» M._M 5 —~
\5/20 WW—W' o
= 5 E
5 £
o15 i >
g P 155
—— e —_— r— (e}
= 10 /-—————’ ~— \/\___—/\ \\/__,N__/ ®
3 o i 25 >
S |
=
S5 -35
o 89E88TNEPRB8IB I35 TIICRZIZITIBRLE8LEH B2BI2338
o C BN BB OO rAND I T DO ORN BB NNDIIBOBOR BRSPS S BITBOON &S
DOOOOOITIITITITIITIITITOOLOLHLOLOLOOOLOHBYLHS SO 559559955059
LOLLLOLLOLLOLOLLOLODLOLODLOLLOLOLDLOLDDLOLOWNWOWGGWOLWWOWLOWLWO OO © © © © ©O© O OO
OCO0O0O000O0O00O0DO0O0O0O0O0O0O0O0O0O0DO0O0O0DO0O0DO0DO0OO0DO0OO0DO0O0ODO0OO0OO0ODO0OO0OO0OO OO0 O0OO0OO0O0OO0O0OOo
Time(UCT)
0.05
~0.04
K
b&m
o
go‘oz \/\/\/\_"\/—\/\/
> 0.01
0 \ A
OO OONNMNNMNOOONDIPIDNDOOO T AN ANNNNDONDETITTTOOODOOONNNNOOOIOODDDOOO ™« N
O NO Y NS Y NO YUY O Cl N - hO NN T DO T DO NN O R OO - BONOTNO YA
OCONOVONDOOTTANANMNMTINDOONDOPOO-TNNNDMETITVOONDONDOODOTTANNNMTIWLOONDDDDNDO «~ N
OB NO Y I I I I YT I T I IIITI IO OODOLLOOEOLBOHEDNO005000009505060 =« «
VLOLLLOLLOLOLOLOLOLOLOLOLLOLLOLOLOLOLDLLDOLLDOLOLDOODNYLWYLWOLWLWOLWLOOOOOOOOOOOOOOOOOO OO
OCO0OO0OO0O0O0O0O0O0O0O0O0O0O0DO0O0O0O0O0DO0O0O0O0O0O0O0O0DO0O0O0DO0DO0DO0DO0O0DO0DO0O0DO0O0DO0DO0O0O0DO0O0DO0DO0OO0OO0OO0OO0OO0O0OO
Time(UCT)
Fig.5. (a) Evolution of the rotational velocity (blue line) and Doppler velocity (dark blue line is positive Doppler velocity, whereas green line is negative Doppler

velocity). (b) Vorticity during the tornado storm event.

(SSE) jet stream core between the high-pressure circulation
and the Ewiniar cyclone. The lower level of the Pearl River
Delta region was located in the strong convergence zone of
the southerly to southeast jet, and the southeast wind speeds
at 925 and 850 hPa were 14 and 16 m/s, respectively, while
the southerly wind speeds at 700 and 500 hPa increased to
20 and 18 m/s, respectively. A high level at 200 hPa with a
divergence signature was also observed near the Pearl River
Delta region. The vertical cross section of the divergence and
updraft movements and wind speed in Fig. 3 depicts the fa-
vorable configuration of low-level convergence and high-level
divergence. The height of convergence extends up to 600 hPa,
the divergence value of the low-level convergence center reaches
—-14.0 x 107°s7!, and the whole layer shows strong upward
movement. The moisture flux divergence and vertical wind
shear (VWS) at 925 hPa at 06:00 UTC are shown in Fig. 4.

Therefore, the strong convergence of the middle- and low-level
SSE jet stream and powerful upward movement provided a fa-
vorable large-scale background to trigger and organize tornadic
convective storms.

The synoptic situation of upper-level divergence, low-level
convergence, and superimposition of strong southeasterly jets
at mid- and low-layers over the Pearl River Delta are conducive
to the background weather of tornadoes. The common environ-
mental conditions for tornado genesis appear to be a low lifting
condensation level (LCL) (<1000 m), strong deep layer, and
low-level VWS (greater than 10 m/s at O—1 km and greater than
15 m/s at 0-6 km) and a high storm relative helicity (SHR;
>100m 2 s72).

