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Abstract—When dealing with multivariate remotely sensed
records collected by multiple sensors, an accurate selection of
information at the data, feature, or decision level is instrumental
in improving the scenes’ characterization. This will also enhance
the system’s efficiency and provide more details on modeling the
physical phenomena occurring on the Earth’s surface. In this
article, we introduce a flexible and efficient method based on
graph Laplacians for information selection at different levels of
data fusion. The proposed approach combines data structure and
information content to address the limitations of existing graph-
Laplacian-based methods in dealing with heterogeneous datasets.
Moreover, it adapts the selection to each homogenous area of the
considered images according to their underlying properties. Ex-
perimental tests carried out on several multivariate remote sensing
datasets show the consistency of the proposed approach.

Index Terms—Gaussian Kkernel (GK),
multimodal remote sensing, mutual
unsupervised information selection.

graph Laplacians,
information (MI),

I. INTRODUCTION

VER the past several decades, satellite imagery has be-
O come a crucial source in providing a vast amount of
information about the Earth’s surface. Thanks to technological
advances, a region of interest (ROI) can be monitored by var-
ious sensors characterized by different acquisition techniques
(modalities), using different spectral, temporal, or spatial reso-
lutions [1]. The information provided by multiple sensors grasps
different aspects of the area of interest. For instance, hyperspec-
tral images might reveal the material content of the observed
region, while synthetic aperture radar (SAR) complements the
capabilities of optical imaging by reporting the topographic
(interferometry) and surface roughness information, and the
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light detection and ranging (LiDAR) technology provides highly
accurate measurements of the vertical height of structures. Ac-
cordingly, robust characterization of the Earth’s surface can be
achieved by combining data coming from different modalities
to obtain useful insight into various aspects of the underlying
surface [2].

The combination of multimodal datasets raises several chal-
lenges [1], [2]. These challenges are limited not only to dealing
with the heterogeneity of the multimodal images in terms of
temporal, spatial, and radiometric resolutions, sizes, and data
types [2], but also to accurately selecting the relevant informa-
tion that maximizes the benefits of the multimodal analysis. By
expanding the size of a dataset, we are simultaneously increasing
the complexity of the records to be analyzed, especially when
it is multimodal. Hence, the considered algorithms might fail
to capture the data’s underlying structure, i.e., not achieving an
accurate and robust characterization of the physical phenomena
occurring on Earth’s surface. Indeed, it has been shown that
increasing the number of modalities without properly addressing
an investigation of the significance and reliability of the data may
deteriorate the analysis [3], [4]. This may, therefore, represent a
strong limiting factor to the use of multimodal remote sensing
data analysis in practical scenarios, as well as to its actual
impact in operational frameworks within private and public
sectors [1].

In fact, not all information provided by several sensors is
valuable; it can be redundant, corrupted, or unnecessary for the
given task [1], [2]. Therefore, to get the most use of a multimodal
dataset, it is crucial to select only relevant information. In this
way, it is expected that the accuracy of the analysis will increase,
whereas the time complexity will be reduced. Consequently, to
improve the knowledge about an observed area, there is a need to
develop an automatic method to select the relevant information
from various sensors [1]-[3].

Dimensionality reduction has been proven as an effective
tool to tackle these issues in remote sensing data analysis [2],
[31, [5]-[7]. Feature extraction and feature selection methods
are able to strongly enhance the quality of understanding and
assessment of physical-chemical phenomena on the ground,
especially when data collected by means of homogeneous ac-
quisition techniques (i.e., sensors with similar properties of the
sensing devices) are analyzed. Nonetheless, traditional methods

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/


https://orcid.org/0000-0002-5765-8781
https://orcid.org/0000-0003-4591-0131
https://orcid.org/0000-0002-1597-4364
https://orcid.org/0000-0001-6789-0915
mailto:eduard.khachatrian@uit.no
mailto:saloua.chlaily@uit.no
mailto:torbjorn.eltoft@uit.no
mailto:andrea.marinoni@uit.no
mailto:andrea.marinoni@uit.no

KHACHATRIAN et al.: MULTIMODAL FEATURE SELECTION METHOD FOR REMOTE SENSING DATA ANALY SIS

for dimensionality reduction might fail in capturing the details of
elements, materials, and dynamic phenomena on Earth’s surface
when multimodal datasets are explored [2], [3].

We note that the term feature is commonly used in different
fields such as classification methodologies, pattern recognition,
and texture analysis. However, in our work, to prevent confusion
with textural features, we introduce the notation attribute from
information theory, which refers to directly measured quanti-
ties as, e.g., optical/hyperspectral/LiDAR reflectance across the
electromagnetic spectrum, and additional parameters such as
textural features.

In the case of multimodal datasets, which reside on a nonlinear
manifold, graphs are the appropriate representation of the data.
The graph is composed of the multimodal attributes as nodes, and
their similarities will give the weights to their connecting edges.
The dimensionality reduction is carried out by determining
similar nodes and picking a representative attribute from each
group. The graph partition reveals the pattern of the attributes;
as such, the chosen attributes preserve the structure of the graph.
The problem of graph partitioning or clustering to group similar
nodes is nondeterministic polynomial-time hard (NP-hard), but
it can be approximated via several techniques, such as spectral
clustering (SC) [8]. In fact, the graph structure can be understood
and analyzed via the Laplacian of the adjacency matrix that sum-
marizes the nodes’ similarities. In particular, the eigenvectors of
the Laplacian matrix, associated with the lowest eigenvalues,
reveal the structure information of the graph [9]. However, in
the case of graphs of heterogeneous degrees, where the nodes
interact differently, the graph’s eigenvalues scatter across the
spectrum. Accordingly, it will be hard to distinguish the lowest
eigenvalues and determine the informative eigenvectors, which
will undermine the attributes selection’s pertinence and effi-
cacy [10]-[12].

In this article, we introduce an approach to information se-
lection in multimodal remote sensing datasets that relies on a
representation based on graph Laplacians. While the existing
works using graph Laplacians exploit the attributes’ structure
using kernels as similarity measures, we additionally consider
the attribute’s information content. As such, we jointly exploit
mutual information (MI) and the Gaussian kernel (GK) simi-
larity metrics to capture the most relevant attributes within the
records. The two similarity measures are applied at different
detail levels. The Ml is used globally, considering all the pixels
within the images to ensure a better estimation of the attributes’
shared information. On the other hand, the GK is employed
locally to preserve the particularity of homogeneous areas within
the images. Accordingly, different attributes are selected for
different parts of an image that might belong to different classes
or be measured under different conditions (i.e., different noise
levels, clouds coverage, etc.).

The main motivation of this work is, thus, the limitation
of classic graph-Laplacian-based approaches at separating the
attributes when they are heterogeneous, as it has been shown
in [10]-[12]. Nevertheless, the joint employment of the MI and
the GK at different scales ensures a better separability of the
attributes and, hence, a more precise selection. Accordingly, the
proposed approach guarantees high accuracy of the analysis and
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reduces the computational complexity so that the potential of
multimodal remote sensing data analysis can be exploited in
multiple applications.

The rest of this article is organized as follows. Section II
reports a brief summary of the main methods for information
selection in remote sensing data analysis and the main contri-
bution of the proposed approach. Section III provides details of
the proposed architecture. Section IV presents an experimental
validation of the proposed method. Finally, Section V concludes
this article.

For notational convenience, random scalars are denoted by
lowercase letters, e.g., z. Random vectors are designated by bold
lowercase letters, e.g., z. Bold uppercase letters refer to matrices,
e.g., A. |A| and Tr(A) denote the determinant and trace of the
matrix A, respectively. diag{dy,...,dy} refers to a diagonal
matrix whose diagonal elements are dy , . . . , d v starting from the
upper left. The ddiag(A) operator is set to zero the off-diagonal
entries of A.

II. BACKGROUND AND MOTIVATION
A. Existing Work

In order to select the most informative subset of attributes
and discard the irrelevant ones, it is possible to use several
dimensionality reduction methods. Generally, dimensionality
reduction methods can be separated into two main approaches:
attribute extraction and attribute selection [13], [14].

1) Attribute extraction reduces the dimensionality by project-

ing the original data into a lower dimensional space [15],
[16]. As such, the separability of the data is increased
but at the expense of physical interpretability, which is
essential in remote sensing analysis. Among the meth-
ods of attribute extraction, we may cite, for instance,
principal component analysis (PCA) [17] and decision
boundary feature extraction (DBFE) [S]. PCA converts
a set of attributes of potentially correlated variables into
a set of linearly uncorrelated variables, called principal
components. It projects the original set into a lower di-
mensional space spanned by the principal eigenvectors
of data’s covariance matrix. Thus, it reduces the size of
the original set while preserving its variance [17]. DBFE
is a supervised approach that uses the training set to
determine the decision boundary between classes. The
eigenvectors of the decision boundary matrix determine
the direction of projection of the original set of attributes.
As such, it provides a minimum number of transformed
attributes that achieve the same accuracy as the original
set [5].

2) Attribute selection reduces dimensionality by selecting the
most informative subset of records preserving the charac-
teristics of the original data without working on a different
space [18]. Attribute selection determines a subset of
the original set that is more relevant according to some
criteria, such as information, similarity, or correlation. The
methods for attribute selection can be divided into three
categories: ranking, searching, and clustering.
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a) Ranking methods sort the attributes with respect to
a given criterion and select the most significant ele-
ments [6], [19]. They are very efficient, but they might
not be very precise because they do not consider the
relationships among the attributes. Among this family
of attribute selection methods, we can cite Fisher score
for attribute selection (FIS). FIS is a supervised ap-
proach that selects the subset of attributes with a large
Fisher score. The Fisher score measures the ability of
each attribute to reduce the intraclass distance while
increasing the interclass distance [20].

b) Searching methods select the optimal subset in an
incremental, removal, or update manner using a search
method, such as a genetic algorithm (GA) [21] or
branch and bound [22]. This class of attribute selection
algorithms is more accurate than ranking methods
since it considers the interaction between the data.
However, such methods are limited by the size of the
searching space. In the case of large datasets, compu-
tation time significantly increases, and the searching
methods fail to achieve optimal results. Here, we can
highlight forward attribute selection (FS) [23], orthog-
onal branch and bound (OBB) [22], and GA [21].
FS determines the optimal subset in an incremental
fashion. The algorithm starts with a minimum number
of attributes, and with each new step, it adds one
attribute that improves the accuracy until no further
improvement is noticed [23]. The OBB is a backtrack-
ing attribute selection algorithm. It is based on the
assumption that the adopted criterion function fulfills
the monotonicity condition. Hence, it guarantees to
find the optimal subset while omitting many attribute
subset evaluations. The branching step consists of
constructing the tree such that the subtree of each
level is constructed by deleting one attribute until the
required number of attributes is reached. The bounding
step represents the process of traversing the tree to
find the optimal subset [22]. The GA is an adaptive
algorithm that finds the global optimum solution for
an optimization problem based on the mechanics of
natural genetics and biological evolution. GAs operate
on a population of individuals to produce better approx-
imations. In attribute selection, each individual in the
population represents a predictive model with genes
that correspond to the total number of attributes in the
dataset. Genes are encoded as binary values that show
if the attribute is included or not in the subset [21].

¢) Clustering methods divide the components of the orig-
inal set into different groups, and from each clus-
ter, a representative element is selected to compose
the optimal subset [24]. The approaches within this
category can be further divided into three subcate-
gories: k-means-based [24], [25], affinity propagation-
based [26], and graph-based [27].

Among the various subcategories of clustering meth-
ods, graph-based clustering methods play a key role. The
graph-clustering-based approaches find the relevant attributes
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by partitioning the graph into subgraphs (clusters) and selecting
the representative attribute from each of them [27]. In this
representation, the nodes would correspond to data points, while
the edge between two nodes is weighted by their similarity.
It is important to note that data representation through graphs
has attractive characteristics since it enables grasping the local
and global properties efficiently. This effect is obtained by the
intrinsic ability of graph representation to naturally address local
neighborhoods, paths, and global connectivity in its definition
[28]-[30]. In this sense, a graph can enhance the characterization
of complex manifolds, giving graph-based methods a key role
in investigating realistic datasets. Moreover, it can help in re-
ducing the computational complexity of data investigation [27],
[30], [31].

When performing dimensionality reduction on graph struc-
tures, two main approaches can be addressed. On one side,
graph-based clustering algorithms might work on similarities
among the nodes according to specific criteria and metrics
derived on the attributes associated with each vertex in the
graph [27]. Methods belonging to this category (i.e., meth-
ods addressing vertex similarity) attempt to capture the global
geometry of the overall dataset by constructing graphs based
on measures of global connectivity of the ensuing graph. The
intuition behind this algorithm is that random perturbations of
the points in a high-dimensional space will induce changes
in a nonhomogeneous fashion in different parts of the graph
inducing the given dataset to show minimal global distance.
Thus, depending on how globally important certain edges of
the graph are, the algorithms working on vertex similarity will
aim to capture the globally important edges in the perturbed
ensemble [29], [31], [32].

