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A New Geostationary Satellite-Based Snow Cover
Recognition Method for FY-4A AGRI
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Abstract—Snow cover is an important component of the
cryosphere. Clouds have a large influence on optical remote sensing
satellites when recognizing snow cover. Geostationary satellites,
due to their high-frequency observations over coverage areas, can
effectively compensate for the drawback of snow cover recognition
from polar orbit optical satellites under cloud-covered conditions.
However, past geostationary satellites have relatively few band
settings to produce sensitive factors for snow cover recognition.
The FY-4A Advanced Geostationary Radiation Imager (AGRI)
satellite has the advantage of high temporal resolution with a wealth
of bands, which highlights its potential in reducing the impact of
clouds and accurately obtaining snow cover information. Based on
the advantages of FY-4A AGRI data and the flow characteristics
of clouds, we developed an improved maximum brightness tem-
perature image synthesis algorithm, which can greatly reduce the
probability of cloud and snow cover misclassification. Combining
the features of FY-4A AGRI data, we reorganized the snow cover
recognition factor and developed a new snow cover recognition
method. The results show that the proposed method can reduce
cloud cover by 57.172% compared with MOD10A1 data. After
evaluating the proposed method using meteorological ground ob-
servation datasets and MOD10A1 data, we found that the overall
accuracy of the proposed method can reach 94.11% and 98.55%,
respectively, and the F-score (FS) can reach 73.05% and 85.40%,
respectively.

Index Terms—China, Fengyun-4A (FY-4A) advanced
geostationary radiation imager (AGRI), geostationary satellite,
snow cover.

I. INTRODUCTION

SNOW cover is one of the most important surface charac-
teristics on Earth that influences surface radiation, energy,

and hydrological budgets [1]–[3]. Snow cover information has
been utilized in operational snowmelt, runoff forecasting, data
assimilation, and the calibration or validation of various hy-
drological models [4]–[6]. Traditional snow cover monitoring
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work is carried out through meteorological ground observation
datasets, but meteorological ground observation datasets have
poor spatial characteristics, which are very limited in regard
to snow cover recognition [4], [7], [8]. In recent years, with
the rapid increase in the number of remote sensing satellite
platforms, remote sensing satellite monitoring of snow cover
has been widely used [9]. Polar-orbiting satellites have been
continuously observing global snow cover for a long time [10].
Synthetic aperture radar (SAR) completely overcomes the in-
fluence of clouds in regard to snow cover recognition [11]. In
addition, the emergence of new-generation geostationary orbit
satellites has made it possible to monitor snow cover on a large
scale in real time.

At present, polar-orbiting optical remote sensing satellite data
can be used to monitor snow cover effectively. Snow cover
exhibits a specific spectral characteristic compared with other
natural surfaces and clouds, with high reflectance in the visible
band similar to that of clouds, but in the shortwave band (1.6
μm) it has lower reflectance than clouds [4], [12]. Thus, the
SNOMAP algorithm was proposed to distinguish snow from
other surface reflectance effectively for Landsat 5 Thematic
Mapper data using this rule. Based on this algorithm, MODIS
snow cover products MOD10A1 and MYD10A1 of the National
Aeronautics and Space Administration have been widely used
[2], [13]. Even though Landsat optical remote sensing satellite
data have a high spatial resolution [14]–[16], the probability
of clouds in satellite transit time is large, which will have a
great impact on the snow cover recognition process [17]–[19].
MODIS uses a combination of two satellites to increase the
observation frequency of snow cover [20]–[23], but the daily
snow area map of MODIS often encounters data gaps, and snow
cover recognition is still severely interfered with by clouds [25].

In recent years, for optical polar-orbiting satellite data, many
cloud removal methods have been developed using the principle
of fusion of multisensor data or spatiotemporal fusion, and good
cloud removal effects have been obtained in some typical snow-
covered areas [26]–[28]. In addition, a good way to reduce the
influence of clouds on snow cover recognition is to increase the
frequency of observations [29]–[32]. The geostationary satellite
has the characteristics of a wide imaging range and high temporal
resolution, which can effectively reduce the amount of clouds
in the observation area through the characteristics of clouds
varying with time. The Geostationary Operational Environmen-
tal satellite (GOES) series has enabled automated snow cover
recognition over North America for a long time [7], [33]–[39].
The Meteosat Second Generation (MSG) satellite continues
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Fig. 1. Location of the study area. The research area is all China. The blue
line surrounds the boundaries of China’s three typical snow-covered regions;
namely, Northern Xinjiang, Northeast China, and the Tibetan Plateau. The digital
elevation model scenes, as the background in the inset below, display the main
geomorphological features in these respective areas.

to observe the snow cover in the Eurasian region, and after
verifying the MSG snow cover product by using meteorological
ground observation datasets and MODIS, it was found that
the cloud cover had been significantly reduced [40]–[43]. The
binarized snow cover recognition algorithm developed based
on the FengYun-2 (FY-2) satellite monitors the snow cover in
East Asia in real-time [44]. For multispectral remote sensing
images, the normalized difference snow index (NDSI) is very
effective for snow cover monitoring [45]–[49]. However, in the
past, geostationary satellites were limited by technical factors,
and most geostationary satellites could not construct factors
similar to NDSI for snow cover recognition. Therefore, snow
cover recognition has created large uncertainties.

Compared with optical remote sensing satellites, SAR satel-
lites can penetrate clouds and the atmosphere, and their work-
ing hours are not affected by weather or other factors. With
the advantages of all-time, all-weather, multipolarization, and
multiband imaging, they play an important role in snow cover
recognition and greatly compensate for the disadvantages of op-
tical satellites affected by clouds. SIR-C/X-SAR data have been
used to study the scattering characteristics of snow, two decision
tree snow cover recognition methods have been developed,
and a good snow cover recognition effect has been obtained
[50]. Radarsat and ERS data have proven to be able to obtain
high-precision snow cover recognition [11], [51], and when the
threshold is −3 dB, dry and wet snow can be distinguished well
[51]. Although SAR satellites have these significant advantages
in snow cover recognition, the visual effect of SAR images
is lower than that of optical remote sensing satellite images.
Therefore, certain obstacles may result in sample selection.

With the launch and operation of new advanced geostationary
weather satellites, such as the Himawari-8 and FengYun-4A
(FY-4A) satellites, the accuracy of snow cover recognition
in China has become increasingly accurate [25], [52]–[54].