A data analysis from the Qingyuan radiosonde station, which
has a distance of 70 km from Nanhai District, showed that
the entire layer of 1000-500 hPa had low temperatures, small
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Fig. 6. Evolution of the DRC pattern from 05:50:22 to 05:54:14 UTC: (left)
PPI scans of reflectivity and (right) Doppler velocity at elevation angle of 1.8°.
The marked circles indicate the DRC area.

dew point differences, and low LCLs close to the ground, as
well as a warm and humid atmosphere with a deep wet layer.
Due to continuous heavy rainfall, unstable energy was partially
released, and the convective available potential energy (CAPE)
decreased from 750 J/kg at 12:00 UTC on the 7th to 138 J/kg at
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00:00 UTC on the 8th, indicating that the atmospheric instability
was weak at this time. However, the Hong Kong radiosonde
station in the upstream direction had a high CAPE of 1327 and
1694 J/kg at 12:00 UTC on the 7th and at 00:00 UTC on the 8th
before the occurrence of the tornado, supplying water vapor and
heating the tornado area through the low-level southeast wind
and providing favorable thermal and water vapor conditions for
maintaining a certain amount of CAPE.

The atmospheric environmental parameters of strong low-
level VWS and SRH represent significant changes conducive
to the occurrence of tornadoes. The low-level VWS of 0-1 km
increased from 9.9 x 10~3s~1 at 12:00 UTC on the 7th to 11.3 x
1073571 at 00:00 UTC on the 8th, while the SRH enlarged from
142 m?s? at 12:00 UTC on the 7th to 215 m?s? at 00:00 UTC
on the 8th. The strong low-level vertical shear and higher SHR
provided favorable dynamic conditions for triggering strong
convective storms.

IV. MULTIVARIATE FEATURES OF THE TORNADO

Based on the data obtained from the observational instru-
ments, the vertical vorticity (Vyo) along with the rotational
velocity (Vo) were analyzed to resolve the mesocyclone features
of the tornado evolution. Polarization characteristics, including
the DRC pattern, Zpr arc and Kpp foot signatures, and the sepa-
ration of the Zpg arc and Kpp foot, were investigated at different
phases of the tornado. The periods and amplitudes of the GWs
during this tornado were demonstrated in the three-dimensional
dynamic spectrum.

A. X-Band Polarimetric Radar Observations:
Tornadic Signatures

Minute-scale data from the X-band polarimetric radar were
collected from 05:36 to 06:14 UTC, including Z;,, V, SW, and
the polarimetric observables Zpg, puv, and Kpp.

1) Mesocyclone Identification: A mesocyclone was devel-
oped prior to the tornado formation. Fig. 5 shows the evolution
of Vot and V., which were calculated from the maximum
and minimum velocities in the velocity couplet based on the
following equations:

Vinax — Vi
V;O[ _ max min (3)

2
2 ( Vmax - Vmin)
D

where Vi is the maximum velocity, Vi, is the minimum
velocity, and D is the distance between the location of Vi« and
Vinin. Generally, Vi, should be greater than 0.01 s~! during a
mesocyclone [44]-[46]. This is also confirmed by Fig. 5 during
this tornado event. As shown in Fig. 5(b), the location of the
inverted triangle shows the time of tornado touchdown at 06:03
UTC, and the vorticity was mostly consistent at approximately
0.015 s~! from 05:36 to 05:51 UTC. From 05:52 UTC, the
vorticity showed an increasing trend, climbing up to a peak value
0f0.026 s~ ! at 05:56 UTC. Between 05:57 and 05:59 UTC, the
vorticity dropped to 0.018 s~* and then increased rapidly to the
maximum of 0.035 s~ at 06:01 UTC, 2 min before the tornado

Vvor = (4)
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touched down. After 06:04 UTC, a decreasing vorticity trend
was observed, demonstrating the dissipation of the tornado. This
evolution feature can also be reflected by the V}, field shown in
Fig. 5(a), which reveals a smoothing trend between 05:36 and
06:03 UTC with an average value of 13.7 ms~!. The emergence
of positive Doppler velocities began at 05:36 in the left direction
of the moving echo, and a velocity couplet formed. The mean
value was maintained at approximately 5.7 ms~! as affected
by the environmental wind field. The mesocyclone appeared at

05:54 UTC, which was also observed by the S-band Doppler
radar. After 06:04 UTC, the rotational velocity concussively
decreased, and the mesocyclone weakened to shear.