A popular way to ensure such global connectivity addressing
vertex similarity is through the minimum spanning tree (MST)
approach [27], [33], [34]. The main step of the MST approach
consists of determining the MST of the graph, which connects its
vertices without cycles and with the minimum total edge weight.
MST identifies the graph’s cluster by removing the inconsistent
edges according to a certain criteria [34]. MST-based approaches
can, thus, capture the geometry of nonhomogeneously sampled
data points in a high-dimensional space since the MST contains
not only local but also global features of the dataset [32],
[33], [35].

Another way of performing dimensionality reduction on
graphs relies on identifying clusters to fulfill a specific target
condition, i.e., a fitness criterion [27]. Several forms of fitness
criteria have been proposed in technical literature, typically as a
function of the density of the clusters to be detected and/or the
amount of edges in the graph necessary to reach the maximum
value for cliques in the induced subgraphs [27], [36], [37]. In
this respect, community detection (CD) algorithms and methods
based on dominant set (DS) search play a key role.

Let us consider CD schemes [27], [36], [38], [39]. In gen-
eral, CD algorithms depend on the definition of the resolution
parameter that leads to multiscale CD. Specifically, for small
values of this resolution parameter, the number of detected
communities is large, and the communities capture the graph’s
local information. As the resolution parameter becomes larger,
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there are fewer communities, and the communities are able to
capture the global features of the graph [38], [39]. For instance,
Markov stability is a quality measure for CD, which adopts a
dynamical perspective to unfold relevant structures in the graph
at all scales as revealed by a diffusion process [29], [38], [39].

On the other hand, within fitness-criteria-based graph clus-
tering approaches, DS clustering generalizes the problem of
finding a maximal clique to edge-weighted graphs [27], [28],
[37]. At each iteration, a DS is extracted, and its subsets of
nodes are removed from the graph (this is called the peeling-off
strategy). The process iterates on the remaining nodes until all
are assigned to a cluster. Hence, the DS approach determines the
clusters sequentially using a relative measure that quantifies the
clusters’ homogeneity [9], [37], [40], [41].

Unlike the ranking and searching algorithms, clustering meth-
ods guarantee the nonredundancy of the selected attributes. In
this way, the subset of selected attributes is more representative
of the original set. Hence, the performance of the remote sensing
analysis will be enhanced. Thus, clustering methods, as well as
searching methods, are quite accurate. However, graph-based
clustering approaches, in particular, are more advantageous than
searching methods for their pertinence in dealing with noncon-
vex datasets. Computational complexity can vary depending on
the clustering algorithm that is used and the size of the dataset.

It is worth noting that methods based on deep learning, such
as autoencoders, can be used for attribute extraction [42]. By
using a training set of data, autoencoders learn a mapping
that preserves the structure, from the original data space to a
lower dimensional space. Many variants of autoencoders have
been proposed for attribute selection as well as to tackle the
issue of interpretability loss. Xu et al. [43] select the subset of
attributes that contributed the most to the output, while Tomar
et al. [44] backpropagate the network through more probable
links, to name a few. The main drawback of approaches based
on deep learning is their heavy dependence on the density of
the training set. The training dataset should be rich in quality
and size to reflect on the structure of the underlying manifold,
especially if it has a complex structure. However, due to the
difficulty of procuring such dense training sets, such methods
can be hardly employed to obtain accurate and reliable re-
sults. Moreover, the aforesaid frameworks are not flexible in
dealing with heterogeneous datasets. All this adds up to the
complexity of implementation. We would like to emphasize
that, in this study, we are comparing the proposed method
only with unsupervised dimensionality reduction approaches,
while neural-network-based approaches are either supervised
or semi-supervised; therefore, we are not using any of these
approaches since they require a training set [42]-[44].

The methods described above can be classified as supervised
if they require labeled data, or unsupervised, otherwise. How-
ever, unsupervised methods are more convenient since acquiring
labeled data, which in most cases involves the implication of an
expert, is costly and time consuming. Indeed, in contrast to other
research fields, providing very accurate labels is challenging
in the case of remote sensing, for instance, when dealing with
complex scenes or when considering modalities that are difficult
to interpret, such as SAR images of sea ice in polar areas.
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B. Related Work

In this study, we propose an information selection method
based on the graph Laplacian. Since this approach has been
widely employed for multimodal analysis in remote sensing, it is
worth to mention several works based on the graph Laplacian and
generally on segmentation of multimodal datasets. The graph
Laplacian is a matrix representation of the graph that reflects its
properties [9], [12], [45]. In particular, the eigenvectors of the
Laplacian constitute a low-dimensional embedding of the nodes
(that represent attributes), which increases their separability by
revealing their hidden pattern. As opposed to attribute extraction
approaches, this embedding can be mapped back, preserving
the attributes’ physical interpretability. As such, it combines
the advantages of attribute selection and attribute extraction
methods [17].

The graph Laplacian has been widely applied for multimodal
analysis in remote sensing. For instance, we might cite manifold
alignment applications that aim to determine a common latent
space where multimodal datasets have a unified representation
and become comparable [46]. In [47], Tuia et al. propose a
semi-supervised framework for a manifold alignment that avoids
geometric comparisons between modalities since it only com-
pares their labels while preserving each domain’s geometry via
domain-specific graph Laplacians. A successful outcome of this
approach relies on the quality of labels that should be similar
among the datasets and representative of their connections. Hong
et al. [48] propose to consider unlabeled information addition-
ally to labeled samples. In particular, their approach exploits
labeled samples from the overlapped area of hyperspectral and
multispectral modalities and pseudo labels given only by the
multispectral modality. The pseudo labels are updated using a
data-driven Laplacian matrix learned on the latent subspaces
of both modalities. As opposed to [47], the approach in [48]
requires the datasets to be coregistered and overlapped. Fur-
thermore, some deep learning framework attempts to increase
the capability of information blending between multimodalities
using different strategies, such as multiscale fusion, bidirec-
tional symmetrical mechanism, and highly dense connectivity,
have been proposed [49]. Moreover, while, generally, the joint
modality representation is used, some methods are building
the disjunct subnetworks in order to learn the discriminative
features independently for each modality and integrate them
with various structured constraints, which can be measured
by similarity, correlation, or sequentiality, onto the resulting
encoder layers [50]. In addition, some GAN-induced models
have also been investigated [51], [52]. Among these methods,
it is worth to mention the strategy proposed in [51], where
the robustness of the features is increased by eliminating the
effects of the adversarial noises. Moreover, the algorithm in [52]
models the adversarial perturbation into end-to-end multimodal
networks to obtain large-scale semantic segmentation.

Another application is multimodal segmentation, specifically
by combining LiDAR and hyperspectral datasets. In [53], Iyer
et al. proposed an approach based on SC for multimodal segmen-
tation. To combine information from multimodal datasets, the
similarity between the pixels is given by the minimum of all
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similarities considering different modalities. As such, two
classes are similar if and only if they are similar in all modalities.
The eigenvectors of the fused graph are then used for segmenta-
tion in a semi-supervised manner using the MBO algorithm [53].
Xia et al. [54] also propose to combine hyperspectral and
LiDAR features in a semi-supervised manner. Their approach
exploits both labeled and unlabeled samples to optimally fuse
both modalities’ spectral, elevation, and spatial features. Hong
etal. [55] as well as the aforementioned authors further extended
their model to a semi-supervised version by learning a graph
structure for the alignment of labeled and unlabeled samples.
In the case of multimodal datasets that involve the use of
information-rich data, which accompanied by high storage and
computational costs, it seems relevant to train the model employ-
ing only a limited part of the multimodal dataset. Thus, training
in more compact and varied cross-modal representations facili-
tates predicting larger scale semantic segmentation results [55].

For graph building, the GK, also called the heat kernel func-
tion or radial basis function (RBF), is typically used to assess the
graph’s nodes’ similarity. In the case of heterogeneous datasets,
GK might be a valid choice. However, GK will not be able to
reveal the structure of data from different domains [48]. This
limitation can be circumvented by comparing the heterogeneous
datasets’ labels as in [47], assuming that they include similar
classes, or by learning the graph from the dataset as in [48].
Both approaches heavily rely on the quality and density of the
labels.

C. Contributions

With this in mind, we developed a method for flexible attribute
selection based on graph Laplacian representation induced by
metrics computed at global and local scales across the given
multimodal datasets. When analyzing multimodal data, classi-
cal spectral methods are struggling to perform on such highly
heterogeneous datasets [10]-[12]. Therefore, in this work, we
are suggesting adding another criterion to weight a graph edges
in order to solve the limitations of the classic SC approaches. Un-
like the commonly used functions to weigh the edges of a graph,
such as GK, MI can assess nodes’ similarity from different do-
mains since it only compares their probability density functions
(PDFs). MI measures the statistical dependence between two
random variables. It is defined as the Kullback—Leibler diver-
gence of their joint PDF and the product of marginals. Instead
of only exploiting the MI to assess the similarities of multimodal
attributes, we propose to combine it with the GK. The GK
will compensate for the incapacity of MI to capture the local
structure of the attributes. Several works employ two similarity
measures for information selection [13], [56]-[58]. In contrast
to those methods, we exploit both measures simultaneously and
not sequentially. In this way, the results will not be biased by the
order in which the measures were applied, i.e., both criteria are
equally important, and hence, the selection will be more precise.

Accordingly, while the existing works using graph Laplacians
only rely on the attributes’ structural similarity using kernels,
we also consider the attribute’s information content. We jointly
employ GK and MI to identify the most relevant attributes within
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the records. Bearing in mind the variability of the Earth’s surface
properties, the attributes’ relevance will vary among the different
classes within the remotely sensed images.

Correspondingly, the second major contribution is that the
two similarity measures are applied at different detail levels to
preserve more information about original data. The Ml is applied
globally, i.e., image-wise, so to provide a better estimation of
the attributes’ shared information. On the other hand, the GK
is performed locally, i.e., patch-wise, in order to preserve the
structure and particularity of homogeneous areas within the
images. This allows us to increase the flexibility and accuracy
of information selection since different relevant attributes are
selected for various homogeneous areas.

Thereby, the proposed approach guarantees high accuracy of
the analysis and reduces the computational complexity so that
the potential of multimodal remote sensing data analysis can be
exploited in multiple applications. The different experimental
tests conducted on several multimodal datasets illustrate the
ability of such an approach in revealing the complex pattern
of the heterogeneous attributes that ensures a more precise
selection than the existing works.

It is worth noting that, as opposed to [53] and [54], our
approach employs the Graph Laplacian for attribute selec-
tion and not to extract new attributes. As such, we preserve
the physical interpretability of the attributes that might be
exploited, for instance, in understanding the contribution of
each modality in the underlying analysis. Moreover, given the
difficulty in acquiring dense and rich labels in remote sens-
ing, and to avoid the imprecision of the selection in case of
uncertain labels, our approach is applied in an unsupervised
manner.

In order to sum up everything mentioned above, in this arti-
cle, we introduce an unsupervised, flexible, interpretable, and
accurate method for information selection that is applied for
multimodal datasets. Among all the mentioned advantages, we
would like to stress the main contributions and novelties of this
work and proposed approach in particular.

1) Two Similarities: It simultaneously employs two similarity
measures that preserve global and local particularities of
the original dataset, which subsequently allows selecting
the most relevant attributes.

2) Flexible Selection: The method is performed patch-wise;
therefore, it selects the most relevant attributes for the
considered classes across the different areas of the ROI.

Additionally, here are some minor advantages, which are
less significant, and have been employed in existing works,
nevertheless still worth mentioning.

1) Multimodal: 1t is flexible; therefore, it can be applied to

various data combinations with different characteristics.

2) Unsupervised: The method is completely application in-
dependent; thus, it does not require any prior knowledge
regarding the datasets or class labels in particular.

3) Interpretable: The method keeps the crucial advantages
of both dimensionality reduction strategies, namely, at-
tribute extraction and selection, such as preserving the
physical meaning of the original data, while increasing its
separability.
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Flowchart of the multimodal information selection approach proposed in this work. (a) Attributes of the {-th pixel are stacked in one vector x;,. (b) Graph

of four attributes with two similarity functions at the [-th pixel. (c) Graph of four attributes with two similarity functions at the I-th pixel. Similar attributes are

grouped together.

III. METHODS

This section reports the detailed description of the main steps
of the proposed information selection method (see Fig. 1).

A. Attribute Generation

The very first step is attribute generation. We assume that the
images are spatially aligned such that their attributes overlap.
Let M be the number of available images, including bands and
polarizations, and L be the number of pixels in each image. We
assume that N attributes (images, textural features, etc.) could
be associated with each pixel across the whole dataset, and we
stack them all in X = (z;,,) € RZ*¥ [see Fig. 1(a)]. We denote
the n-th column of X, which corresponds to the n-th attribute by
Xy, SO it is possible to write X = [X.1, . . ., X,y |. Analogously,
we denote the [-th row of X, which details the values of attributes

at the I-th pixel, by x;,; hence, X = [x],,...,x% ]7.

B. Graph Building

For the sake of clarity, we present our approach first at a
pixel level. The adaptation to the superpixel/patch level will be
detailed in Section I1I-D. We aim to find, for a given pixel [, the
smallest subset of attributes, {x1, ..., 2k}, that preserves the
structure and information content of the original set. To perform
such selection, we apply the graph theory [9] since graphs are a
natural way to represent various types of data.