The FY-4A satellite was successfully launched on December 11,
2016, and began to provide data download services on March 12,
2018. The advanced geostationary radiation imager (AGRI) on
the FY-4A satellite is a multispectral imager with 14 bands that
completes a full disk scan every 15–60 min [55]. In this study,
we proposed an improved maximum brightness temperature
synthesis algorithm to fuse the daily multitemporal data. Second,
we used a new method to recognize snow cover in China.
Then, meteorological ground observation datasets, MOD10A1
V6 data, and IMS data were used to evaluate the cloud removal
effect and the accuracy of the proposed method. Finally, the
reasons that affect the accuracy of snow cover recognition were
analyzed.

The rest of this article is organized as follows. Section II
mainly introduces the basic situation of the research area and
research data. In Section III, the method establishing snow
cover recognition for the FY-4A AGRI satellite is introduced.
In Section IV, the performance of the snow cover recognition
method is evaluated. In Sections V and VI, the uniqueness and
shortcomings of the method are discussed and summarized, and
the future direction for improvement is briefly described.

II. STUDY REGION AND DATA

A. Study Region

China is located in East Asia and the western edge of the
Pacific Ocean. It has a land area of 960 × 104 km2 and a land
boundary of more than 2 × 104 km2 [56]. The terrain is high
in the west and low in the east, and the climate is complex and
diverse. The snow cover of China is very widespread, with an
average snow cover area of more than 900 × 104 km2 over many
years [56]–[58]. The area of stable snow cover reaches 420× 104

km2. The three main typical snow cover areas (see Fig. 1) include
Tibetan Plateau, Northeast China, and Northern Xinjiang [56]–
[59]. Areas with annual average snow cover days greater than 30
days account for 56% of the territory of the country, including
two major areas in northeastern and western China. The 20-day
contour of average annual snow cover days divides China into
two parts: the southeastern and the northwestern, except for the
Tarim Basin and Qaidam Basin.

B. FY-4A AGRI Data

FY-4A is the first satellite in the second-generation geostation-
ary orbit quantitative remote sensing satellite series of China. As
a new generation of geostationary orbit meteorological satel-
lites, their functions and performance have achieved leapfrog
development [60]. FY-4A carries a variety of observation in-
struments, including an AGRI, interference atmospheric vertical
detector, lightning imager, and space environmental monitoring
instrument. Among them, AGRI is one of its main loads. It can
achieve precise and flexible two-dimensional pointing through
precise dual scanning mirrors and can achieve rapid regional
scanning in minutes [60]. Radiation imaging channels increased
from 5 found on FY-2G satellites to 14, covering visible light,
shortwave infrared, midwave infrared, and longwave infrared.
The observation range mainly covers Asia, Oceania, and parts of
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TABLE I
MAIN PERFORMANCE OF THE FY-4A AGRI GEOSTATIONARY SATELLITE

RADIATION IMAGER

Europe, which is basically the same as the observation range of
the Himawari-8 geostationary satellite. Table I is a summary of
the main performance of the FY-4A AGRI geostationary satellite
radiation imager used in this study.

C. Meteorological Ground Observation Dataset

Long-term ground observations from November 2018 to Jan-
uary 2020 were collected from meteorological stations over
China. Station geographic details include name, ID, latitude,
longitude, and altitude, as well as observed snow depth, and
these data were available from climate records provided by the
National Satellite Meteorological Center [61]. The meteorolog-
ical ground observation dataset is used to evaluate the accuracy
of snow cover recognition results. The principles for selecting
the meteorological ground observation dataset are as follows:

1) according to the dataset usage instructions, the outliers
(i.e., 32 766 or 32 700) were filtered and eliminated;

2) meteorological stations located in northern Xinjiang, the
Tibetan Plateau, and Northeast China were selected; and

3) the data of two snow seasons were selected.

D. Remote Sensing Data

The MOD10A1 V6 snow cover product, with a 500 m spatial
resolution and HDF format, provides daily binary snow cover
data and fractional snow cover data [62]. The MOD10A1 V6 data
contain a total of seven datasets. This study uses two datasets,
NDSI Snow Cover and NDSI Snow Cover Class, to compose
the MOD10A1 V6 snow cover data. Compared with MOD10A1
V5 data, MOD10A1 V6 data use various masks to improve the
snow cover recognition algorithm, as well as the accuracy of
snow cover recognition.

IMS data are a fusion of 28 types of raw data, including
NOAA-AVHRR sensors, GOES, GMS synchronous weather
satellites, MTSAT multifunctional satellites, and NIC weekly
sea ice analysis products [63], [64]. IMS data provide reliable
cloudless snow cover in the Northern Hemisphere. The data have
a temporal resolution of 1 day and a spatial resolution of 4 km.

MCD12Q1 land cover type data are used for sample selection
when correcting the angular effect of geostationary satellites.
The spatial resolution of MCD12Q1 data is 500 m, and the
temporal resolution is 1 a. Land cover types are mainly divided
into 17 categories, including 11 natural vegetation types, 3 land
development, and mosaic types, and 3 nonvegetable land types
[65].

Fig. 2. FY-4A AGRI data snow cover recognition new method flowchart.
Among them, the blue part is the input and output data, and the green part
is the method and data processing process.

III. METHOD

In this section, a new method for snow cover recognition
based on FY-4A AGRI geostationary satellite data was pro-
posed, as shown in Fig. 2. First, preprocessing was performed
on the research data, including geometric correction of FY-4A
AGRI data, radiation correction of FY-4A AGRI data, angular
effect correction of FY-4A AGRI data, and reprojection and
resampling of MOD10A1 data and IMS data. Then, based on
the advantages of geostationary satellites with a high temporal
resolution, the proposed improved maximum brightness temper-
ature synthesis algorithm was used to reduce the clouds from the
image. Through the analysis of the ground reflectance spectrum
curve and FY-4A AGRI data characteristics, the appropriate
snow cover recognition factor was trained to construct the pro-
posed snow cover recognition method. Finally, the method for
evaluating the accuracy of the method was introduced.

A. Data Preprocessing

Geometric correction of FY-4A AGRI data: To facilitate the
analysis and comparison with other data, FY-4A AGRI data were
reprojected and resampled to 0.04° using the official latitude and
longitude lookup table.

For the calculation of reflectance and brightness temper-
ature of FY-4A AGRI data, the data used by the proposed
method include visible light band reflectance (0.55–0.75 μm),
near-infrared band reflectance (1.36–1.39 μm and 1.58–1.64
μm), brightness temperature in two far-infrared bands (10.3–
11.3 μm and 11.5–12.5 μm) and mid-infrared band brightness
temperature (3.5–4.0 μm). The FY-4A AGRI data contain the
lookup table data of the reflectance and brightness temperature
corresponding to each band. By correlating the original grey
value data with the lookup table, the reflectance and brightness
temperature data of the required band can be obtained.