2) DRC Pattern: The concept of the DRC was first pro-
posed by Rasmussen ef al. [15] and is essentially an isolated
echo similar to a blob pendant from the rear side of the main
radar echo. As suggested by Rasmussen et al. [15], some DRCs
can be linked to the velocity couplet and provide a direct
indication of tornado genesis. Kennedy er al. [16] collected



11524

Z, (dB2)

-30

1125 15 1875 225 2625 30
km
(©

Fig. 8.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

L O =N WA OO N O ©

-300

1875 225 2625 30

1.8° PPI scans of (a) reflectivity (Z,; dBZ), (b) Doppler velocity (V; m/s), (c) differential reflectivity (Zpr; dB), (d) specific differential phase (Kpp; °/km)

at 05:55:34 UTC on June 8, 2018. Contours of Z;, (dBZ; 30, black line, 40, red line, and 50, blue line) are overlaid on each of the panels. The subfigures in the
lower right corners indicate a zoomed-in area (X = 3.75 to 18.75 km, ¥ = 0 to —15 km).

a large number of DRC cases during 64 isolated supercells,
and they concluded that 59% of the supercells generated DRCs
and 30% of the generated DRCs were sustained for 15 min,
approximately 10 min ahead and 5 min behind the tornado
genesis. In this study, high spatiotemporal resolution X-band
data were utilized to probe the DRC phenomenon with a short
distance of 13 km away from the radar. The evolution process
of the DRC is demonstrated in Fig. 6. The initial phase of the
hook echo at 05:50:52 UTC is shown in Fig. 6(a), when there
is no apparent DRC feature. At 05:51:32 UTC, an isolated echo
with a maximum reflectivity of 17.5 dBZ appeared at the rear
right of the main storm echo, exhibiting a dot-like echo separated
from the main echo. In addition, the isolated echo was associated
with a wide range of Doppler velocity spinning areas near the
distinct inflow notch shown in Fig. 6(b2). The maximum reflec-
tivity echo reached 20 dBZ with a distance of approximately
2.0 km from the main echo at 05:52:13 UTC [Fig. 6(c)]. At
05:52:53 UTC, the area of DRC expanded, and the maximum
reflectivity was 23.5 dBZ, the highest measured reflectivity
throughout the DRC phenomenon [Fig. 6(d)]. From 05:53:33

UTC to 05:54:14 UTC, the maximum reflectivity was stable at
approximately 20 dBZ, and a velocity couplet appeared in the
Doppler velocity at the corresponding location, as illustrated in
Fig. 6(f). This phenomenon disappeared in the next two volume
scans. Here, it should be noted that the corresponding vertical
structure (i.e., RHI scans) was not fully captured by the X-band
dual-polarization radar since only two low-level scans were
conducted (i.e., 1.8° and 2.8° scans). S-band Doppler radar was
utilized to supplement the observations of the vertical structure
of the detected DRC, which will be detailed in Section IV-B. As
explained, the apparent hook echo, mesocyclone exit, distinct
inflow notch, and horizontal scale of approximately 30 km are
attributes of mini-supercells embedded within rain shields.

3) Z pr Arc and Kpp Foot Signatures and Their Separation:
Simultaneously, the features of pyy and Zpgr corresponding to
the hook echo region and the center position of the velocity
couplet were present at 05:54:14 UTC, as shown in Fig. 7.
The horizontal range of this region was approximately 1.5 km.
The mean Zpg and pyy values were approximately 0.5 dB and
0.73, respectively, and the spectrum width had large values
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Fig. 9. 1.8° PPI scans at 05:55:34 UTC on June 8, 2018. (a) Differential reflectivity (Zpr; dB) with contours of 1.5 dB. (b) Specific differential phase
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lower right corners indicate a zoomed-in area (X = 3.75 to 18.75 km, ¥ = 0 to —15 km).
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Fig. 10. (a) Radar reflectivity and (b) Doppler velocity at 1.5° elevation angle from the S-band Doppler radar at 05:54 UTC. Mesocyclone (black circle)
was automatically identified.
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(a) Two spiral rainbands converge as indicated by the blue arrows. (b) Three-dimensional perspective view of the 30-dBZ isosurface prior to tornado