In the proposed method, the set of N attributes will con-
stitute the vertices of an undirected fully connected graph
GiI(V,,EFK EM), where V, denote the set of attributes
(Vi ={A1,..., An}, A, refers to the n-th attribute the values
of which are given by x.,,), EFX and EM are two set of edges
that connect the nodes (Ef¥, EM! = {(A;, A;), A;, A; C V}).
The weights of the edges are defined by two similarities, GK
and MI, to increase the accuracy of analysis (see Fig. 1(b) for
an example of four attributes at the [-th pixel).

Itis worth noting that two vertices are connected by two edges.
The weight of the first edge, between attributes x;,,, and x,,,

is determined using the GK

GK = exp < (zln1 — zln2)2

wlnlng 2% > ) 1 S ni, n2 S N

(H
where o controls the width of the neighborhood in the graph.
The width of the neighborhood, i.e., the number of connected
vertices, increases with o. In this work, we set o to 1 by default,
since it produces a more accurate result; however, this parameter
does not affect the performance significantly.

A large value of wﬁfmz implies that the attributes x;,,, and
Zin, are very similar, and hence, it will be sufficient to only
consider one of them to obtain accurate characterization of
the dataset. Conversely, small values of wj’ ~ mean that the
attributes are different and, therefore, likely to carry different
information, so that they must be both considered for the anal-
ysis.

The weight of the second edge, between attributes x.,,, and
Xun,» 15 defined using M1, as follows:

MI

wnl,ng = I(X*nlax*ng)y 1 S n1,n2 S N

L L
P(xin s Ljn )
— P(xm  Tin )log <1J2>
Lzzlz L P(xﬂh)P(xan)

j=1

@)

where x,, is a vector of measures corresponding to the n-
th column of matrix X, i.e., n-th attribute. P(x;,x;) is the
joint density function of x; and x;, and P(x;) and P(x;)
are the marginals. MI quantifies the shared information be-
tween two random variables [14]. Accordingly, large values
of I(Xun, » Xun, ) imply redundancy in information. Conversely,
low values of I(X.y,, , X4, ) imply synergy (novelty).

The similarity measure based on the GK represents the struc-
ture of the attribute set. In our method, it is applied at local level
(i.e., on pixels or segments) in order to preserve the local partic-
ularities of the original data. On the other hand, MI reports the
information content of the attribute set by discarding redundant
ones. The selection via information is performed image-wise to
capture the global information of the observed region. Thus, we
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extract both global and local information about our data in order
to enhance the performance of the proposed method.

C. Graph Clustering

Once the graph is defined according to the operations that
have been previously introduced, we perform the partition of
the graph using a procedure inspired by the SC approach [9]
so as to identify and select the most relevant attributes in the
dataset. In order to understand the main steps of this strategy, let
us suppose that we only use the GK as a similarity measure as
is the case in classic SC. The partition is performed by grouping
the vertices of the graph into subgraphs so that two vertices of
the same subgraph have strong connections (weights), while two
vertices from different subgraphs have weak connections. Such a
problem can be formalized using the normalized cut criterion [9],
which can be defined as follows:

K GK
DieViy 2ojevi\vie Vi

GK
o Dievin 2jevi Wi

where wj; is the weight of the edge defined by the GK, and
Vi1, ..., Vik are the K partitions of the graphs, i.e., | J, Vix =
V;. Tt is also worth recalling that K identifies the number of
relevant attributes that are meant to be selected out of the original
records. The normalization in (3) ensures that the clusters are
large enough to avoid clusters of single vertices. The criterion in
(3) is then minimized over the K graph partitions to select the
K most relevant attributes in the original dataset.

The aforesaid optimization of the normalized cut criterion is
NP-hard and, hence, very cumbersome to efficiently address.
To enhance the partition procedure, Shi and Malik proposed to
replace the normalized cut minimization with an approximated
problem [59]

3

minTr (H'L7*H)  subjectto H'H=1 (4
where H = [hy, ..., hg] € RV*K and hy, denotes the indica-
tor vector of the i-th subgraph. LEX is the so-called symmetric
normalized Laplacian matrix based on the GK, and it is defined
as follows:

L{ =1 DF* P wKkpeK ©)

where T is the identity matrix, Wi = (wi}5) is the adja-

cency matrix, and DF¥ = diag(}", .; wiiX) is the degree ma-
trix. The n-th element of the graph indicator hy can be con-
strained to assume a nonnull value of (3, iy, w%()’% if
and only if the n-th node of the graph belongs to the k-th
subgraph.

Itis worth noting that such a discrete constraint leads to an NP-
hard problem that can be relaxed by allowing the solutions to be
in R [59]. In this case, according to the Rayleigh—Ritz theorem,
the solution of (4) is given by the first K eigenvectors of L{¥ [9].
In fact, the multiplicity of the null eigenvalue of the Laplacian
matrix equals the number of the connected components in the
graph, and their corresponding eigenvectors are indicators of
different subgraphs [9]. Moreover, since the discrete constraint
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on the indicators was discarded, a clustering of the rows of H is
required to refine the results [9], [59]. Indeed, the n-th row of H
corresponds to the n-th attribute. As such, the same results of the
clustering on the rows of H apply to the attributes. Moreover,
the subset of relevant attributes is constituted by picking, from
each cluster, the closest attribute to the centroid. Accordingly,
the rows of H can be considered a revertible low-dimensional
embedding of the attributes.

At this point, it is worth recalling that the graph representation
of the datasets we aim to analyze is associated with a fully con-
nected graph. In this case, the graph is one connected component.
Hence, there will be one null eigenvalue of the Laplacian matrix
corresponding to a constant eigenvector [9]. As a consequence,
the graph indicators are given by the eigenvectors related to
the next lowest eigenvalues. Therefore, graph clustering success
relies on the identifiability of these informative eigenvalues
related to the graph indicators. As such, they need to be isolated
from other eigenvalues [9], [12].

The isolation of the eigenvalues is directly associated with the
clusters’ separability, which is more plausible in homogeneous
graphs, where similar interactions occur among the nodes. On
the other hand, the attributes of multimodal datasets are het-
erogeneous, and they interact differently. In this case, however,
it has been shown that the classic graph clustering will fail at
separating the clusters [ 10]—[12]. To tackle this issue, we propose
considering the MI in addition to the GK. Incorporating the MI
will reflect different relationships between the attributes from
the GK. This new variability will help isolate the informative
eigenvalues and increases the clusters’ separability, which will
translate into a precise attributes selection.

Now, if we consider the MI in addition to the GK, we
would like to partition the graph such that the vertices of the
same subgraph have strong connections via both links, while
the vertices from different subgraphs have one or two weak
connections, either GK or MI [see Fig. 1(c)]. An approximation
of this problem can be written as follows:

mingg Tr (HTLZGKH)
subjectto H'H=1 (6)
ming Tr (HTLMIH)

where LM denotes the Laplacian matrix based on MI

1-1/2 [-1/2

where the corresponding adjacency matrix and degree matrix are
defined as WM = (wZH) and DM = diag(d_,; ., wxﬁ) respec-
tively. The solution of (6) is given by the common eigenspace
of LYK and LM, i.., their joint eigenvectors. The common
eigenspace spanned by both Laplacians enables their interaction,
which might unfold complicated structure of the graph. The joint
eigenvectors of the graph Laplacians, LEX and LM!, are defined
so that the following equations hold:

Li* = VARV (8)
LM = v, AMvVT )
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Algorithm 1: SC Algorithm for Local Pixel/Superpixel-
wise Selection.
Input:

* Attributes of the I-th pixel—{z;1, ..
superpixel—{x;1, ..., XN}

e Number of selected attributes— K < N

Output: Subset of N Attributes

1) Compute the adjacency matrices WM! using (2) and
WlGK using (1) for pixel-wise selection and (11) for
superpixel-wise selection.

2) Compute the degree matrices DX and DM

3) Construct the Laplacians L and LM! as in (5)
and (7), respectively.

4) Compute the first ' smallest joint eigenvectors of
LlGK and LMI, Vilt,..., VIK.

5) Form V; = [Vll; . 7VlK] e RIXK,

6) Normalize the rows of V; to 1.

7) Cluster the rows of V; into K clusters using /-means

8) Assign ry; to the same cluster as the i-th row of V;

9) Return, for each cluster, the closest attributes to the
centroid.

. ,xlN}/l-th

where V; = [vy1,...,v;y] is the matrix of eigenvectors, and
AF® = diag(A8K, .. A0K) and AY" = diag(AM', .., AM) are
diagonal matrices of the corresponding GK- and MI-based
eigenvalues, respectively.

In general, a joint diagonalization (JD) exists if and only
if LEX and LM commute in multiplication [60], which is not
always valid in practice. Thus, V; is determined using approx-
imate JD algorithms [61] instead, which minimize a criterion
of diagonality of V{ LF*V; and V{LM'V,. Different diag-
onalization constraints and distances can be used leading to
a multitude of algorithms. In this work, we perform the JD
using the Quasi-Newton algorithm [61], which minimizes the
log-likelihood measure introduced by Pham and Cardoso [62],
ie.,

_ |ddiag (VI LF&V))|

|ddiag (VI LMV |
£(V)=log VLKV |

|[VITMV,|

+ log

(10)
Once the original set of attributes is embedded into a lower
dimensional manifold using the joint null eigenvectors of the
Laplacian matrices, a classical clustering method, such as K-
means, is then applied to partition the embedding, i.e., to cluster
the rows of the matrix H = [v;1, ..., v;x]into K < N clusters.
This new representation enhances the efficiency of standard clus-
tering methods by increasing the separability of data, mainly if it
is nonlinearly separable. Moreover, it eliminates the sensitivity
to initialization of such methods. Finally, the centroids of the
clusters will form the set of selected attributes. It should be
noted that the number of selected attributes K is not determined
automatically in this work. Algorithm 1 reports the main steps
of the proposed information selection method inspired by Ng
et al. [63].
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Superpixel Approach
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Fig. 2. Attributes of the [-th superpixel are stacked in one matrix X; €
RL1*N | [, denotes the number of pixels in the I-th superpixel.
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D. Superpixel Approach

Considering the large size of the remote sensing images,
performing the selection at each pixel is computationally ex-
pensive [64]. To alleviate the computational complexity while
preserving each pixel’s local particularity, we propose to imple-
ment selection on a superpixel-level instead, i.e., patch-wise (see
Fig. 2). As opposed to other patch-wise approaches, e.g., win-
dowing, superpixels include pixels that share similar information
since they are generated using segmentation (i.e., the grouping
of homogeneous pixels) [65]. As such, the selection is more
precise since it is particular to the properties of homogeneous
pixels.

The first step of a superpixel selection consists of segmenting
the image into homogeneous areas. This step can be achieved
using segmentation methods such as Watershed [66], [67] or
simple linear iterative clustering [68]. In our work, we use
Watershed superpixel segmentation.

In the superpixel approach, similar steps as in Algorithm 1
applies except for the calculation of the GK adjacency matrix. In
the case of the superpixel-based definition of the graph to be used
for attribute selection as previously mentioned in this section,
the elements of the adjacency matrix WK are calculated using
all the pixels within the [-th superpixel, i.e.,

2
Xin, — X
Vi, = (")

1 S niy,No S N
(11
where ||.|| denotes the Frobenius norm. The graph is then
explored and the eigenanalysis is performed according to the
steps detailed in the previous subsection and summarized in
Algorithm 1 in order to identify and select the K most relevant

attributes in the dataset.

IV. ANALYSIS AND EXPERIMENTAL RESULTS

The following section reports the experimental analysis and
performance evaluation of the proposed method, as well as com-
parison results with existing methods using several multimodal
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datasets. In the remaining of this section, we refer to our method
as GKMI-Gaussian kernel and mutual information.

Attribute selection can be applied as a preprocessing step
of several remote sensing applications, e.g., target detection,
classification, unmixing, etc. However, for the validation of our
method, we only consider the improvement of classification
accuracy.

The segmentation step used as part of GKMI might produce
superpixels that include a different number of classes, and the
classes may differ from one superpixel to another. To tackle the
heterogeneity of the superpixels, we classify them separately us-
ing parallel classification. Accordingly, we employ L classifiers
for the L superpixels that constitute the image X. To train the
classifiers, we use the same training set T = {t1,t2,... tg}
that constitutes a certain percentage of the original dataset,
where t; € RY is the i-th pixel in the training set. However,
the attributes of the training set are adapted to each superpixel.
As such, for a given superpixel S;, only a subset of the elements
of t; is considered. The indices of these elements are the indices
of the attributes selected for S;.

Various classifiers can potentially produce different accuracy
results on the same dataset. To validate the performance and
show the consistency and robustness of our algorithm, we im-
plement two of the widely applied classifiers in remote sensing:
support vector machine (SVM), and random forest (RF) [69],
[70].

SVM is a classification method that determines a set of
hyperplanes that separate the dataset into different classes [71].
To perform a nonlinear classification, we choose the RBF as a
kernel. The optimal parameters ¢ and v of the RBF kernel are
determined by parameter tuning.

RF generates an ensemble of individual decision trees and
combines their outputs to get an accurate prediction of the
class [72]. In other words, RF is a classifier consisting of a
collection of tree-structured classifiers.

Both classifiers are supervised methods that strongly rely on
an analyst to define the classes for subsequent classification.
To quantitatively estimate the classification result, we use the
overall accuracy (OA) index, average accuracy (AA) index, and
Cohen’s kappa statistic (Kappa). OA shows the percentage of
correctly classified samples, AA quantifies the mean of class-
specific accuracies for all classes, while Kappa measures the
agreement between the classification and the reference data [73].