Angle effect correction of FY-4A AGRI data: Geostationary
satellites have high temporal resolution and can observe the same
feature several times within a day. However, because the imaging
time of each scene image is different and the single imaging
range is wide, the satellite zenith angle and satellite azimuth
angle of pixels have great differences over time, even for the
same solar zenith angle, which causes the reflectance of the same
feature to change continuously throughout the day [66]. This
phenomenon has a significant effect on the visible light band,
which greatly affects the threshold value for snow cover recog-
nition. Therefore, the angle effect of the geostationary satellites
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Fig. 3. Comparison of reflectance before and after the angle effect correction
in the first band. The four lines show the changes in the reflectance of the
snow-covered pixel and the snow-free pixel before and after the angle effect
correction during the day, respectively.

must be corrected. This study used a semiempirical model that
combined the advantages of empirical statistical models and
physical models [66]. The model is mainly composed of three
parts as shown in (1), which contains two kernel functions,
two kernel coefficients and a constant. (2) and (3) are kernel
functions of Kvol and Kgeo, where θi is the solar zenith angle, θv
is the satellite observation zenith angle, ϕ is the relative azimuth
angle, and g is the phase angle. The angle effect correction
method of the semiempirical nuclear drive model proved to
be an effective method to solve the angle effect problem of
geostationary satellites [9]. Various samples needed in the model
were selected with reference to MCD12Q1 data.

R(θi,θv, ϕ) = α0 +α1Kvol (θi,θv, ϕ)+α2Kgeo (θi,θv, ϕ)

(1)

Kvol (θi, θv, ϕ) =
4[ (0.5π − g)+cosg + sing]

3π(cosθi+cosθv)
−1

3
(2)

Kgeo (θi, θv, ϕ) =
tanθitanθv[ (π − ϕ) cosϕ+ sinϕ]

2π
− 1

π(
tanθi+tanθv+

√
tan2θi+tan2θv−2tanθitanθvcosϕ

)

(3)

After correction through the angle effect, we took the FY-4A
AGRI first band reflectance data of eight scenes on November
15, 2019 as an example. The reflectance of the snow pixel and
the snow-free pixel were selected before and after correction
for comparison. It was found that the reflectance variance of the
corrected data was smaller than that of the data before correction,
as shown in Fig. 3, which reduced the error caused by the angle
effect.

For the reprojection and resampling of MOD10A1 data and
IMS data, the projection and resolution of MOD10A1 data and
IMS data were inconsistent with FY-4A AGRI data. Therefore,
the two types of data used for accuracy assessment needed to
be reprojected and resampled. This study completed the pre-
processing of MOD10A1 data using Google Earth Engine. The
spatial resolution of the IMS data was consistent with the FY-4A
AGRI data, therefore, only reprojection work was performed.

Fig. 4. Characteristics of clouds in the thermal infrared band (10.3–11.3
µm) of FY-4A AGRI data. The boxes of the same color in the figure indicate
areas with obvious characteristics. (a) Brightness temperature of 10.3–11.3 µm.
(b) True color synthetic image.

B. Improved Maximum Brightness Temperature Image
Synthesis Algorithm

The greatest advantage of geostationary satellites is their high
temporal resolution, which can achieve real-time observations
of ground objects. The temporal resolution of FY-4A AGRI data
is basically within 60 min, and the data in a day can reach 8–20
scenes. Taking advantage of the high temporal resolution of
geostationary satellites, we can reduce the influence of clouds
through the characteristics of cloud flow. In past research, the
method, which first recognized snow cover and then fused
the snow cover recognition results, was affected by the angle
effect, and the uncertainty in the selection of the threshold
was relatively large. As a result, the overall accuracy of the
snow cover recognition results compared with the MOD10A2
data was only 85.25% [67]. Therefore, we fused multitemporal
remote sensing images first and then recognized snow cover
in this research. According to the spectral reflectance curve of
the ground objects, the brightness temperature of the cloud in
the far (thermal) infrared band was lower than that of other
ground objects, as shown in Fig. 4. In addition, this study used
the method of statistical minimum reflectance to improve the
maximum brightness temperature image synthesis algorithm,
which effectively reduced the cloud cover and controlled the
invalid value of the synthesized image.

The traditional algorithm was that in the infrared channel
(IR1), the brightness temperature of the cloud was always lower
than the brightness temperature characteristics of other ground
objects. The highest brightness temperature of the infrared chan-
nel was used in the synthesis of multitemporal data, which means
that the brightness temperature of each synthesized pixel was
the highest value in a day, as shown in the green part of Fig. 5.
However, since the thermal infrared sensor can image both day
and night, this causes the cloudless value of the night to be fused
into the visible light and near-infrared image, resulting in the
degradation of the image quality after synthesis. In this study,
the night value of the second band was counted and the standard
of invalid value control was set. In other words, if the reflectance
value of the second band was valid and met the conditions of the
original maximum brightness temperature synthesis algorithm,
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Fig. 5. Flow chart of the maximum brightness temperature influence
the synthesis algorithm before and after the improvement. The green part is
the original maximum brightness temperature image synthesis algorithm, and
the blue part is the improved part.

the reflectance value could be merged into the image. This
principle was used to improve the original maximum brightness
temperature synthesis algorithm, as shown in the blue part of
Fig. 5. Therefore, the total flow in Fig. 5 shows the steps of
the improved maximum brightness temperature image synthesis
algorithm.

C. FY-4A AGRI Snow Cover Recognition Method

1) Analysis of Snow Cover Recognition Factors: According
to the spectral reflectance characteristics of the ground features,
the reflectance of snow, vegetation, soil, and other ground fea-
tures has a large difference in the visible light band of 0.4–0.8
μm. However, in the visible light band, most characteristics of
the cloud reflectance are similar to those of the snow cover,
which has a great impact on the recognition of snow cover. In
the near-infrared band near 1.36 μm, there is a large difference
in the reflectance of snow and clouds. Therefore, reflectance
information in the range of 1.36–1.39 μm can be used to
distinguish between clouds and snow. According to the snow
cover recognition algorithm of MSG data, differences of 12.0
and 3.9 μm brightness temperatures can be used to distinguish
between clouds and snow effectively, especially for ice clouds
and snow [40]. The maximum brightness temperature image
synthesis algorithm shows that the brightness temperature near
the 10 μm band can also be used to distinguish clouds, land, and
snow [7].