formation. The descending reflectivity core is marked DRC. (c) and (d) Velocity couplet that consists of inbound and outbound velocities (counter-rotating velocity

vortices) at 2.4° and 3.4° elevation angles, respectively.
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Fig. 12.  Three-dimensional dynamic spectrum including periods and ampli-
tudes of the GWs from 23:00 UTC on June 7 to 11:00 UTC on June 8, 2018.
The black dotted line is the maximum amplitude fluctuation of the long period,
and the red dotted line indicates the tornado touchdown.

greater than 5 ms™!, indicating the existence of an area full
of different hydrometeor particles and the existence of a strong

updraft. The strong echo contours of Z;, (dBZ; 30, 40, 50) were
overlaid on the polarimetric radar variables and Doppler velocity
at05:55:34 UTC in Fig. 8. An echo area with a value greater than
40 dBZ was centrally located at the left front of the supercell
near the inflow notch. A Z;, contour greater than 50 dBZ was
mainly distributed on the positive velocity region of the velocity
couplet. The configuration between the strong echo, Zpr and
Kpp is thoroughly accounted for in Fig. 8(c) and (d), where high
Zpr values (>2 dB) are found along the higher Z;, gradient. The
subfigures in the lower right corners indicate a zoomed-in area
(X =3.75t0 18.75 km, Y = 0 to —15 km).

Another obvious feature is the Zpr arc and Kpp foot, as
revealed in Fig. 9 at 05:55:34 UTC. The contours of Zpg
(1.5 dB) and Kpp (6°/km) displayed in Fig. 9(a) and (b) show
the enhanced region associated with the supercell. Two focus
regions need to be considered from Fig. 9(c). One is the region
of Kpp distributed in front of the velocity couplet, which was
sustained from 05:48:51 to 06:14:22 UTC (not shown). The
values were greater than 6°/km with low Zpg values, indicating
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mixed-phase hydrometeors composed of melting hail; notably,
Kpp is very sensitive to small melting hail. The other region is the
separation between the enhanced Zpr and Kpp along the inflow
side of the FFD shown in Fig. 9(c), containing some overlapping
area. The Zpgr arc and Kpp foot were extracted from 05:48:51 to
06:02:17 UTC taking into account pyy values greater than
0.95 [47], whose centroids were calculated based on the method
of Loeffler and Kumjian [27]. The separation distance was
approximately 2.1 km shorter than the typical distance of 4 km
described in [28].

B. S-Band Doppler Radar Observation: Tornadic Signatures

1) Mesocyclone Feature: The tornado parent convective
storms moved to the Chancheng District at 05:42 UTC. The
maximum reflectivity echo of 55 dBZ was present at a 0.5°
elevation angle with a height of 0.5 km above ground level.
A weak mesocyclone with a rotation speed of 12.0 m/s was
detected at the corresponding location. At a 1.5° elevation angle,
the rotation speed was up to 15 m/s with a height of 0.9 km, which
is in line with the standard of a moderate-intensity mesocyclone.
From 05:54 to 06:00 UTC, the tornado parent convective storms
produced torrential rain and wind gusts in Dali Town, and the
velocity couplet could be clearly observed at different lower
elevations from 0.5° to 4.3°. At a 1.5° elevation angle, the
mesocyclone continued to strengthen with a rotation speed of
16 m/s, and the horizontal distance between the maximum and
minimum radial velocities in the velocity couplet was approx-
imately 1.8 km. The mesocyclone was automatically identified
by the S-band Doppler radar at 05:54 UTC, as shown in Fig. 10.

2) DRC Pattern: Two spiral rainbands converged to become
one along the blue arrows shown in Fig. 11(a). Corresponding
to the mesocyclone identified by the S-band Doppler radar, the
three-dimensional isosurfaces of 30 dBZ reflectivity are shown
in Fig. 11(b). The blob-like echo protuberance pendant off the
main radar echo illustrates the presence of the DRC. The DRC
was located at a height of approximately 1.5 km with a horizontal
distance of approximately 500 m from the main echo. Moreover,
the velocity couplet composed of inbound and outbound veloci-
ties (counter-rotating velocity vortices) at elevations of 2.4° and
3.4° is shown in Fig. 10(c) and (d). The DRC pattern prior to
tornado formation may be caused by hydrometeors sinking from
the tornado parent convective storms [48].