This section is divided into four subsections, which aim to
display the capacity of the proposed method according to the
following organization.

1) SectionIV-A introduces the datasets that were investigated

in this work.

2) Section I'V-B investigates the algorithm’s sensitivity to the
number of selected attributes, the size of superpixels, and
the size of the training sample.

3) Section IV-C reports the relevance of using two similarity
functions and the pertinence of a superpixel selection
versus pixel-wise and image-wise selection.

4) Section IV-D shows the validation of GKMI performance
and comparison with different information selection meth-
ods on the considered multimodal datasets.
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TABLE I

GLCM FEATURES
Features Definition
Contrast Z%;lo gi,; (1 —J)
Dissimilarity >3 g li— il
Homogeneity Egj_:lo H—leijjﬁ
ASM S
Energy VASM
Correlation Zgj_:lo Gij {W]

gi,; denotes the (i,j) element of the GLCM ma-
trix G. @Q is the number of gray levels used, and
p= S gy and 02 = S0 S -
) g?) 4 are, respectively, the GLCM mean and variance.
ASM refers to the angular second momentum.

TABLE 1T
TYPES AND NUMBER OF ATTRIBUTES FOR THE CONSIDERED DATASETS

Dataset Hyperspectral Optical LiDAR N
Original GLCM S2 L8 GLCM Original GLCM

Berlin - - 10 18 168 - - 196

Paris - - 10 18 168 - - 196

Trento 63 - - - 2 12 71

Houston 144 - - - 1 6 151

S2 and L8 refer to Sentinel-2 and Landsat-8, respectively. /N denotes the total number of
attributes for each dataset. It should be noted that the GLCM attributes, listed in Table I,
are generated for each band.

A. Dataset Description

To evaluate the performance of the proposed GKMI method
for attribute selection, we consider different multimodal datasets
obtained from various satellite platforms. In this work, we only
consider data and feature levels of multimodal data fusion,
although the GKMI method can also be applied at the decision
level.

To increase the number of attributes and extract some addi-
tional information from the original data, along with the bands of
optical and LiDAR datasets, we use textural features, while for
hyperspectral datasets, we only use existing bands. To extract
textural features, we use the gray-level co-occurrence matrix
(GLCM) [74]-[76]. Table I illustrates the extracted features as
well as their mathematical definitions.

Table II summarizes the number and types of the attributes
considered in this article, and Table III reports the list of ground
truth labels for each dataset. A detailed description of the
datasets is presented as follows.

1) Berlin/Paris: The datasets were acquired over the cities
of Berlin and Paris, and both consist of images obtained from
two optical sensors: Sentinel-2 and Landsat-8. The datasets were
obtained from the 2017 IEEE GRSS Data Fusion Contest [77].

Both datasets (Sentinel-2 and Landsat-8) were resampled at
100-m resolution. Berlin and Paris test sites were prelabeled for
the subsequent classification and include 12 ground truth labels
corresponding to various built-up (anthropogenic constructions)
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TABLE III
GROUND TRUTH LABELS FOR ALL THE DATASETS USED IN THIS ARTICLE

Berlin Paris Trento Houston
w1 Compact midrise Compact high-rise Buildings Grass healthy
w2 Open high-rise Compact midrise Wood Grass stressed
w3 Open midrise Open high-rise Apple trees  Grass synthetic
w4 Open low-rise Open midrise Roads Tree
ws Large low-rise Open low-rise Vineyard Soil
we Sparsely built Large low-rise Ground Water
w7 Dense trees Sparsely built Residential
ws Scattered trees Dense trees Commercial
wo Bush and scrub Scattered trees Road
w10 Low plants Low plants Highway
w11 Bare soil or sand  Bare rock or paved Railway
wisz ‘Water Water Parking lot 1
w13 Parking lot 2
w14 Tennis court
w15 Running track

Fig.3. Overlapping area of the Berlin dataset. (a) Landsat-8 and (b) Sentinel-2
natural color composite images.

Fig. 4. Overlapping area of the Paris dataset. (a) Landsat-8 and (b) Sentinel-2
natural color composite images.

and land cover types. Sentinel-2 dataset contains ten bands
in the visible, near-infrared, and short-wave infrared part of
the spectrum. Landsat-8 contains nine bands in visible, short,
and long infrared wavelengths (according to the notation in
Section III-A, M = 28, 1xSentinel-2 dataset + 2xLandsat-8
datasets). Moreover, from each band, we extract six textural
features (see Table I). Therefore, the final datasets that were
used contain N = 196 extracted attributes.

Figs. 3 and 4 show the overlapping area of the two datasets.
The overlapping test size area for Berlin example is of
666 x 643 pixels, and for Paris, it is of 988 x 1160 pixels.

2) Trento: This dataset was acquired on an agricultural area
in the south part of the city of Trento, Italy. It consists of LIDAR
and hyperspectral data. Hyperspectral data were acquired by the
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(b)

Fig. 5. False-color composite representation of Trento (a) hyperspectral and
(b) LiDAR datasets.

AISA Eagle sensor with a 1-m spatial resolution and includes
63 bands ranging from 0.40 to 0.99 pum, where the spectral
resolution is 9.2 nm. The LiDAR data were acquired by the
Optech ALTM 3100EA sensor. The available ground truth labels
consist of six classes.

The Trento dataset contains 63 hyperspectral bands and two
LiDAR bands (M = 65). Additionally, we extracted six textural
features for each of the available LiDAR bands (see Table I). The
final dataset that was used contains [N = 77 attributes with an
overlapping test size area of 600x 166 pixels. Fig. 5 illustrates
the false-color composite representation of the Trento dataset
for both sensors.

3) Houston: The last dataset consisted of LIDAR and hyper-
spectral data acquired over the University of Houston campus
and the neighboring urban area and was distributed for the
2013 IEEE GRSS Data Fusion Contest [78]. Hyperspectral
data were acquired from the Compact Airborne Spectrographic
Imager with a 2.5-m spatial resolution. The hyperspectral dataset
includes 144 spectral bands ranging from 0.38 to 1.05 pm. The
available ground truth labels consisted of 15 classes.

The Houston dataset contains hyperspectral data (144 bands)
and 1xLiDAR data (including one band and six textural fea-
tures). The final dataset that was used consisted of N = 151
attributes with an overlapping test size area of 1905 x 349 pixels.
Fig. 6 demonstrates the Houston test site for both sensors.

B. Parameter Sensitivity Analysis

Several parameters may affect the performance of GKMI,
mainly the number of selected attributes, the size of superpixels,
and the size of the training set. In the following, we tune one
parameter at a time to understand how it influences our proposed
approach.

1) Number of Attributes: Fig. 7 illustrates the overall accu-
racies for the proposed GKMI attribute selection over a different
number of selected attributes for all datasets used in this work.
The blue curve identifies the OA results obtained on the Berlin
dataset, the red line indicates the OA results obtained on the Paris
dataset, the green line refers to the Trento dataset, whereas the
black line shows the results for the Houston dataset. The stars
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(b)

Fig. 6. False-color composite representation of Houston (a) hyperspectral and
(b) LiDAR datasets.
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Fig. 7. Overall accuracies of GKMI as a function of different numbers of

selected attributes for Berlin (blue dotted line), Paris (red dashed line), Trento
(green solid line), and Houston (black dash-dotted line) test sites using the SVM
classifier.

indicate the point where the accuracy reaches its maximum. It
can be seen from Fig. 7 that the OA curves rise sharply until the
number of attributes chosen reaches 40 for the Berlin dataset and
30 for the Paris dataset. After that point, OA curves keep stable
high till 75 and start to decrease. The Trento and Houston curves
grow abruptly until the number of attributes chosen reaches 20
for both datasets.

All the curves, in general, have a similar pattern that indicates
that a large number of selected attributes do not necessarily lead
to the best classification result. The number of selected attributes
reaches some particular point where additional attributes can
hardly provide any extra information for subsequent classifica-
tion. Depending on the original data, additional attributes may
even reduce the accuracy of classification. This result shows
the relevance of our method, since using the total number
of attributes leads to lower accuracy. Actually, the maximum
efficiency is reached using less than half of the attributes.

2) Size of Superpixels: The size of superpixels is another
parameter that may impact the performance of our method. Since
the same set of attributes is assigned to the pixels of the same
superpixel, we expect that too large or too small superpixels may
deteriorate the results. Large superpixels may include several
homogeneous regions; hence, the selected subset may not be
representative of all pixels. On the other hand, small superpixels
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Fig. 8.  Mean (curves) and variance (faded surfaces) of overall accuracies of
GKMI as a function of different numbers of superpixels for Berlin (blue), Paris
(red), Trento (green), and Houston (black) test sites using the SVM classifier.
The same color legend as in Fig. 7 applies here. Note that the figure consists of
four different subfigures with different scales on the vertical axes.

may not contain the whole homogeneous area, and various
attributes can be chosen for the same region.

It is important to recall that the superpixel selection is used
only during the attribute selection process, while classification is
performed for each pixel separately. In other terms, let us assume
that the ¢-th superpixel S; consists of P; pixels {X,.}p=1...p;-
The pixels belonging to S; cannot be associated with any
other superpixel, ie., S; N S; = 0V(i,j) € {1,...,L}? i # j,
where L is the total number of the considered superpixels in
the dataset. Then, the attribute selection procedure in Section III
selects for all the pixels in S; a subset of K attributes €2;. The p-th
pixel in S; is, hence, classified independently from the others by
taking into account only the attributes in €2;.

To investigate the impact of this parameter on GKMI, we
illustrate in Fig. 8 the OA of the proposed method, over a
different number of superpixels, for all datasets. The blue line
shows the OA result for Berlin, the red line for Paris, the black
line for Houston, and the green line for Trento. The stars show the
point with maximum OA. The faded area displays the variance
of the overall accuracies for different sizes of superpixels. The
number of superpixels is representative of the size of superpixels
in the dataset, i.e., the higher the number of superpixels, the
smaller the size of the superpixels.

From Fig. 8, we can observe that the curves for each dataset
are quite stable, and there are no significant fluctuations, which
means that the size of the superpixels has a minor impact on
the classification accuracy. Moreover, from the curves, it is
possible to appreciate that the variance of the overall accuracies
(faded area) is decreasing with the size of the superpixels for
the Trento, Houston, and Berlin datasets. This indicates that for
these particular examples, increasing the number of superpixels
leads to a more stable results, while for the Paris dataset, there
are no significant fluctuations in variance throughout the curve.

The OA displayed in Fig. 8 is the result of the attribute
selection process as a function of the number of superpixels
(L in the previous discussion). Therefore, it is possible to state
that Fig. 8 shows how robust the proposed method is with
respect to the L parameter. In fact, although the pixels of a given
superpixel have the same set of chosen attributes, they might
belong to different classes. Thus, the proposed approach is able
to combine the benefits provided by the superpixel grouping
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Fig.9. Overall accuracies of GKMI as a function of different sizes of training

samples for Berlin, Paris, Trento, and Houston test sites using the SVM classifier.
The same color legend as in Fig. 7 applies here.

and graph clustering while avoiding biasing the results in the
classification step.

3) Size of Training Sample: Another parameter that is af-
fecting the performance is the size of the training sample. Fig. 9
demonstrates the OA of the proposed method over a different
size of training samples. It is quite evident from Fig. 9 that the
increase in accuracy is directly proportional to the increase in the
sample size: this behavior is verified for all considered datasets.

In all other experiments of this study, we are using 20% of
ground truth labels as a training sample as commonly used in
practice.

C. Performance Analysis

Let us now investigate the impact of the chosen similarity
measures, their weight, as well as the relevance of the superpixel
analysis compared to pixel-wise and image-wise selection.

1) Kernel Comparison: Let us start by discussing the metric
to be used to estimate the similarity representing the structure of
the attributes’ set in Section III. In this respect, it is worth noting
that the choice of the function to model the similarity among
attributes is a critical task in remote sensing data analysis [79],
[80, ch. 9].

In fact, defining the kernel to be employed to quantify the
structure of the data (and thus defining similarity between pairs
of samples) is crucial to obtain a reliable understanding of the
relevance of the attributes and their actual role in the characteri-
zation of the interactions among the records [79]. Furthermore, it
is important to recall that a proper choice of the kernel to quantify
the similarity among attributes can provide a consistent and
well-founded theoretical framework for developing nonlinear
techniques. Moreover, kernel functions are used in practice to
unfold the complicated structure of a dataset, thus enabling
the ability to deal with a low number of (potentially high di-
mensional) training samples, the investigation of heterogeneous
records, as well as considering multiple noise sources [79], [81].