However, snow and other features cannot be distinguished
well based on single-band spectral curve characteristics. To es-
tablish a snow recognition method suitable for new geostationary
satellite data, we introduced the NDSI proposed by Hall, who
also mentioned that the snow cover on vegetation was identified
by the normalized differential vegetation index (NDVI) [13].
However, when using FY-4A AGRI data to perform experiments
in this article, we found that there was no significant difference
in the winter NDVI in Northeast China. Therefore, this research
did not use the NDVI. The specific calculation equation of the
NDSI is:

NDSI = (R0.5μm − R1.6μm)/(R0.5μm + R1.6μm)
(4)

where R0.5µm and R1.6µm represent the reflectance of the band
0.5 μm and the band 1.6 μm of FY-4A AGRI data, respectively.
Although the NDSI is sensitive to snow, it is also sensitive
to some water bodies. Therefore, according to the reflectance
spectrum curve of the ground feature, it is known that the
reflectance of the water body is low, near the 1.5 μm band, and

Fig. 6. Sample ground feature separation map: (a) NDSI-brightness temper-
ature of 10.3–11.3 µm; (b) NDSI-reflectance of 1.36–1.39 µm; (c) NDSI-the
difference between the brightness temperature of Band 13 (11.5–12.5 µm) and
Band 8 (3.5–4.0 µm); and (d) NDSI-Reflectance of 1.58–1.64 µm.

this feature can be used to distinguish water from snow. In this
way, the NDSI can be effectively used to extract snow.

2) Training of Snow Cover Recognition Factors for FY-4A
AGRI: This study selected 145 765 samples from the FY-4A
AGRI data in January, November, and December 2019. The
sample types include snow, clouds, snow-free surfaces, and
water. The samples were used to draw the ground object feature
map (see Fig. 6). The x-axis in Fig. 6(a) is the NDSI value, and
the y-axis is the brightness temperature in the 10.3–11.3 μm
band. Fig. 6(a) shows that when the value of the NDSI is lower
than a certain value, snow-free pixels can be easily separated.
When the brightness temperature of the 10.3–11.3 μm band and
NDSI meet certain conditions, partial clouds and snow can be
distinguished. The x-axis in Fig. 6(b) is the NDSI value, and the
y-axis is the reflectance of the 1.36–1.39 μm band. Fig. 6(b)
shows that when the NDSI value and the reflectance of the
1.36–1.39 μm band meet a certain condition at the same time,
part of the cloud and snow can also be distinguished. In addi-
tion, we also introduced the difference between the brightness
temperatures of 11.5–12.5 μm and 3.5–4.0 μm to distinguish
between clouds and snow, as shown in Fig. 6(c). The x-axis in
Fig. 6(d) is the NDSI value, and the y-axis is the reflectance in
the 1.58–1.64 μm band. Fig. 6(d) shows that snow and water can
also be separated when the NDSI value and the reflectivity of
the 1.58–1.64 μm band meet certain conditions at the same time.
Therefore, according to the scattered distribution combination
of multiple snow cover recognition factors and sample statistics,
the snow cover recognition algorithm can be established, and the
threshold can be determined.

3) Construction of the FY-4A AGRI Snow Cover Recognition
Method: According to the basic characteristics of the FY-4A
AGRI data and the principles of snow cover recognition, the
snow cover recognition factors were selected including the
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TABLE II
FY-4A AGRI SNOW COVER RECOGNITION METHOD

NDSI, the reflectance of the 1.36–1.39 μm band, the reflectance
of the 1.58–1.64 μm band, the brightness temperature of the
10.3–11.3 μm band, and the difference between the brightness
temperature of the 11.5–12.5 μm band and the 3.5–4.0 μm band
can effectively recognize snow. Then, we proposed a new snow
cover recognition method with two steps, as shown in Table II.
The first step was to classify completely determined pixels using
two or fewer simple factors, and the remaining unclassified
pixels were temporarily divided into complex pixels. The second
step was to recombine multiple snow cover recognition factors
and then classify the remaining complex pixels. The meaning
of each factor in the algorithm is shown in Table II, including
that B4 represents the reflectance of Band4 (1.36–1.39 μm) in
the FY-4A AGRI data, B5 represents the reflectance of Band5
(1.58–1.64 μm) in the FY-4A AGRI data, B12 represents the
brightness temperature of Band 12 (10.3–11.3μm) in the FY-4A
AGRI data, NDSI is the normalized differential snow index, and
CZ represents the difference between the brightness temperature
of Band 13 (11.5–12.5 μm) and Band 8 (3.5–4.0 μm) in the
FY-4A AGRI data.

D. Assessment Metrics

Assessment of snow cover recognition accuracy generally
includes consistency checks and nonconsistency checks. A con-
sistency check refers to the degree of similarity between the test
result and the assessment value, including the overall accuracy in
the absence of clouds (OA) and overall accuracy in the presence
of clouds (Qa) [68], [69]. In general, for the MODIS data
assessment, only the accuracy assessment under the cloudless
condition was considered, as shown in (5). The snow inconsis-
tency test includes an underestimated error (IU) of snow and
an overestimated error (IO) of snow. The underestimation error
(IU) indicates that the proposed method recognizes snow pixels
as snowless pixels, as shown in (6). The overestimation error (IO)
indicates that the proposed method recognizes snow-free pixels
as snow pixels, as shown in (7). OA considers the probability

under the condition of no snow surface and cannot represent
well the consistency of snow cover, and the FS may be more
meaningful than OA [70], [71]. The calculation method of FS
is shown in (8). Therefore, OA, FS, IU, and IO were chosen as
indicators to evaluate the accuracy of the method in this study

Overall Accuracy (OA) = (S1 + S2)/CA× 100% (5)

Underestimation Error (IU) = D1/CA× 100% (6)

Overestimated Error (IO) = D2/CA× 100% (7)

F− Score (FS) = 2× S1/(2×S1+D1+D2)

×100% (8)

where S1, S2, D1, D2, and CA are pixel numbers. For example,
S1 is the number of pixels in which both reference data and
method recognition data are snow. S2 is the number of pixels
in which both reference data and method recognition data are
non-snow. D1 is the reference data recognized as snow pixels,
and the method recognition data are non-snow pixels. D2 is the
reference data recognized as non-snow pixels, and the method
recognition data are snow pixels. CA is the sum of the number
of pixels involved in the calculation.