C. Second-Scale Micropressure Gauge Observations

The three-dimensional dynamic spectrum including the peri-
ods and amplitudes of the GWs over time on June 8, 2018, is
shown in Fig. 12. The spectrum was calculated by FFT with 214
sampling points based on the microbarograph data every second.
The amplitude fluctuation of the long period of 100-250 min was
between 20 and 75 Pa, and the short period of 50-99 min was
between 10 and 20 Pa. The amplitude fluctuation of the long
period suddenly increased to 77.3 Pa at approximately 04:00
UTC, 2 h before the tornado occurred, which may be an early
tornado signature that can be used for warning operations. When
the tornado occurred at 06:03 UTC, the amplitude fluctuation of
the long period was between 25 and 45 Pa, and the short period
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was between 5 and 20 Pa. The amplitude fluctuation was reduced
by approximately 38.5 Pa.

V. CONCLUSION

An EF1 tornado associated with TC Ewiniar occurred in Dali
Town, Guangdong Province, on June 8, 2018. The synoptic
conditions, polarimetric radar characteristics, and GW features
of this tornado were analyzed using multivariate observations.
The vertical vorticity evolution indicates that the formation of
the tornado was related to a mesocyclone, reaching a maximum
0f 0.035 s~ ! before the tornado touchdown. The signatures of the
DRC and its three-dimensional structure, the Doppler velocity
couplet, Zpr and Kpp arcs were thoroughly investigated. The
location of the tornado touchdown was approximately 13.2 km
from the X-band polarimetric radar and 24 km from the local
S-band Doppler radar, both of which were able to detect the
DRC at fine scales. The velocity couplet, which is considered
the most obvious feature of a tornado, was observed by both
radars, and the combination of X- and S-band observations can
serve as an accurate indicator of tornado. Two focus regions
with Kpp values greater than 6°/km are presented by com-
bining the Doppler velocity couplet and Zpg arc. The separa-
tion distance of the Zpg arc and Kpp foot was approximately
2.1 km. The appearance of these features may be indicative of
fundamental processes intrinsic to tornadic storms. In addition,
the amplitude of the GWs of the tornado in the long period
suddenly increased to 77.3 Pa, 2 h before the tornado occurred.
It is concluded that the DRC, along with the velocity couplet,
the GW characteristics, as well as the separation distance of
the Zpr arc and Kpp foot can be used for early warnings of
tornadoes.

Since it is the first TC tornado that was captured by a
high-resolution X-band dual-polarization radar, this article is
expected to provide supplemental observations to the global
severe weather community. Similar to the midlatitude tornado
events reported in the literature, this tornado within a TC rain-
band is characterized by a low-value region of ppy, indicating
the potential of using this polarimetric variable to monitor
tornadoes. Compared with the operational S-band radar, the
X-band observations have a great advantage in identifying the
tornado signatures due to its super high spatial resolution and
rapid-scan strategy. A comprehensive analysis of the activity
characteristics, synoptic and environmental situation, especially
the radar-observed features of 16 cataloged tornadoes occurred
during 11 typhoon events in Pearl River Delta is in progress [31].
Considering that the Pearl River Delta has been deploying
a high-resolution X-band dual-polarization phased-array radar
network, this study may provide a scientific reference for the
future use of radar data.

In addition, this article summarized the typhoon track and
the range of typhoon position prone to triggering tornadoes.
The Tornado Disaster Monitoring System (TDMS) is configured
through integrating such information. The Tornado Targeted
Release System (TTRS) is developed to superimpose tornado
early warning release tools and special highly sensitive power
facilities and disaster-prone areas. Based on the TDMS and
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TTRS systems, the tornado warning was successfully issued
58 min in advance. This specific tornado warning was the first
ever in China and was critical to improving decision making
during strong convective weather events. In the future, new
monitoring tools such as X-band radars and adaptive scan strate-
gies should be deployed at a larger scale to further enhance
the monitoring and forecasting of short-lived extreme weather
events.
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