On the other hand, it is also true that the definition of the
proper kernel for the aforesaid purpose might be particularly
cumbersome, especially when the design of architectures for
data analysis that is intended to be unsupervised, versatile, and
flexible is targeted [79], [81]. Indeed, it is possible to state that
the definition of a kernel mapping function that would accurately
quantify the similarity among samples represents a bottleneck
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TABLE IV
DEFINITIONS OF THE DIFFERENT KERNELS BETWEEN FIRST AND SECOND
ATTRIBUTES IN THE [-TH SUPERPIXEL

Definition Parameters

Euclidean distance (ED) [1%1n, = Xing | -

Linear kernel (LK) x;;blxln2 +c c: Optional constant

Q

Optional constant

d
Polynomial kernel (PK) (sxl7;L Xing + c) d: Polynomial degree
! s: Slope
) 11507 =iy |12
Gaussian kernel (GK) exp | —— 5 — o: scale parameter
TABLE V

PERFORMANCE COMPARISON AMONG DIFFERENT SIMILARITY MEASURES,
DEFINED IN TABLE IV, USING THE SVM CLASSIFIER

Berlin Paris Trento Houston
Method K OA (%) K OA(%) K OA%) K OA (%)
ED 100 93.8 80 97.7 60 97.2 100 87.3
LK 100 88.0 100 96.3 60 97.1 100 87.6
PK 100 90.2 100 96.2 60 97.2 125 86.8
GK 80 94.9 80 97.9 60 97.6 80 87.9

K refers to the optimal number of selected attributes for which the OA is obtained. In
this experiment, according to the notation in Table IV, ¢ = 1,d = 3,and s = 1/N.

for any kernel-based analysis approach. At the same time, it
is worth remembering that not all kernel similarity functions
are allowed. Specifically, valid kernels must fulfill Mercer’s
theorem, i.e., being positive-definite similarity matrices. This
property is fundamental when no a priori knowledge on the
interclass and intraclass statistical distributions is available [79],
[81]. As a result, the kernel functions that are most commonly
employed in this context are using Euclidean distance (ED) and
linear, polynomial, and Gaussian functions (i.e., Linear kernel
(LK), Polynomial kernel (PK), and GK in Table IV) as similarity
measures.

Thus, to assess the relevance of the choice we proposed in
Section III, we compare the performance of the SC in (4) when
using ED, LK, PK, and GK to define the weights of the graph
structure. In Table V, we represent the maximum OA achieved
by the attributes selected using the different kernels. It can be
seen that ED, PK, and LK show a slightly lower accuracy than
GK. Moreover, the GK always achieves the highest OA with
a fewer number of attributes. Compared to ED, LK, and PK,
the GK is able to unfold the finer structure of the attributes
since it is highly nonlinear. This strengthens the assumptions we
have used in designing the data analysis steps in the proposed
multimodal feature selection method. This result is consistent
with the proven ability of GK to be more flexible in character-
izing the data structure in complex systems, especially when
an investigation of large-scale and heterogeneous datasets is
conducted [45].

2) Significance of Similarity Functions: It is also worth to
investigate the relevance of using MI together with the GK sim-
ilarity to build the graph representing the structure of the dataset.
According to the assumptions we have detailed in Section III,
the proposed method assumes that both the GK and the MI are
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necessary to obtain a solid characterization of the data structure
to be analyzed. Indeed, the graph representation plays a key
role in describing the interactions among attributes [9], [30].
Therefore, exploring the impact of the chosen similarity metrics
in the definition of the graph induced by the considered dataset
is crucial to understand what role the quantities used to describe
the attributes’ relevance can play in different applications, as
well as to estimate the reliability of the proposed approach in
operational use.

Let us then investigate the impact of GK and MI in the
selection process outlined in Section III. In particular, to this
aim, the weight of MI and GK metrics could be, in principle,
unevenly distributed. Specifically, we can rewrite the function
in (10) as follows:

B |ddiag (V'L V) |
L(V)= <a log |VZTLZGKV1’
|ddiag (VI IMV,)|
+ (1 —a)log VTLMY,| . (12

In other terms, the parameter « is used to change the weight
(i.e., importance) of the similarity metrics employed in the
selection process, i.e., high values of « give more weight to
the GK, while low values of « give more weight to the MI.
Particularly, only MI is considered when o = 0, and only the
GK is utilized when a = 1.

2) Eigenvalue analysis: At this point, we study the impact
of the two similarity metrics on classification performance by
investigating the spectrum of the eigenvalues for different values
of «. In fact, as previously mentioned in Section III-C, the
eigenvectors of the Laplacian matrices used to describe the graph
connectivity induced by the given dataset are directly linked to
the solution of the feature selection process itself. Indeed, it
is worth recalling that the key idea of graph clustering based
on Laplacian matrices is that the indicators of data (attributes)
classes are given by the eigenvectors of the Laplacian corre-
sponding to the lowest eigenvalues [63]. Furthermore, hetero-
geneity in the graph node degrees would translate in spreading
the eigenvalues of the Laplacian matrix across the spectrum [12].
This means that in the case of complex datasets (i.e., datasets
where itis not possible to draw linear hyperplanes in the attribute
space to perform graph clustering and therefore dimensional-
ity reduction), it is not possible to associate the informative
eigenvectors with the smallest eigenvalues anymore. Actually,
by losing the isolation of informative eigenvalues, the associated
eigenvectors tend to merge with the eigenvectors associated with
close-by (noninformative) eigenvalues [12]. Hence, an effective
dimensionality reduction can be performed only when it is
possible to identify the smallest eigenvalues and clearly separate
them by the eigenvalues with higher amplitude. On the contrary,
when the spectrum of the eigenvalues is generally flat, then it
is possible to expect that the dimensionality reduction process
would not be able to achieve reliable and robust results in terms
of informativity maximization [12], [63].

With this in mind, we computed the eigenvalues of the Lapla-
cian matrix resulting from setting « to several values in [0,1].
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We then considered their spectra to understand how easy it would
be to identify and discriminate the smallest eigenvalues from
their total set. In this respect, Fig. 10 shows the eigenvalues of
the Laplacian matrices LK (case o = 1 in (12)—yellow solid
line) and LM (case o = 0in (12)—red dotted line) defined in (5)
and (7), respectively, as well as their common eigenvalues used
by GKMI (case o = 0.5 in (12)—blue dashed curve) obtained
on Paris and Trento datasets.

We notice that the curves corresponding to the eigenvalues of
LYK and LM are essentially flat [see, for instance, the enlarged
section of the graph on the GK eigenvalues’ trend in Fig. 10(a)].
The amplitude of the eigenvalues varies in both cases in the
order of 10712), showing a low separability of the data since it
is hard to isolate the eigenvalues related to class indicators [12].
On the other hand, when using both similarities according to the
proposed method in Section I, it is possible to appreciate that
the variability of the eigenvalues’ amplitude is more pronounced
in terms of several orders of magnitude. Therefore, it is a lot
easier to identify the smallest eigenvalues and separate them
from the total set of eigenvalues, leading to a more accurate
identification of the relevant attributes in the dataset.

Fig. 10, thus, demonstrates how the heterogeneity of multi-
modal attributes makes their structure so complex in the attribute
space such that the classic SC fails to reveal it. It is indeed worth
noting that this result is compliant with recent findings in techni-
cal literature, where it has been shown that SC fails at detecting
the classes of a graph with heterogeneous degrees [10]-[12], as
it is the case in this work.

2) Impact of a« on OA: The aforesaid results are confirmed
when exploring the classification accuracy obtained when di-
mensionality reduction is performed for different values of a.
Specifically, Fig. 11 shows the gain in the OA of GKMI com-
pared to SC [i.e., & = 1in (12)] as a function of the parameter cv.
We notice that a negative gain (loss) is only achieved for o = 0,
implying that MI shows lower performance than the GK and
that the exploitation of both measures always improves the
OA. The maximum accuracy is achieved when both GK and
MI are employed to define the graph [i.e., a # {0, 1} in (12)],
specifically for o = 0.7 for the Berlin dataset and oo = 0.5 for
other datasets. According to the trends in Fig. 11, & = 0.5 seems
the best design choice to achieve high accuracy performance
while guaranteeing wide applicability of the system to data with
different properties.

2) Impact of o on K: To further demonstrate the perti-
nence of using two similarities, we compare the results obtained
when using one similarity at a time and when used together.
Table VI demonstrates the maximum OA of SVM classifica-
tion for Berlin, Paris, Trento, and Houston datasets, when the
selection is performed using only GK, using only MI, and with
both similarities (GKMI). In contrast to Fig. 11, where a fixed
number of chosen attributes are used, Table VI shows the optimal
number for which the maximum OA is achieved. The different
approaches show almost similar performance. However, GKMI
reaches the maximum accuracy with less number of attributes
for each dataset. It achieves an OA of 95.5% for Berlin and
98.1% for Paris, for less than a third of the original attribute set.
Moreover, it achieves an OA of 88.7% for Houston, with less
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TABLE VI
PERFORMANCE COMPARISON OF SINGLE AND JOINT SIMILARITY MEASURES,
USING THE SVM CLASSIFIER

Berlin Paris Trento Houston

Method K OA%) K OA(%) K OA(% K OA (%)
MI 80 93.7 80 97.5 60 96.8 80 86.6
GK/Spectral clustering 80 94.9 80 97.9 60 97.6 80 87.9
GKMI 60 95.5 60 98.1 40 97.4 60 88.7

K refers to the optimal number of selected attributes for which the maximum OA is
obtained.

than half of the dataset. For the Trento dataset, the OA reaches
the highest number 97.4% with 40 attributes, almost half of the
dataset. Accordingly, we can conclude that GKMI ensures a
more precise selection.

3) Fusion of Similarity Functions: For a given superpixel [,
GKMI generates a graph with two edges that summarize the
attributes’ similarities via the GK and via MI. The two edges
are then combined in a nonlinear manner by extracting the joint
eigenspace of their corresponding Laplacians, LF¥ and LML
The fusion of the edges can be performed differently. One of the
easiest approaches is by taking their mean

W;nean —

(WP +wMh (13)

DO =

In this case, the indicators of the subgraphs are given by the first
K eigenvectors of the Laplacian matrix

1 1/2

L;nean — I _ D?’léal’li /ZW;neanD;nean’ (14)

where D" = diag(_, . ; wiis™).

Another approach of graph fusion was proposed by lyer
et al. [53]. Their approach assumes that two nodes are similar if
and only if they are similar via both similarity functions. As such,
they define the weight of the combined edge as the maximum
of both edges normalized

where std(A) denotes the standard deviation of the elements
of the matrix A. In this case, as for the “mean” approach, the
indicators of the subgraphs are given by the first /' eigenvectors
of the Laplacian matrix

WIGK WMI
std(WEK)” std(WMI)

W™ = max ( (15)

1 1/2

L;nax —I1_ D;nax’ /2W;naxD;nax’ (16)
where D" = diag(>_, ., wjis").

To evaluate the performance of the different approaches, we
compare their spectra to assess their ability in separating the
different classes of the heterogeneous attributes.

Fig. 12 shows the eigenvalues of the Laplacian matrices
obtained by the “mean” approach, L;"**", the “max” approach,
L™, and by the “joint” decomposition used by the GKMI
approach. The flatness of the curves corresponding to “mean”
and “max” demonstrates the incapacity of these approaches in
emphasizing the informative eigenvalues, corresponding to the
eigenvectors indicators of the attributes’ clusters, since they are
inseparable from the total set of eigenvalues. On the other hand,
when using GKMI, the informative eigenvalues are well isolated.
This outcome demonstrates the effectiveness of our approach.

In fact, the JD of the Laplacian matrices corresponding to the
GK and MI enables their interaction, revealing their nonlinear
connections and, hence, the hidden structure of the heteroge-
neous attributes. By connection between the similarity func-
tions, we mean the connection of the graph structures that each
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TABLE VII

PERFORMANCE COMPARISON OF PIXEL, SUPERPIXEL, AND IMAGE-WISE GKMI
APPROACHES FOR EACH DATASET

OA (%)
Dataset K Approach SVM RF ET (sec)
Pixel-Wise 199 242 44320
£ 40 Image-Wise 942 91.6 394
Ej Superpixel 94.7 935 246
N =196 No selection  89.5 933 465
Pixel-Wise 382 514 52880
@ 40 Image-Wise 96.8  94.6 889
E Superpixel 97.1 953 267
N =196 No selection 86.5 954 758
Pixel-Wise 552  66.6 3900
= 40 Image-Wise 964  96.4 23
E Superpixel 974 973 64
N =77 No selection 97.0 97.7 26
Pixel-Wise 157 323 35310
E 40 Image-Wise 843  81.0 296
é Superpixel 87.8 858 81
N =151 No selection  87.1 85.5 58

For the superpixel part of the calculations, 100 superpixels were used.

similarity represents. Conversely, the mean and max approaches
assume linear and simple links between the similarity functions,
which fail to identify and characterize their nonlinear links, and
hence do not exploit their full potential.

4) Levels of Spatial Detail: The proposed GKMI method can
be applied at different fusion levels. Nonetheless, its versatility
allows us to investigate its application at different spatial detail
levels, as GKMI can run at an image, superpixel, and pixel levels.
Each of these approaches produces a different result in terms
of classification accuracy and time complexity. Therefore, it is
interesting to investigate how this design choice might affect the
final outcome of the attribute selection procedure.

Table VII shows the OA and execution time (ET) for im-
age, pixel, and superpixel GKMI on all datasets used in this

work. It is clear from these results that the superpixel method
produces higher accuracy outcomes and outperforms pixel and
image-wise approaches for different classifiers, in terms of both
accuracy and computational complexity. Furthermore, the ET
can be further enhanced by applying parallel computing on the
different superpixels.