IV. RESULTS

Meteorological ground observation datasets are usually used
for snow cover recognition accuracy assessment. However,
meteorological ground observation datasets do not have good
spatial characteristics, and this article combined ground obser-
vation and remote sensing data to evaluate the proposed method.
Through the accuracy analysis of MOD10A1 using data from
223 meteorological stations in China, it was found that the snow
cover recognition accuracy of MOD10A1 data in China was
as high as 94.3% under cloud-free conditions [69]. The NDSI
threshold of the official MOD10A1 V6 version is 40, while it
was proven that snow cover recognition is more accurate when
the NDSI threshold is 10 in China and the overall accuracy
can reach 97.5% [72]. Therefore, the MOD10A1 snow cover
products produced by the two thresholds were used for accuracy
assessment. One main data source of IMS data is microwave
remote sensing data, which can evaluate the accuracy of snow
cover recognition after cloud removal without being affected
by clouds [73]. However, the overall accuracy of IMS data in
stable snow cover areas of China can only reach approximately
88% [73]; therefore, the IMS data are only used to visually
compare the accuracy of the snow cover recognition results of the
proposed method. Therefore, in this study, first, the MOD10A1
data and IMS data were used to visually compare and analyze
the snow cover recognition results of the proposed method.
Then, the quantitative accuracy calculation of the snow cover
recognition results of the proposed method was carried out us-
ing meteorological ground observation datasets and MOD10A1
data. Finally, the MOD10A1 data were used to evaluate the cloud
removal effect of the proposed method.

We chose the entire area of China and three typical snow cover
areas of China to evaluate the accuracy. The three typical snow
cover areas are shown in Fig. 1 as North Xinjiang, Northeast
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Fig. 7. Comparison of snow cover recognition results in China on 13 Decem-
ber 2019: (a) FY-4A AGRI snow cover recognition results in China on December
13, 2019. (b) MOD10A1(NDSI = 10) snow cover recognition results in China
on December 13, 2019. (c) MOD10A1(NDSI = 40) snow cover recognition
results in China on December 13, 2019. (d) IMS snow cover recognition results
in China on 13 December 2019.

China, and the Tibetan Plateau. The snow cover in North Xin-
jiang and Northeast China is mainly stable, while the snow cover
in Northeast China is greatly affected by vegetation. The snow
cover on the Tibetan Plateau is mainly instantaneous and stable
snow cover, and the snow cover is relatively broken, therefore,
it is usually difficult to recognize.

A. Results in China

From Fig. 7, we can compare the snow cover recognition
ability and cloud removal effect of the proposed method. Taking
the snow cover recognition results on December 13, 2019, as an
example, comparing the snow cover recognition results of the
FY-4A AGRI [see Fig. 7(a)] and two thresholds of MOD10A1
[see Fig. 7(b) and (c)], it is found that the snow cover recognition
results of the FY-4A AGRI can obtain more snow pixels. This is
mainly because many clouds were eliminated by using the high
temporal resolution of geostationary satellite data. To prevent
the multijudgment of snow pixels caused by the misjudgment
of clouds and snow, the IMS data [see Fig. 7(d)] that were not
affected by clouds are introduced for comparison, and it is found
that most snow pixels of the FY-4A AGRI are accurate. It is
also obvious from Fig. 7 that the improved maximum brightness
temperature synthesis algorithm has a very significant effect on
removing clouds.

According to the accuracy assessment method mentioned
above, the accuracy of the proposed method was evaluated
under cloud-free conditions. First, using meteorological ground
observation datasets to evaluate the accuracy of the proposed
method, it was found that the average overall accuracy was
94.11%, the average overestimated error was 3.05%, the av-
erage underestimation error was 2.84%, and the average FS
was 73.05%. Second, the MOD10A1 snow cover product with
an NDSI threshold of 10 was used to evaluate the accuracy

Fig. 8. FY-4A AGRI snow cover recognition results time series analysis.
(a) Overall accuracy of China. (b) FS of China. (c) Overestimation error of
China. (d) Underestimated error of China.

of the proposed method. The average overall accuracy was
97.01%, the average overestimated error was 0.68%, the av-
erage underestimation error was 2.31%, and the average FS
was 81.76%. Finally, using the MOD10A1 snow cover product
with an NDSI threshold of 40 to evaluate the accuracy of the
proposed method, it was found that the average overall accuracy
was 98.55%, the average overestimated error was 1.17%, the
average underestimation error was 0.28%, and the average FS
was 85.40%. The overall accuracy of the proposed method was
relatively high, but the FS value was relatively low, indicating
that the proposed method overestimated or underestimated snow
pixels when recognizing snow cover. We consider that the main
reason for this situation was that, on the one hand, the low spatial
resolution of the geostationary orbit satellite data resulted in a
large number of mixed pixels being misclassified, and on the
other hand, the proposed method may have weak recognition
ability in complex snow pixels; for example, snow pixels in
mountainous and forested areas.

Fig. 8 shows the time sequence analysis after the accuracy
assessment of the snow cover recognition results of the two snow
seasons from November 2018 to January 2019 and November
2019 to January 2020 using meteorological ground observation
datasets and MOD10A1 data. From the overall accuracy [see
Fig. 8(a)], it can be seen that the overall accuracy of snow cover
recognition of the FY-4A AGRI can reach 85–100% evaluated
by meteorological ground observation datasets and MOD10A1
(both NDSI thresholds). From the FS [see Fig. 8(b)], when the FS
was low, it was middle and late November each year, and the FS
was only 50–70%. The months with higher FSs were January and
December each year, and the FS could reach 70–99%. According
to meteorological data, November was the initial stage of snow
accumulation, and the snow depth was small, which led to the
low accuracy of the FY-4A AGRI snow cover recognition results.
From the perspective of misclassification error [see Fig. 8(c) and
(d)], when using meteorological ground observation datasets
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Fig. 9. Comparison of snow cover recognition results in North Xinjiang on
January 15, 2019. (a) FY-4A AGRI snow cover recognition results in North Xin-
jiang on January 15, 2019. (b) MOD10A1(NDSI = 10) snow cover recognition
results in North Xinjiang on January 15, 2019. (c) MOD10A1 (NDSI = 40)
snow cover recognition results in North Xinjiang on January 15, 2019. (d) IMS
snow cover recognition results in North Xinjiang on January 15, 2019.

and MOD10A1 (threshold value of 40) for assessment, the
overestimated error and underestimation error were basically
the same, while when using MOD10A1 (threshold value of 10)
for accuracy assessment, the underestimation error was higher
than the overestimated error. This may have been caused by the
misjudgment of clouds and snow cover in the proposed method
and the difficulty of recognizing snow cover in forest areas. In
addition, the scattered snow in mountainous areas was also one
of the important reasons that caused the underestimation error
to be higher than the overestimation error. For the cloud removal
effect, we compared it with the cloud cover of MOD10A1
and found that the improved maximum brightness temperature
image synthesis algorithm could reduce the cloud cover by
57.172% on average.