The superpixel procedure accounts for the particularity of
each superpixel, in contrast to the image-wise, and selects the
same attributes for homogeneous regions, as opposed to pixel-
wise. These two reasons make the superpixel approach more
accurate and effective.

Let us now investigate in more detail the GKMI approach per-
formed at the superpixel level. In this case, the adjacency matrix
using the GK is measured using all pixels of a given superpixel,
asshownin (11). However, in view of the fact that the superpixels
in our analysis are formed by grouping homogeneous pixels, we
can improve our analysis’ time complexity by performing the
selection by considering each attribute’s mean over all pixels
or by picking a representative pixel randomly. As such, for a
given superpixels with L pixels, the input of Algorithm 1 for
attribute selection is a set of scalars instead of vectors given by
the mean of the attributes {+ >, X;1,..., T ., X;n } or by the
attributes of the [-th randomly picked pixel {x;1, ..., 2z;n }. The
algorithm’s output, i.e., the subset of relevant attributes, will then
be applied to all pixels within the superpixel. Table VIII shows
the comparison of these approaches for Berlin, Paris, Trento, and
Houston datasets. The results show that by randomly picking
a representative pixel, the time complexity reduces without
significantly affecting the OA.

In order to strengthen the idea and motivation behind the
employment of the information selection on a superpixel level,
we additionally analyzed the attributes that were selected by the
proposed method for each class of the Trento dataset. As was
mentioned earlier, the Trento dataset consists of 77 attributes
(63 hyperspectral bands ranging from 402.89 to 989.09 nm,
and 14 LiDAR + GLCM textural features) and has six ground
truth classes, including Apple trees, Vineyard, Wood, Roads,
Ground, and Buildings. Accordingly, Fig. 13 illustrates the chord
diagrams that represent selected attributes for five different
superpixels that fall into the area of the ground truth labels for
each class of the Trento dataset. The vertices show 77 available
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TABLE VIII

OA AND ET OBTAINED WITH THREE SUPERPIXEL SELECTION APPROACHES

Berlin Paris Trento Houston
OA OA OA OA
m o ET m o2 ET m o> ET pu ¢ ET
All pixels 955 0.1 359 981 003 336 974 029 68 887 071 88
Mean of the pixels 95.7 006 311 980 0.02 279 959 052 68 876 061 73
One pixel randomly picked 955 0.19 309 98.0 005 277 963 056 68 87.8 0.64 70
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1 and o2 refer, respectively, to the mean and variance of the OA obtained over the 100 superpixels used. ET is presented in seconds.

Fig. 13.

attributes, such as green—hyperspectral, and brown—LiDAR,
while the edges illustrate the attributes that were selected by
the GKMI method (color of the connections represent different
homogeneous areas, i.e., superpixels). The outer circle depicts
different macroscopic intervals of the spectral channels from
the visible (violet 380-450 nm, blue 450-495 nm, green 495—
570 nm, yellow 570-590 nm, orange 590-620 nm, and red
620-750 nm, according to the visible wavelength color represen-
tations) to the near-infrared (dark red 750-1300 nm) range with
respect to the attribute numbers. The gray color represents the
LiDAR attributes. Hence, the chord diagrams show that even for
the same class, relevant attributes can vary and can be grouped
differently. It means that if the various image parts represent the
same class, they still might be observed under different technical
or environmental conditions. Therefore, it is crucial to select the
relevant attributes for separate zones of an image in order to
reflect their particularity. The aforementioned results show the

Chord diagrams of selected attributes for different classes of the Trento dataset.

flexibility and adaptivity of the proposed information selection
scheme.

5) Selected Attributes: Additionally, in order to further in-
vestigate the effectiveness of the proposed approach, we an-
alyzed the attribute selection method with datasets that in-
cludes corrupted attributes. Accordingly, to each dataset, we
added a various number of corrupted attributes, which were
randomly generated by Gaussian noise with different mean
w=1[0.1,...,1] and standard deviation o = [0.1,...,1].

Fig. 14 shows the graph of occurrences of corrupted at-
tributes for each dataset among a different number of noisy
attributes added to the original datasets. Red color refers to
attributes selected by SC, while blue color demonstrates the
proposed method. It can be clearly seen from the curves that
there is no clear superiority of any method for Trento and
Houston datasets. For a different number of noisy attributes,
each of the methods shows almost equal performance, with a
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slight advantage to one side or another. Nevertheless, for Berlin
and Paris datasets, the predominance of the GKMI method
becomes clearly visible. Moreover, for some parts, the per-
centage of selected noisy attributes using the GKMI method
is several times less than using SC. Therefore, this result addi-
tionally strengthens the idea of applying two similarity metrics
simultaneously.

6) Correlation Sensitivity: As an alternative metric to assess
the ability of the proposed method to effective dimensionality
reduction, information dependence can be taken into account.
This metric is one of the commonly used criteria for feature
selection, especially for hyperspectral bands that are highly
correlated. Specifically, computing the Pearson correlation co-
efficient provides insight into the strength of a linear association
between two variables. Basically, a Pearson product moment
correlation attempts to draw a line of best fit through the data
of two variables [82, ch. 4]. The Pearson correlation coefficient
indicates how far away all these data points are to this line of
best fit (i.e., how well the data points fit this new model/line of
best fit).

To determine the strength of association based on the Pearson
correlation coefficient, it is possible to rely on the amplitude
of the outcome. Specifically, if the linear relationship among
attributes increases, then the Pearson correlation coefficient
would increase as well. Therefore, the ability of a dimensionality
reduction algorithm to identify the most informative subset of
features in the dataset should show up in terms of low values of
Pearson correlation coefficients [82].

In our case, it is particularly important to assess the necessity
of including the MI Laplacian in the dimensionality reduction
process in order to improve the ability to select informative
attributes in the given dataset. To demonstrate the relevance of
using MI, in Table IX, we show the intercorrelation between
the selected attributes using the classic SC in (5) and GKMI.
Table IX reports the mean correlation and variance among all
superpixels. Itis evident from the results that the incorporation of
MI significantly decreases the correlation of selected attributes
as opposed to the SC that only utilizes the GK.

Hence, given the previous observations, employing MI in the
JD procedure as in (6) appears as a key step in order to enhance
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TABLE IX
MEAN /1 AND VARIANCE 2 OF THE INTERCORRELATION BETWEEN THE
SELECTED BANDS USING SC AND GKMI, OVER ALL SUPERPIXELS

Berlin Paris Trento Houston

Method “w o2 “w o? N o? o o2
sC 0.04 005 009 0.02 014 012 054 0.08
GKMI 0.01 005 0.02 0.02 003 0.04 048 0.01

the selection of relevant attributes delivered by a system based on
a classic SC, especially when multimodal datasets are taken into
account. Therefore, this is compliant with the results we have
shown and commented on previously in this section and confirms
from a statistical point of view the findings we have achieved
when addressing the eigenanalysis of the selection capacity.

D. Method Comparison

In order to validate the proposed attribute selection method,
we compare the achieved results with nine other dimensionality
reduction algorithms:

1) one ranking approach: FIS;

2) two attribute extraction methods: PCA and DBFE;

3) three searching strategies: FS, OBB, and GA;

4) three graph clustering approaches: MST clustering, DS,

and CD.

The aforementioned methods were described in detail earlier
in Section II. It should be emphasized that, in this work, we do
not compare our method with neural-network-based approaches
since they require a training set.

Tables X—XIII report the performance comparison of the
GKMI method with existing methods over various multimodal
datasets and using two classifiers. It is evident from the tables that
graph-based approaches outperform all the classical methods for
feature selection in technical literature in terms of OA, AA,
and Kappa since the latter methods are not flexible enough
to process the multimodal datasets. However, GKMI ensures
higher accuracies over all the considered datasets with the least
number of attributes since it is performed on the superpixel level.
Hence, it is possible to conclude that the proposed method was
finding the best descriptive attributes for each homogeneous
superpixel. Moreover, it is worth noting that the two similarity
measures that are employed in the GKMI scheme are apparently
able to ensure a more robust definition of the connections among
vertices in the graphs associated with the considered datasets.
This effect allows a better characterization of the subgraphs
associated with the relevant attributes. Taking into account the
observations drawn previously in this work (especially when
considering the parameter sensitivity analysis and the trend of
the eigenvalues in Fig. 10), these results further highlight the
ability of GKMI to provide robust and reliable performance
in selecting the most relevant attributes under diverse analysis
conditions.
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TABLE X
PERFORMANCE COMPARISON AMONG DIFFERENT DIMENSIONALITY REDUCTION METHODS AND DIFFERENT CLASSIFIERS FOR THE TRENTO DATASET

RF SVM
Method K OA (%) Kappa AA (%) ET (sec) OA (%) Kappa AA (%) ET (sec)
TR TR T w0’
PCA 26 88.1 2.1 81.2 87.8 1.9 108 88.7 1.6 88.9 88.9 1.8 12.1
DBFE 25 86.3 2 86.3 86.1 1.8 110.2 82.9 1.5 83.8 84.1 1.9 13.4
FIS 25 842 1.8 84 832 1.6 109.6 85.1 1.4 84.6 85.7 1.3 12.6
FS 28 84 1.2 84 83.8 1.3 110.1 82.1 1.2 81.2 82.2 1 12.8
OBB 24 90.6 0.8 89.2 90.8 0.7 1243 90.2 0.6 87.2 90 0.7 18.8

GA 23 904 0.7 89.4 90.3 0.6 123.2 903  0.55 89.2 90.5 0.58 17.9
MST 42 957 023 94.2 95.6  0.22 131 95.6  0.07 94.1 958  0.05 13.5

DS 38 88.7 0.04 84.9 88.2  0.08 14.9 86.7  0.03 82.2 859  0.05 245
CD 52 962  0.11 94.9 96.1  0.16 16.1 96.3  0.02 95.1 96.1  0.02 142
GKMI 20 950 033 93.4 944  0.73 139 939 0.28 91.8 932 038 41
40 973 0.14 96.4 96.8 0.28 153 974  0.29 96.2 96.6 0.56 68
TABLE XI

PERFORMANCE COMPARISON AMONG DIFFERENT DIMENSIONALITY REDUCTION METHODS AND DIFFERENT CLASSIFIERS FOR THE HOUSTON DATASET

RF SVM
Method K OA (%) Kappa AA (%) ET (sec) OA (%) Kappa AA (%) ET (sec)
” o2 H o2 “ o2 u o2
PCA 29 79.6 1.2 79.7 79.8 1.1 188 83.2 1.1 81.0 83.6 1.3 98
DBFE 31 789 1.3 77.6 78.8 1.09 196 794 112 78.6 79.5 1.07 99
FIS 30 803  1.02 80.0 80.4 1.04 188.8 80.6 1.08 80.2 80.6 1.05 102.4
FS 30 775 1.3 77.1 775 121 190 77.2 1.15 76.8 77.3 1.18 100.8
OBB 26 785 1.11 78.4 787  1.09 209 772 113 759 713 1.08 116
GA 23 802 1.03 80.1 80.2  1.04 200.1 78.6  1.05 713 787  1.02 111
MST 40 849  1.68 84.0 856 171 535 857 072 84.7 86.3  0.65 43
DS 30 711 1.09 69.7 72.3 1.47 45 77.5 1.05 75.9 78.1 1.01 31
CD 64 850 198 83.9 856 179 52 85.6 0.78 84.8 86.7 059 47
GKMI 20 826 1.67 81.3 83.0 1.56 150 852  0.88 84.2 855 097 69
60 86.5 1.41 85.5 86.6 1.42 161 887 0.71 87.9 89.1 0.8 88
TABLE XII

PERFORMANCE COMPARISON AMONG DIFFERENT DIMENSIONALITY REDUCTION METHODS AND DIFFERENT CLASSIFIERS FOR THE BERLIN DATASET

RF SVM
Method K OA (%) Kappa AA (%) ET (sec) OA (%) Kappa AA (%) ET (sec)
M = H o2 P o2 u o2
PCA 47 862 0.13 85.3 86.3  0.13 312 857 0.11 84.9 858 0.12 319
DBFE 48 865  0.11 86.3 864  0.12 313.6 854  0.09 85.2 85.4 0.1 320.3
FIS 47  86.6  0.11 86.5 86.8  0.12 315 86.3  0.11 85.8 86.3 0.1 323
FS 49 836 0.1 82.4 83.6 0.08 316.2 82.6  0.09 82.1 82.8 0.11 321
OBB 45 859 0.08 85.7 859  0.07 323 85.8  0.07 84.7 859  0.06 330
GA 45 864  0.07 86.1 86.5 0.05 320 85.7  0.04 85.2 85.8  0.05 327
MST 41 884 0.12 86.6 883 051 61 91.1  0.23 89.8 89.6 039 184
DS 68 901 0.12 88.6 928  0.08 56.8 69.6 251 63.6 94.6  0.02 196
CD 61 89.3  0.13 87.6 89.3 024 47 924  0.16 91.2 912 036 94

40 935 022 92.6 949  0.17 242 947  0.14 93.2 93.6 0.28 243
60 942 0.18 93.4 955 0.11 253 955 0.11 94.8 952  0.20 359

GKMI
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TABLE XIII
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PERFORMANCE COMPARISON AMONG DIFFERENT DIMENSIONALITY REDUCTION METHODS AND DIFFERENT CLASSIFIERS FOR THE PARIS DATASET

RF SVM
Method K OA (%) Kappa AA (%) ET (sec) OA (%) Kappa AA (%) ET (sec)
n o o? woo? TR w o?
PCA 36 887  0.06 87.7 888  0.05 331 834  0.08 87.9 88.5 0.07 279
DBFE 35 884 0.07 88.3 88.6  0.07 333 86.2  0.08 853 86.3 0.06 281
FIS 35 90.6 0.05 89.2 90.6  0.06 332 89.8  0.04 88.9 89.9 0.06 281
FS 37 863  0.06 85.6 86.3  0.05 332 862  0.05 85.9 86.3 0.07 283
OBB 36 87.8  0.04 87.4 87.9  0.03 344 875  0.03 87.1 87.6 0.02 296
GA 33 903 003 88.6 904  0.02 342 90.8  0.04 89.2 90.9 0.03 290
MST 41 938  0.06 91.8 88.6 9.83 110 824 0.15 75.3 91.0 18.03 257
DS 67 917 0.12 89.0 93.0 0.25 108 96.8  0.08 95.8 95.7 0.13 283
CD 83 940 0.2 92.0 884 098 121 82.0 0.1 74.7 91.1 0.13 443
GKMI 30 945  0.09 92.7 94.6  0.36 282 964  0.17 95.2 92.7 1.43 248
60 959 007 94.7 957  0.22 299 98.1  0.03 97.5 96.8 0.46 336
V. CONCLUSION REFERENCES

A new unsupervised attribute selection method based on two
different similarity measures has been proposed for multimodal
remote sensing data. The main merits of the method are as
follows.

1) Unsupervision: The method is application independent;
therefore, it is implemented without any prior information
about class labels.

Flexibility: Tt can be applied to datasets obtained from
various sensors with different characteristics.

3) Accuracy: It employs two similarities that account for
global and local particularities of the original dataset,
which, in turn, allows selecting the most relevant at-
tributes.

Versatility: The method is performed on a superpixel level;
therefore, it selects the best descriptive attributes for each
homogeneous superpixel.

5) Interpretability: The method retains the advantages of
both attribute extraction and selection methods (preserves
the physical meaning of the data and increases the sepa-
rability).

The experimental results obtained from several multimodal
datasets consistently demonstrated the effectiveness and robust-
ness of the proposed method for the processing of the multimodal
remote sensing datasets.

This article introduces the GKMI attribute selection method
with all its crucial steps and relevant novelties. Future work di-
rections will be focused on adding the automatic selection of the
number of attributes for each superpixel, so that the multimodal
data analysis can be adapted to the different conditions of the
records that can be acquired on large-scale scenarios, and on
developing an adaptive classifier that can deal with superpixels
of heterogeneous sizes and attributes.
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4)

ACKNOWLEDGMENT

The authors would like to thank Dr. Pedram Ghamisi
(Helmholtz-Zentrum Dresden-Rossendorf, Germany) for pro-
viding the Trento dataset.

(1]

(2]

[3

=

[4

—_

(5]

(6]

[7

—

[8

[t}

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. Lahat, T. Adali, and C. Jutten, “Multimodal data fusion: An overview
of methods, challenges, and prospects,” Proc. IEEE, vol. 103, no. 9,
pp. 1449-1477, Sep. 2015.

M. D. Mura, S. Prasad, F. Pacifici, P. Gamba, J. Chanussot, and J. A.
Benediktsson, “Challenges and opportunities of multimodality and data
fusion in remote sensing,” Proc. IEEE, vol. 103, no. 9, pp. 1585-1601,
Sep. 2015.

N. Longbotham et al., “Multi-modal change detection, application to the
detection of flooded areas: Outcome of the 2009-2010 data fusion contest,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 1,
pp. 331-342, Feb. 2012.

S. Chlaily, P. Amblard, O. Michel, and C. Jutten, “Impact of noise
correlation on multimodality,” in Proc. 24th Eur. Signal Process. Conf.,
Aug. 2016, pp. 195-199.

S. B. Serpico, M. D’Inca, F. Melgani, and G. Moser, “Comparison of
feature reduction techniques for classification of hyperspectral remote
sensing data,” Proc. SPIE, vol. 4885, pp. 347-358, 2003.

S. Georganos et al., “Less is more: Optimizing classification performance
through feature selection in a very-high-resolution remote sensing object-
based urban application,” GISci. Remote Sens., vol. 55, no. 2, pp. 221-242,
2018.

J. Bioucas-Dias et al., “Hyperspectral unmixing overview: Geometrical,
statistical, and sparse regression-based approaches,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012.
C. Bichot and P. Siarry, Graph Partitioning. Hoboken, NJ, USA: Wi-
ley/ISTE, 2013.

U. Luxburg, “A tutorial on spectral clustering,” Statist. Comput., vol. 17,
pp- 395416, Dec. 2007.

L. Gulikers, M. Lelarge, and L. Massouli€, “A spectral method for com-
munity detection in moderately sparse degree-corrected stochastic block
models,” Adv. Appl. Probab., vol. 49, no. 3, pp. 686-721, 2017.

H. T. Ali and R. Couillet, “Improved spectral community detection in large
heterogeneous networks,” J. Mach. Learn. Res., vol. 18, no. 225, pp. 1-49,
2018.

L. Dall’ Amico, R. Couillet, and N. Tremblay, “Optimal laplacian regular-
ization for sparse spectral community detection,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 2020, pp. 3237-3241.

S. Solorio-Ferndndez, J. A. Carrasco-Ochoa, and J. F. Martinez-Trinidad,
“A review of unsupervised feature selection methods,” Artif. Intell. Rev.,
vol. 53, no. 2, pp. 907-948, 2020.

J. R. Vergara and P. A. Estévez, “A review of feature selection methods
based on mutual information,” Neural Comput. Appl., vol. 24, no. 1,
pp. 175-186, 2014.

M. A. Hossain, M. Pickering, and X. Jia, “Unsupervised feature extraction
based on a mutual information measure for hyperspectral image classifica-
tion,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,2011, pp. 1720-1723.
J. Jiang, J. Ma, C. Chen, Z. Wang, Z. Cai, and L. Wang, “SuperPCA:
A superpixelwise PCA approach for unsupervised feature extraction of
hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 8,
pp. 45814593, Aug. 2018.



KHACHATRIAN et al.: MULTIMODAL FEATURE SELECTION METHOD FOR REMOTE SENSING DATA ANALY SIS

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed. Orlando,
FL, USA: Academic, 2008.

J. Feng, L. Jiao, F. Liu, T. Sun, and X. Zhang, “Unsupervised feature
selection based on maximum information and minimum redundancy for
hyperspectral images,” Pattern Recognit., vol. 51, pp. 295-309, 2016.

Y. Zhou, R. Zhang, S. Wang, and F. Wang, “Feature selection method
based on high-resolution remote sensing images and the effect of sensitive
features on classification accuracy,” Sensors, vol. 18, 2018, Art. no. 2013.
Q. Gu, Z. Li, and J. Han, “Generalized fisher score for feature selection,”
in Proc. 27th Conf. Uncertainty Artif. Intell., 2012, pp. 266-273.

S. Sivakumar and C. Chandrasekar, “Feature selection using genetic algo-
rithm with mutual information,” Int. J. Comput. Sci. Inf. Technol., vol. 5,
no. 3, pp. 2871-2874, 2014.

P. Somol, P. Pudil, F. J. Ferri, and J. Kittler, “Fast branch & bound algorithm
in feature selection,” in Proc. 4th World Multiconf. Syst., Cybern., Inform.,
Orlando, FL, USA, 2000, vol. 7, pp. 646-651.

M. Fauvel, C. Dechesne, A. Zullo, and F. Ferraty, “Fast forward feature
selection of hyperspectral images for classification with Gaussian mixture
models,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8,
no. 6, pp. 2824-2831, Jun. 2015.

M. Ahmad, D. Ulhaq, Q. Mushtaq, and M. Sohaib, “A new statistical ap-
proach for band clustering and band selection using K-means clustering,”
Int. J. Eng. Technol., vol. 3, pp. 606-614, Dec. 2011.

W. Sun and Q. Du, “Hyperspectral band selection: A review,” IEEE Geosci.
Remote Sens. Mag., vol. 7, no. 2, pp. 118-139, Jun. 2019.

J. Feng, L. Jiao, T. Sun, H. Liu, and X. Zhang, “Multiple kernel learning
based on discriminative kernel clustering for hyperspectral band selec-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 11, pp. 6516-6530,
Nov. 2016.

S. Schaeffer, “Graph clustering,” Comput. Sci. Rev., vol. 1, pp. 27-64,
2007.

M. T. Altuncu, E. Mayer, S. N. Yaliraki, and M. Barahona, “From free text
to clusters of content in health records: An unsupervised graph partitioning
approach,” Appl. Netw. Sci., vol. 4, 2019, Art. no. 2.

M. Schaub, J.-C. Delvenne, R. Lambiotte, and M. Barahona, “Multiscale
dynamical embeddings of complex networks,” Phys. Rev. E, vol. 99, 2019,
Art. no. 062308.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond euclidean data,” IEEE Signal
Process. Mag., vol. 34, no. 4, pp. 1842, Jul. 2017.

T. Berry and T. Sauer, “Consistent manifold representation for topological
data analysis,” Found. Data Sci., vol. 1, no. 1, pp. 1-38, 2019.

M. Carreira-Perpifian and R. Zemel, “Proximity graphs for clustering and
manifold learning,” in Proc. 17th Int. Conf. Neural Inf. Process. Syst.,
Vancouver, BC, Canada, 2004, pp. 225-232.

J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319-2323, 2000.

O. Grygorash, Y. Zhou, and Z. Jorgensen, “Minimum spanning tree based
clustering algorithms,” in Proc. 18th IEEE Int. Conf. Tools Artif. Intell.,
2006, pp. 73-81.

M. Beguerisse-Diaz, B. Vangelov, and M. Barahona, “Finding role com-
munities in directed networks using role-based similarity, Markov stability
and the relaxed minimum spanning tree,” in Proc. IEEE Global Conf.
Signal Inf. Process., Austin, TX, USA, 2013, pp. 937-940.

R. Liu, S. Feng, R. Shi, and W. Guo, “Weighted graph clustering for
community detection of large social networks,” Procedia Comput. Sci.,
vol. 31, pp. 85-94, 2014.

M. Pavan and M. Pelillo, “Dominant sets and pairwise clustering,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 167-172, Jan. 2007.
R. Lambiotte, J. Delvenne, and M. Barahona, “Random walks, Markov
processes and the multiscale modular organization of complex networks,”
IEEE Trans. Netw. Sci. Eng., vol. 1, no. 2, pp. 76-90, Jul.—Dec. 2014.
J.-C. Delvenne, S. N. Yaliraki, and M. Barahona, “Stability of graph
communities across time scales,” Proc. Nat. Acad. Sci., vol. 107, no. 29,
pp. 12755-12760, 2010.

R. Tripodi, S. Vascon, and M. Pelillo, “Context aware nonnegative matrix
factorization clustering,” in Proc. IEEE Int. Conf. Pattern Recognit., 2016,
pp. 1719-1724.

S. Vascon, M. Cristani, M. Pelillo, and V. Murino, “Using dominant sets
for k-NN prototype selection,” in Proc. Int. Conf. Image Anal. Process.,
2013, pp. 131-140.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504-507,
2006.

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

11565

X. Xu, H. Gu, Y. Wang, J. Wang, and P. Qin, “Autoencoder based feature
selection method for classification of anticancer drug response,” Front.
Genetics, vol. 10, 2019, Art. no. 233.

D. Tomar, Y. Prasad, M. K. Thakur, and K. K. Biswas, ‘“Feature selection
using autoencoders,” in Proc. Int. Conf. Mach. Learn. Data Sci., Dec.2017,
pp. 56-60.

R. Couillet and M. McKay, “Large dimensional analysis and optimization
of robust shrinkage covariance matrix estimators,” J. Multivariate Anal.,
vol. 131, pp. 99-120, 2014.

J. Hu, D. Hong, Y. Wang, and X. Zhu, “A comparative review of manifold
learning techniques for hyperspectral and polarimetric SAR image fusion,”
Remote Sens., vol. 11, no. 6, pp. 1-28, 2019.

D. Tuia, M. Volpi, M. Trolliet, and G. Camps-Valls, “Semisupervised
manifold alignment of multimodal remote sensing images,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 12, pp. 7708-7720, Dec. 2014.

D. Hong, J. Kang, N. Yokoya, and J. Chanussot, “Graph-induced
aligned learning on subspaces for hyperspectral and multispectral data,”
IEEE Trans. Geosci. Remote Sens., vol. 59, no. 5, pp.4407-4418,
May 2021.

D. Hong et al., “More diverse means better: Multimodal deep learning
meets remote-sensing imagery classification,” IEEE Trans. Geosci. Re-
mote Sens., vol. 59, no. 5, pp. 4340-4354, May 2021.

D.Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph con-
volutional networks for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 7, pp. 5966-5978, Jul. 2021.

D. Hong, J. Yao, D. Meng, Z. Xu, and J. Chanussot, “Multimodal
GANSs: Toward crossmodal hyperspectral-multispectral image segmenta-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 6, pp. 5103-5113,
Jun. 2021.