B. Results in North Xinjiang

First, we chose the northern part of the Xinjiang Autonomous
Region (42-50°N, 79-92°E) for the typical research area. North-
ern Xinjiang contains the Altai Mountains (south) and Tianshan
Mountains (north). As an arid region of China, agricultural
development relies mainly on snow accumulation and ablation
to be sustained in this region [69]. By comparing the results
of FY-4A AGRI snow cover recognition with MOD10A1 (two
thresholds) and IMS data, the accuracy of the proposed method
in northern Xinjiang was evaluated. Fig. 9 shows the snow
cover recognition results of the FY-4A AGRI [see Fig. 9(a)],
MOD10A1 data (two thresholds) [see Fig. 9(b) and (c)], and
IMS data [see Fig. 9(d)] on January 15, 2019. Under cloud-free
conditions, the snow cover recognition results of the proposed
method in northern Xinjiang were basically the same as the
MOD10A1 data on that day. Comparing it with the snow cover
recognition results of the IMS data on the day, it was found that
the FY-4A AGRI could recognize more snow pixels that were
covered by clouds in MOD10A1.

TABLE III
ACCURACY VERIFICATION RESULTS IN NORTH XINJIANG

Table III shows the overall accuracy, overestimated error,
underestimation error, and FS of the proposed method using
meteorological ground observation datasets and MOD10A1 V6
data (two thresholds). The assessment results are the average
value of all experimental data. From Table III, both the overall
accuracy and the FS in the North Xinjiang region could be
maintained above 91.50%, and there was no significant dif-
ference between the underestimation error and overestimated
error in this region. Therefore, the proposed method in the North
Xinjiang region had a higher snow cover recognition accuracy.
In addition, compared with MOD10A1 data, the average cloud
removal ratio of FY-4A AGRI data after fusion was as high as
68.63%. In general, the accuracy of the FY-4A AGRI snow cover
recognition results in North Xinjiang was relatively high, and the
spatial distribution of accuracy was closely related to the terrain.
In comparison, the overall accuracy and FS in the southern
region with higher terrain complexity were lower than those
in the northern region. At the same time, the complexity of land
cover also had a negative impact on accuracy, especially in areas
covered by vegetation, where the accuracy of snow recognition
was slightly lower than in other areas. From the perspective
of error analysis, it was found that the underestimation error
was higher than the overestimation error because the lack of
spatial resolution led to difficulty in recognizing snow cover in
mountainous areas.

C. Results in Northeast China

Northeast China (38-54 °N, 115-136 °E) has a variety of cli-
mate types, spanning warm, middle, and cold temperate zones.
There are abundant forest resources in mountain areas, and there
is much snowfall in winter. It is one of the three stable snow
regions in China, with an average snow depth above 5 cm. The
snow-covered surface in this area is mostly vegetation; therefore,
there is a great challenge in recognition. Fig. 10 shows the snow
cover recognition results of the FY-4A AGRI [see Fig. 10(a)],
MOD10A1 (two thresholds) [see Fig. 10(b) and (c)], and IMS
data [see Fig. 10(d)] on January 15, 2020. Through qualitative
comparison, the snow cover recognition results of the proposed
method were basically consistent with MOD10A1 data and IMS
data.

Table IV shows the overall accuracy, overestimated error,
underestimation error, and FS of the proposed method using
meteorological ground observation datasets and MOD10A1 V6
data (two thresholds) in Northeast China. The assessment data
are the average value of all experimental data. From Table IV, us-
ing meteorological ground observation datasets for assessment,
it was found that the overall accuracy and FS reached 87.97% and
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Fig. 10. Comparison of snow cover recognition results in Northeast China on
January 15, 2020. (a) FY-4A AGRI snow cover recognition results in Northeast
China on January 15, 2020. (b) MOD10A1 (NDSI= 10) snow cover recognition
results in Northeast China on January 15, 2020. (c) MOD10A1 (NDSI = 40)
snow cover recognition results in Northeast China on January 15, 2020. (d) IMS
snow cover recognition result in Northeast China on January 15, 2020.

TABLE IV
ACCURACY VERIFICATION RESULTS IN NORTHEAST CHINA

78.46%, respectively. The main reason for this was that the forest
area affects the accuracy of the proposed method for snow cover
recognition. Compared with the MOD10A1 data, the overall
accuracy and FS of the FY-4A AGRI snow cover recognition
results in the Northeast China region were as high as 99.19% and
93.20%, respectively. When the MOD10A1 snow cover product
generates snow coverage in the forest area, a more complicated
decision tree snow recognition method is adopted, and the spatial
resolution of the MOD10A1 data is much higher than that of
the FY-4A AGRI data. Therefore, the proposed method has
a certain accuracy and simplicity. In terms of errors, there is
no significant difference between the overestimation error and
the underestimation error using MOD10A1 data for accuracy
assessment. The underestimation error of using meteorological
ground observations for accuracy assessment is greater than
the overestimation error. The underestimation of snow pixels is
mainly related to the terrain and underlying surface of the snow
cover. The accuracy of snow cover recognition in northeastern
China decreases with increasing altitude, mainly because the
terrain becomes more complicated with increasing altitude. In
particular, forest-covered areas with lower snow cover recogni-
tion accuracy have higher elevations and more rugged terrain,
which leads to a serious underestimation of snow cover. Another
reason may be that Northeast China is located in a higher
latitude area. Therefore, when the angle effect is corrected for
a large range, the fitted coefficients may not fit Northeast China

Fig. 11. Comparison of snow cover recognition results on the Tibetan Plateau
on January 20, 2020. (a) FY-4A AGRI snow cover recognition results on the
Tibetan Plateau on January 20, 2020. (b) MOD10A1 (NDSI = 10) snow cover
recognition results on the Tibetan Plateau on January 15, 2020. (c) MOD10A1
(NDSI = 40) snow cover recognition results on the Tibetan Plateau on January
20, 2020. (d) IMS snow cover recognition results on the Tibetan Plateau on
January 20, 2020.

TABLE V
ACCURACY VERIFICATION RESULTS IN TIBETAN PLATEAU

well, which affects the normalization of the reflectance. Finally,
compared with the MOD10A1 data, the proposed method could
reduce the cloud cover by 54.28% on average in this area.