D. Hong, N. Yokoya, G.-S. Xia, J. Chanussot, and X. X. Zhu,
“X-modalNet: A semi-supervised deep cross-modal network for classi-
fication of remote sensing data,” ISPRS J. Photogrammetry Remote Sens.,
vol. 167, pp. 12-23, 2020.

G. Iyer, J. Chanussot, and A. L. Bertozzi, “A graph-based approach for
data fusion and segmentation of multimodal images,” I[EEE Trans. Geosci.
Remote Sens., vol. 59, no. 5, pp. 4419-4429, May 2021.

J. Xia, W. Liao, and P. Du, “Hyperspectral and Lidar classification with
semisupervised graph fusion,” IEEE Geosci. Remote Sens. Lett., vol. 17,
no. 4, pp. 666—-670, Apr. 2020.

D. Hong, N. Yokoya, N. Ge, J. Chanussot, and X. X. Zhu, “Learnable
manifold alignment (LEMA): A semi-supervised cross-modality learning
framework for land cover and land use classification,” ISPRS J. Photogram-
metry Remote Sens., vol. 147, pp. 193-205, 2019.

J. Dy and C. Brodley, “Feature selection for unsupervised learning,”
J. Mach. Learn. Res., vol. 5, pp. 845-889, Aug. 2004.

S. Doan and S. Horiguchi, “An efficient feature selection using multi-
criteria in text categorization for Naive Bayes classifier,” WSEAS Trans.
Inf. Sci. Appl., vol. 2, no. 2, 2005, Art. no. 34.

L. Rokach, B. Chizi, and O. Maimon, “Feature selection by combining
multiple methods,” in Advances in Web Intelligence and Data Mining,
vol. 23. New York, NY, USA: Springer, 2006, pp. 295-304.

J. Shi and J. Malik, “Normalized cuts and image segmentation,” in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 1997,
pp. 731-737.

G. Strang, Linear Algebra and its Applications. Belmont, CA, USA:
Thomson, Brooks/Cole, 2006.

P. Ablin, J. Cardoso, and A. Gramfort, “Beyond Pham’s algorithm for joint
diagonalization,” 2018, arXiv:1811.11433.

Dinh-Tuan Pham and J. Cardoso, “Blind separation of instantaneous
mixtures of nonstationary sources,” IEEE Trans. Signal Process., vol. 49,
no. 9, pp. 1837-1848, Sep. 2001.

A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” in Advances in Neural Information Processing Systems.
Cambridge, MA, USA: MIT Press, 2001, pp. 849-856.

A. Plaza and C.-1. Chang, High Performance Computing in Remote Sens-
ing. New York, NY, USA: CRC Press, 2007.

Y. Liu, Q. Ren, J. Geng, M. Ding, and J. Li, “Efficient patch-wise
semantic segmentation for large-scale remote sensing images,” Sensors
(Switzerland), vol. 18, no. 10, pp. 1-16, 2018.

S. Beucher, “The watershed transformation applied to image segmen-
tation,” in Proc. 10th Pfefferkorn Conf. Signal Image Process. Microsc.
Microanal., 1992, pp. 299-314.

P. Neubert and P. Protzel, “Compact watershed and preemptive SLIC: On
improving trade-offs of superpixel segmentation algorithms,” in Proc. Int.
Conf. Pattern Recognit., 2014, pp. 996-1001.



11566

[68] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk,
“SLIC superpixels compared to state-of-the-art superpixel methods,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274-2282,
Nov. 2012.

[69] A. Zafari, R. Zurita-Milla, and E. Izquierdo-Verdiguier, “Evaluating the
performance of a random forest kernel for land cover classification,”
Remote Sens., vol. 11, no. 5, 2019, Art. no. 575.

[70] J. Xia, N. Falco, J. Benediktsson, P. Du, and J. Chanussot, “Hyperspec-
tral image classification with rotation random forest via,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 4, pp. 1601-1609,

Apr. 2017.

[71] S. R. Gunn, “Support vector machines for classification and regression,”
1998.

[72] A.Liaw and M. Wiener, “Classification and regression by random forest,”

Forest, vol. 23, pp. 18-23, Nov. 2001.

[73] P.Bharatkar and R. Patel, “Approach to accuracy assessment tor RS image
classification techniques,” Int. J. Sci. Eng. Res., vol. 4, no. 12, pp. 79-86,
2013.

[74] R. Haralick, K. Shanmugam, and I. Dinstein, “Texture features for image
classification,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3, no. 6,
pp- 610-621, Nov. 1973.

[75] U.Kandaswamy, D. A. Adjeroh, and M. C. Lee, “Efficient texture analysis
of SAR imagery,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 9,
pp- 2075-2083, Sep. 2005.

[76] F. Albregtsen, “Statistical texture measures computed from gray level
coocurrence,” Boundary 2, vol. 3, no. 1, p. 45, 1974.

[77] 2017 IEEE GRSS data fusion contest, 2017. [Online]. Available:
http://www.grss-ieee.org/community/technical-committees/data-fusion/
2017-ieee- grss-data-fusion-contest-2/.

[78] 2013 IEEE GRSS data fusion contest, 2013. [Online]. Available:

http://www.grss-ieee.org/community/technical-committees/data-fusion/

2013-ieee- grss-data-fusion-contest/.

G. Camps-Valls and L. Bruzzone, Kernel Methods for Remote Sensing

Data Analysis. New York, NY, USA: Wiley, 2009.

S. Prasad, L. Bruce, and J. Chanussot, Optical Remote Sensing, Augmented

Vision and Reality. Berlin, Germany: Springer, 2011.

[81] M. Fauvel, J. Chanussot, and J. A. Benediktsson, “A spatial-spectral
kernel-based approach for the classification of remote-sensing images,”
Pattern Recognit., vol. 45, no. 1, pp. 381-392, 2012.

[82] R. Rousseau, L. Egghe, and R. Guns, Eds., Becoming Metric-Wise
(Chandos Information Professional Series). Amsterdam, The Netherlands:
Elsevier, 2018.

[79]

[80]

‘

Eduard Khachatrian (Student Member, IEEE) re-
ceived adouble M.Sc. degrees in polar and marine sci-
ences from the Faculty of Mathematics, Informatics,
and Natural Sciences, University of Hamburg, Ham-
burg, Germany, and the Institute of Earth Sciences,
Saint Petersburg State University, Saint Petersburg,
Russia, in 2017. He is currently working toward the
Ph.D. degree with the Center of Integrated Remote
Sensing and Forecasting for Arctic Operations, Uni-
versity of Tromsg—The Arctic University of Norway,
Tromsg, Norway.

From 2017 to 2018, he was a Junior Scientist with the Nansen International
Environmental and Remote Sensing Centre, Bergen, Norway. His research
interests include multimodal data analysis, image processing, and remote sensing
of polar areas.

Saloua Chlaily (Member IEEE) received the
M.Sc. degree in electronics engineering from
the Ecole Nationale Supérieure d’Electrotechnique,
d’Electronique, d’Informatique, d’Hydraulique et
des Télécommunications, Toulouse, France, and the
M.Sc. degree in electrical engineering from the Has-
sania School of Public Works, Casablanca, Morocco,
both in 2013, and the Ph.D. degree in signal, image,
speech, and telecommunication from Grenoble Alpes
University, Grenoble, France, in 2018.

She is currently a Researcher with University of
Tromsg—The Arctic University of Norway (UiT). She conducts her research
with the Center of Integrated Remote Sensing and Forecasting for Arctic
Operations, UiT. Her research interests include multimodal data analysis, signal
processing, and image processing.

Dr. Chlaily is a Reviewer for IEEE TRANSACTIONS ON GEOSCIENCE AND
REMOTE SENSING, IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH
OBSERVATIONS AND REMOTE SENSING, and IEEE GEOSCIENCE AND REMOTE
SENSING LETTERS.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Torbjgrn Eltoft (Member, IEEE) received the M.Sc.
and Ph.D. degrees from the University of Tromsg,
Tromsg, Norway, in 1981 and 1984, respectively.

In 1988, he joined the Department of Physics
and Technology, University of Tromsg—The Arctic
University of Norway (UiT), Tromsg, where he is
currently a Professor and the Director of the Centre for
Integrated Remote Sensing and Forecasting for Arctic
Operations, a center for research-based Innovation
awarded by the Norwegian Research Council in 2014,
whose objective is to develop knowledge and remote
sensing technology for arctic applications. From 2013 to 2015, he was the Head
of the Department of Physics and Technology, UiT. He was an International
Researcher with the University of California, Irvine, CA, USA, from 1992
to 1993 and then from 1997 to 1998, and with the University of California,
San Diego, CA, from 2004 to 2005. He has a significant publication record
in the areas of signal processing and remote sensing. His research interests
include multidimensional signal and image analysis, statistical modeling, neural
networks, and machine learning, with emphasis on applications in multichannel
synthetic aperture radar remote sensing and multisensor remote sensing for the
Arctic.

Dr. Eltoft was an Associate Editor for Pattern Recognition from 2005 to 2011
and a Guest Editor for Remote Sensing’s Special Issue for the PolInSAR 2017
Conference. He was the co-recipient of the Outstanding Paper Award in Neural
Networks awarded by the IEEE Neural Networks Council in 2000, Honorable
Mention for the 2003 Pattern Recognition Journal Best Paper Award, and the
2017 UiT Award for Research and Development from the UiT.

Andrea Marinoni (Senior Member, IEEE) received
the B.S., M.Sc. (cum laude), and Ph.D. degrees in
electronic engineering from the University of Pavia,
Pavia, Italy, in 2005, 2007 and 2011, respectively.

He is currently an Associate Professor with the
Earth Observation Group, Centre for Integrated Re-
mote Sensing and Forecasting for Arctic Operations,
Department of Physics and Technology, University of
Tromsg—The Arctic University of Norway, Tromsg,
Norway, and a Visiting Academic Fellow with the De-
partment of Engineering, University of Cambridge,
Cambridge, U.K. From 2013 to 2018, he was a Research Fellow with the
Telecommunications and Remote Sensing Laboratory, Department of Electrical,
Computer and Biomedical Engineering, University of Pavia, Pavia, Italy. In
2009, he has been a Visiting Researcher with the Communications Systems
Laboratory, Department of Electrical Engineering, University of California,
Los Angeles, CA, USA. In 2011, he was the recipient of the two-year “Applied
research grant,” sponsored by the Region of Lombardy, Italy, and STMicroelec-
tronics N.V. In 2017, he was the recipient of the INROAD grant, sponsored by
the University of Pavia and Fondazione Cariplo, Italy, for supporting excellence
in design of European Research Council proposal. In 2018, he was the recipient
of the “Progetto professionalita Ivano Becchi” grant funded by the Fondazione
Banco del Monte di Lombardia, Italy, and sponsored by the University of Pavia
and the NASA Jet Propulsion Laboratory, Pasadena, CA, for supporting the
development of advanced methods of air pollution analysis by remote sensing
data investigation. He was the recipient of Asgard Research Program and Asgard
Recherche+ Program grants funded by the Institut Francais de Norvége, Oslo,
Norway, in 2019 and 2020, respectively, for supporting the development of sci-
entific collaborations between French and Norwegian research institutes. From
2015 to 2017, he was a Visiting Researcher at the Earth and Planetary Image
Facility, Ben Gurion University of the Negev, Be’er Sheva, Israel; the School of
Geography and Planning, Sun Yat-sen University, Guangzhou, China; the School
of Computer Science, Fudan University, Shanghai, China; the Institute of Re-
mote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China;
and the Instituto de Telecomunicagdes, Instituto Superior Tecnico, Universidade
de Lisboa, Lisbon, Portugal. In 2020 and 2021, he was a Visiting Professor
with the Department of Electrical, Computer and Biomedical Engineering,
University of Pavia. His main research interests include efficient information
extraction from multimodal remote sensing, nonlinear signal processing applied
to large-scale heterogeneous records, Earth observation interpretation and Big
Data mining, and analysis and management for human—environment interaction
assessment.

Dr. Marinoni is the Founder and Current Chair of the IEEE Geoscience and
Remote Sensing Society (GRSS) Norway Chapter. He is also an Ambassador
for IEEE Region 8 Humanitarian activities, and a research contact point for the
Norwegian Artificial Intelligence Research Consortium. He serves as a Topical
Associate Editor of machine learning for IEEE TRANSACTIONS ON GEOSCIENCE
AND REMOTE SENSING. He was a Guest Editor of three special issues on Mul-
timodal Remote Sensing and Sustainable Development for IEEE JOURNAL OF
SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING.
He is the Leader of the GR4S Committee of the IEEE GRSS, coordinating the
organization of schools and workshops sponsored by the IEEE GRSS worldwide.


http://www.grss-ieee.org/community/technical-committees/data-fusion/penalty -@M 2017-ieee-grss-data-fusion-contest-2/
http://www.grss-ieee.org/community/technical-committees/data-fusion/penalty -@M 2017-ieee-grss-data-fusion-contest-2/
http://www.grss-ieee.org/community/technical-committees/data-fusion/penalty -@M 2013-ieee-grss-data-fusion-contest/
http://www.grss-ieee.org/community/technical-committees/data-fusion/penalty -@M 2013-ieee-grss-data-fusion-contest/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