D. Results in Tibetan Plateau

The Tibetan Plateau is called the roof of the world. Its average
elevation is greater than 4000 m, making it the highest plateau
in the world. The snow distribution on the Tibetan Plateau has
large spatial heterogeneity. Stable snow is mainly distributed in
high mountain areas. The snow distribution in mountain areas
is dispersive, therefore, it is difficult to recognize snow cover
[74]–[76]. Fig. 11 shows the snow cover recognition results of
the FY-4A AGRI [see Fig. 11(a)], MOD10A1 (two thresholds)
[see Fig. 11(b) and (c)], and IMS data [see Fig. 11(d)] on
January 20, 2020. The snow cover recognition results of the
proposed method were basically consistent with the recognition
range of MOD10A1 data and IMS data. However, there were
some misjudgments in the snow pixels in mountainous areas.
It can be clearly seen from the figure that despite the cloud
removal process, there were still more clouds in the results of the
proposed method, which was mainly determined by the weather
in the plateau area. At the same time, it is found from the figure
that the performance of the proposed method was reduced when
recognizing snow cover in mountainous areas, which was mainly
related to the spatial resolution of the data and the ability of the
method to recognize mixed pixels.

Table V shows the overall accuracy, overestimated error,
underestimation error, and FS of the proposed method using
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meteorological ground observation datasets and MOD10A1 V6
data (two thresholds) on the Tibetan Plateau. The assessment
data are the average value of all experimental data. From Table V,
using meteorological ground observation datasets for assess-
ment, it was found that the overall accuracy and FS could only
reach 92.70% and 73.11%, and compared with the MOD10A1
data, the overall accuracy and FS of FY-4A AGRI snow cover
recognition results on the Tibetan Plateau were 96.71% and
75.73%, respectively, indicating that the snow cover recognition
accuracy on the Tibetan Plateau was low. One of the reasons for
this phenomenon may have been that the snow cover on the
Tibetan Plateau was relatively scattered [74], [75], and the low
spatial resolution of the FY-4A AGRI had a problem with mixed
pixels. Therefore, it misjudged the snow cover on the Tibetan
Plateau. In addition, the main land cover types on the Tibetan
Plateau included grassland, bare land, and forest, while the land
cover types in areas with lower FSs were mostly sparse forest
areas, indicating that the snow cover recognition accuracy on
the Tibetan Plateau was related to the underlying surface. It
is worth noting that the complexity of the terrain also had a
certain impact on the accuracy of snow cover recognition on
the Tibetan Plateau. The areas with low snow cover recognition
accuracy were mostly in the southeast, where the terrain is more
complicated. In terms of the effect of cloud removal, the cloud
removal rate on the Tibetan Plateau reached 59.46% compared
with MOD10A1.

V. DISCUSSION

Widespread and persistent cloud cover in time and space has
a great impact on the recognition of snow cover by optical
satellites, and it is difficult to obtain snow cover information
under clouds and to clearly distinguish between clouds and snow
cover. Polar-orbiting satellites have accomplished the accurate
recognition of snow cover and clouds with their advantages of
high spatial resolution and high spectral resolution. However,
polar-orbiting satellites are usually limited by temporal reso-
lution and cannot monitor large-scale snow cover changes in
real time. Therefore, the daily snow cover recognition results
obtained from the optical sensor usually have gaps. In the past,
geostationary orbit satellites were affected by the spectral reso-
lution and could not generate some factors that were sensitive to
snow cover. In the current study, we took advantage of the high
temporal resolution of the new generation geostationary satellite
FY-4A AGRI to improve the maximum brightness temperature
image synthesis algorithm and proposed a new method for snow
cover recognition in China. Our results show that the improved
maximum brightness temperature image synthesis algorithm
and the proposed method can reduce clouds in images and
accurately recognize daily snow cover. The importance of this
study is not only that we improved the maximum brightness
temperature image synthesis algorithm to reduce cloud cover
and invalid values but also that the proposed method can provide
accurate snow cover information in a concise way.

In terms of geostationary satellite image synthesis technology,
Yang et al. [4] proposed a maximum brightness temperature

Fig. 12. Comparison figure of the maximum brightness temperature image
synthesis algorithm before and after improvement. (a) The fusion figure of the
original algorithm. (b) The fusion figure of the improved algorithm.

synthesis algorithm to synthesize MTSAT images to reduce
clouds, but the algorithm did not take into account the imaging
differences between thermal infrared sensors and visible light
near-infrared sensors. Therefore, more night values and invalid
values were introduced, and now it seems that the temporal
resolution of MTSAT satellites no longer has a major advantage.
Based on considering the imaging differences from different
types of sensors, we combined the advantages of the high
temporal resolution of the new generation geostationary satellite
FY-4A AGRI to improve the maximum brightness temperature
synthesis algorithm of Yang, reducing the night value and clouds
of the synthesized image. Compared with MOD10A1 data, the
average cloud removal rate of the improved maximum brightness
temperature image synthesis algorithm is 5.27% higher than that
of the fusion algorithm proposed by Yang et al. [4] and reaches
57.172% in China. In addition, the proportion of cloud removal
in the three typical snow cover areas reaches approximately
59.33%. It should be noted that although the efficiency of cloud
removal is only increased by 5.27%, the original algorithm
incorporates more useless invalid values and night values for
cloud removal. Fig. 12 is a comparison diagram of the two
algorithms after image fusion. It can be clearly seen that the
results of the original algorithm fusion contain a large number
of night values and invalid values, and the results of our improved
method have alleviated these phenomena.

Romanov and Wildt proposed snow cover recognition algo-
rithms for past geostationary satellites GOES-13 and MSG-2
[1], [3], [7], [34], [35]. However, past geostationary satellites
had relatively few band settings, which could not even generate
the NDSI. Most indices that are sensitive to snow cover were
replaced by the SI index, and the snow cover recognition effect
of SI is far inferior to that of NDSI. The FY-4A AGRI sensor
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has 14 wavebands, and its wavelength range includes visible
light to far-infrared, which can effectively solve this problem.
We also studied the results of the past snow cover recognition
method for the new generation geostationary orbit satellites. For
example, Han [77] proposed a new generation of geostationary
satellite decision tree snow cover recognition models based on
FY-4A AGRI satellite data from China and Hammria-8 satellite
data from Japan. This model reduced the false alarm rate of
clouds and snow, but the snow cover recognition factors of
this model are very complex and difficult to implement. In
addition, Wang et al. recognized the snow cover on the Tibetan
Plateau based on the Himawari-8 satellite data of Japan, and
the snow cover recognition method proposed in this study is
limited by the angle effect and is only applicable to the Tibetan
Plateau. Although our proposed method only uses some rela-
tively simple snow cover recognition factors, it can be evalu-
ated to obtain high accuracy in the main snow-covered areas
of China.

In addition, forest cover is one of the key factors that affect
the performance of the optical satellite snow cover recognition
algorithm. Muhuri et al. [78] used Landsat 7/8 satellite data
and Sentinel-2 satellite data to evaluate the performance of SCA
and FSC snow cover recognition. The detection performance of
these two algorithms is seriously affected by dense tree canopies
and low-light forest areas [78]. Similarly, this problem also
arises when using geostationary satellite data to recognize snow
cover in forest areas. To address this issue, other factors are
usually used to recognize snow cover in these areas. For example,
Wang et al. [79] used the NDFSI to recognize snow cover in
forest areas with good results. Hall et al. [13] used the NDVI
to change the NDSI threshold of snow cover in forest areas.
This method is widely used in the snow recognition process
of MODIS satellites and Landsat series satellites. However,
we found through experiments that these auxiliary recognition
factors are not suitable for FY-4A AGRI data. At the same
time, we found that the SNOWMAP algorithm and the method
proposed by Romanov for GOES-13, which performs better
for snow cover recognition in past satellite data, are not fully
applicable to FY-4A AGRI data. The main reason for the failure
of these mainstream snow cover recognition methods may be
the high temporal resolution of geostationary satellites and the
excessively wide imaging range. This leads to poor reflectance
normalization results so that the threshold setting cannot fully
satisfy all areas, especially in a wide range. Although the accu-
racy of the proposed method is lower when recognizing snow
cover in forest areas, it can still accurately recognize snow cover
in forest areas without these auxiliary recognition factors. In
past research, the accuracy assessment of MOD10A1 data using
meteorological ground observation datasets showed that the
average overall accuracy and FS of MOD10A1 data in Northeast
China during the snow season were only 91.70% and 81.30%,
respectively [69]. After verifying the accuracy of the snow cover
recognition results of the proposed method using meteorological
ground observation datasets, we found that the overall accuracy
and FS in Northeast China can also reach 87.97% and 78.46%,
which are equivalent to the snow cover recognition accuracy of
MOD10A1 data.

The proposed method also has some limitations and defi-
ciencies, which affect the accuracy of snow cover recognition.
First, unlike North Xinjiang and Northeast China, the Tibetan
Plateau has more snow-free surface pixels, which causes the
overall accuracy of the area to be too high. This is because the
misjudgment of snow cover is mainly caused by the difficulty
of distinguishing between clouds and snow and the difficulty
of recognizing snow cover in forest areas. The recognition of
snow-free pixels is more accurate, and a large number of snow-
free pixels causes the overall accuracy to be overestimated when
evaluating snow cover consistency. Therefore, after calculating
the FS, these snow-free pixels are discarded, and the snow
cover recognition accuracy of the Tibetan Plateau decreases. By
analyzing the misclassification error of snow cover recognition
on the Tibetan Plateau, it is found that the main cause of the error
is the underestimation of the snow pixels, and most missing snow
pixels are scattered snow in the mountains. We consider that the
reason for this problem is that, on the one hand, the low spatial
resolution of FY-4A AGRI data results in a large number of
mixed pixels. Therefore, a simple threshold cannot effectively
recognize the snow of mixed pixels. On the other hand, the
snow cover recognition accuracy of geostationary satellites is
affected by the angle effect. When angle effect correction is
performed in China, it can only satisfy the best angle effect
correction result for the entire area rather than the local area. In
addition, the surface types on the Tibetan Plateau are complex,
and the accuracy of snow cover recognition is inseparable from
the angle effect, which also leads to the low accuracy of snow
cover recognition on the Tibetan Plateau. Second, errors in
the cloud screening process also affect the accuracy of snow
cover recognition. When using the improved algorithm for image
fusion, we still only use the features of one band to remove the
clouds, which may cause some snow pixels to be misjudged as
cloud pixels and are, thus, removed. In addition, in forest areas,
compared with snow cover products produced by polar-orbiting
satellite MODIS, the overall accuracy of snow cover recognized
by FY-4A AGRI data is approximately 4% lower, and the FS
is approximately 3% lower. The reason for this phenomenon is
that there is uncertainty in the normalization of the reflectance of
geostationary satellites, especially when the study area is large
and far away from the imaging center, and such uncertainty will
greatly increase. Specifically, when trying to add factors such
as the NDFSI and NDVI to assist snow cover recognition in the
process of snow cover recognition, the FY-4A AGRI data did not
show very sensitive changes to the forest area. On the other hand,
compared with polar-orbiting satellites, the spatial resolution of
geostationary orbiting satellites is still relatively low, which also
affects the recognition of snow cover under the canopy. Finally,
the poor data quality or sample quality in some areas can lead to
some uncertainty in the proposed method. During the accuracy
assessment with MOD10A1, we found that there are approxi-
mately 7% anomalies in the experimental data, that is, the overall
accuracy is less than 90%. The abovementioned problems are
expected to be solved through the continuous development of
geostationary satellite sensors and the continuous updating of
image processing technology. In addition, it should be noted that
although deep learning methods can accurately distinguish snow



QIAO et al.: NEW GEOSTATIONARY SATELLITE-BASED SNOW COVER RECOGNITION METHOD FOR FY-4A AGRI 11383

pixels, attention should also be given to combining deep learning
methods with snow physical mechanisms to obtain more reliable
snow cover recognition results.

VI. CONCLUSION

The main study conclusions are as follows:
1) The improved maximum brightness temperature image

synthesis algorithm reduces the invalid value of the synthesized
image, and the cloud removal ratio reaches 57.172%. At the
same time, the overall accuracy and FS of the proposed snow
cover recognition method in China are as high as 94.11% and
73.05%, respectively.

2) After verifying the accuracy with the two cross-assessment
datasets, it is found that the snow cover recognition results of
the proposed method are highly consistent with the MOD10A1
data, and the overall accuracy and FS are 98.55% and 85.40%,
respectively. Combined with the snow cover recognition results
of IMS data, it is found that FY-4A AGRI can increase the
probability of observing snow pixels under clouds.

3) Affected by many factors, the ability of the FY-4A AGRI
snow cover recognition in the three typical snow areas is differ-
ent. The proposed method can obtain better accuracy in North
Xinjiang and Northeast China than that in the Tibetan Plateau.

In summary, the image fusion method and snow cover recog-
nition method proposed in this study can significantly reduce
cloud cover and accurately obtain the daily snow cover in China.
Therefore, this study is of great significance when acquiring
snow cover information.
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